Let $I \subseteq R = k[x_1, \ldots, x_n]$ be an ideal. A set of generators $\mathcal G$ for $I$ is a universal Gröbner basis for $I$ if it is a Gröbner basis for $I$ with respect to any monomial order on $R$. The default value is always UniversalGB=>false.
Set UniversalGB to true if it is known that the given generators for your ideal form a universal Gröbner basis. In this case, we can avoid computing Gröbner bases as geometric vertex decompositions preserve universal Gröbner basis. That is, if $\{ y^{d_i}q_i + r_i \mid i = 1, \ldots, s \}$ is a universal Gröbner basis for an ideal $I$, then $\{ q_1, \ldots, q_s \}$ and $\{ q_i \mid d_i = 0 \}$ are universal Gröbner bases for $C_{y,I}$ and $N_{y,I}$ in $k[x_1, \ldots, \hat y, \ldots, x_n]$, respectively.
The object UniversalGB is a symbol.