

ocrmypdf-10.3.1+dfsg/.coveragerc

[paths]
source =
	src
	*/site-packages

[run]
branch = true
parallel = true
concurrency =
	thread
	multiprocessing
source =
	src/ocrmypdf

[report]
exclude_lines =
	pragma: no cover
	def __repr__
	raise AssertionError
	raise NotImplementedError
	if 0:
	if False:
	if __name__ == .__main__.:
	if TYPE_CHECKING:

ocrmypdf-10.3.1+dfsg/.docker/Dockerfile

OCRmyPDF
#
FROM ubuntu:20.04 as base

FROM base as builder

ENV LANG=C.UTF-8

RUN apt-get update && apt-get install -y --no-install-recommends \
 build-essential autoconf automake libtool \
 libleptonica-dev \
 zlib1g-dev \
 python3 \
 python3-distutils \
 ca-certificates \
 curl \
 git

Get the latest pip (Ubuntu version doesn't support manylinux2010)
RUN \
 curl https://bootstrap.pypa.io/get-pip.py | python3

Compile and install jbig2
Needs libleptonica-dev, zlib1g-dev
RUN \
 mkdir jbig2 \
 && curl -L https://github.com/agl/jbig2enc/archive/ea6a40a.tar.gz | \
 tar xz -C jbig2 --strip-components=1 \
 && cd jbig2 \
 && ./autogen.sh && ./configure && make && make install \
 && cd .. \
 && rm -rf jbig2

COPY . /app

WORKDIR /app

RUN pip3 install --no-cache-dir \
 -r requirements/main.txt \
 -r requirements/webservice.txt \
 -r requirements/test.txt \
 -r requirements/watcher.txt \
 .

FROM base

ENV LANG=C.UTF-8

RUN apt-get update && apt-get install -y --no-install-recommends \
 ghostscript \
 img2pdf \
 liblept5 \
 libsm6 libxext6 libxrender-dev \
 zlib1g \
 pngquant \
 python3 \
 qpdf \
 tesseract-ocr \
 tesseract-ocr-chi-sim \
 tesseract-ocr-deu \
 tesseract-ocr-eng \
 tesseract-ocr-fra \
 tesseract-ocr-por \
 tesseract-ocr-spa \
 unpaper

WORKDIR /app

COPY --from=builder /usr/local/lib/ /usr/local/lib/
COPY --from=builder /usr/local/bin/ /usr/local/bin/

COPY --from=builder /app/misc/webservice.py /app/
COPY --from=builder /app/misc/watcher.py /app/

Copy minimal project files to get the test suite.
COPY --from=builder /app/setup.cfg /app/setup.py /app/README.md /app/
COPY --from=builder /app/requirements /app/requirements
COPY --from=builder /app/tests /app/tests
COPY --from=builder /app/src /app/src

ENTRYPOINT ["/usr/local/bin/ocrmypdf"]

ocrmypdf-10.3.1+dfsg/.dockerignore

dotfiles
.*
!.coveragerc
!.dockerignore
!.git_archival.txt
!.gitattributes
!.gitignore
!.pre-commit-config.yaml
!.readthedocs.yml

Dev scratch
*.ipynb
**/*.pyc
/*.pdf
/*.qdf
/*.png
/scratch.py
IDEAS
log/
tests/resources/private/
tmp/
venv*/
/debug_tests.py
*.traineddata
/private

Package building
*.egg-info/
build/
dist/
wheelhouse/
pip-wheel-metadata/

Code coverage
htmlcov/

Docker specific
bin/
docs/
include/
lib/

Docker include .git/
!.git/

ocrmypdf-10.3.1+dfsg/.git_archival.txt

ref-names: $Format:%D$

ocrmypdf-10.3.1+dfsg/.gitattributes

Always use Unix convention for new lines
* text eol=lf

These files are binary and should be left untouched
(binary is a macro for -text -diff)
*.jar	binary
*.pdf	binary
*.PDF	binary
*.png	binary
*.jpg	binary
*.bin binary
*.afdesign binary

.git_archival.txt export-subst

ocrmypdf-10.3.1+dfsg/.github/FUNDING.yml

These are supported funding model platforms

github: # Replace with up to 4 GitHub Sponsors-enabled usernames e.g., [user1, user2]
patreon: # Replace with a single Patreon username
open_collective: james-barlow
ko_fi: # Replace with a single Ko-fi username
tidelift: # Replace with a single Tidelift platform-name/package-name e.g., npm/babel
community_bridge: # Replace with a single Community Bridge project-name e.g., cloud-foundry
liberapay: # Replace with a single Liberapay username
issuehunt: # Replace with a single IssueHunt username
otechie: # Replace with a single Otechie username
custom: # Replace with up to 4 custom sponsorship URLs e.g., ['link1', 'link2']

ocrmypdf-10.3.1+dfsg/.github/ISSUE_TEMPLATE/bug_report.md

name: Bug report
about: Create a report to help us improve
title: ''
labels: ''
assignees: ''

Describe the bug
A clear and concise description of what the bug is.

To Reproduce
What command line or API call were you trying to run?

```bash
ocrmypdf  ...arguments... input.pdf output.pdf
```

Run with verbosity or higher `-v1` to see more detailed logging. This information may be helpful.

Example file
Include an input PDF or image that demonstrates your issue.

Please provide an input file with no personal or confidential information. At your option you may `GPG-encrypt the file <https://github.com/jbarlow83/OCRmyPDF/wiki>` for OCRmyPDF's author only.

Links to files hosted elsewhere are perfectly acceptable. You could also look in ``tests/resources`` and see if any of those files reproduce your issue.

(Exceptions: Issues with installation, command line argument parsing, test suite failures.Issues without example files usually cannot be resolved.)

Expected behavior
A clear and concise description of what you expected to happen.

Screenshots
If applicable, add screenshots to help explain your problem.

System
 - OS: [e.g. Linux, Windows, macOS]
 - OCRmyPDF Version: ``ocrmypdf --version``
 - How did you install ocrmypdf? Did you use a system package manager, `pip`, or a Docker image?

ocrmypdf-10.3.1+dfsg/.github/ISSUE_TEMPLATE/feature_request.md

name: Feature request
about: Suggest an idea for this project
title: ''
labels: enhancement
assignees: ''

Is your feature request related to a problem? Please describe.
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]

Describe the solution you'd like
A clear and concise description of what you want to happen.

Additional context
Add any other context or screenshots about the feature request here.

ocrmypdf-10.3.1+dfsg/.github/issue_template.md

Describe the issue
A clear and concise description of what the issue is.

To Reproduce
What command line were you trying to run?

```bash
ocrmypdf  ...arguments... input.pdf output.pdf
```

Example file
Please include an example *input* PDF (or image). The input file is more helpful.

Please check any or all that apply about the test file:

- [] This is the input file
- [] The file contains no personal or confidential information
- [] I am the copyright holder for this file
- [] I permit this file to be included in the OCRmyPDF test suite under the CC-BY-SA 4.0 license
- [] I am not the copyright holder, but this file is available under a free software license

Files that are not free for inclusion in this project are quite welcome, but we like to collect free files for our test suite when possible. Please do *not* submit files with confidential information. At your option you may encrypt files for OCRmyPDF's author only.

Expected behavior
A clear and concise description of what you expected to happen. Include screenshots if applicable.

System:

- OS: [e.g. Linux, macOS]
- OCRmyPDF Version: [e.g. v7.4.0]

Additional context
Add any other context about the problem here.

ocrmypdf-10.3.1+dfsg/.gitignore

dotfiles
.*
!.coveragerc
!.dockerignore
!.git_archival.txt
!.gitattributes
!.gitignore
!.pre-commit-config.yaml
!.readthedocs.yml

Dev scratch
*.ipynb
**/*.pyc
/*.pdf
/*.qdf
/*.png
/scratch.py
IDEAS
log/
tests/resources/private/
tmp/
venv*/
/debug_tests.py
*.traineddata
/private

Package building
*.egg-info/
build/
dist/
wheelhouse/
pip-wheel-metadata/

Code coverage
htmlcov/

Automatically generated files
docs/_build/
docs/_static/
docs/_templates/
docs/Makefile
ocrmypdf/lib/_*.py

ocrmypdf-10.3.1+dfsg/.pre-commit-config.yaml

repos:
 - repo: https://github.com/pre-commit/pre-commit-hooks
 rev: v3.1.0
 hooks:
 - id: check-case-conflict
 - id: check-merge-conflict
 - id: check-toml
 - id: check-yaml
 - id: debug-statements
 - repo: https://github.com/asottile/seed-isort-config
 rev: v2.2.0
 hooks:
 - id: seed-isort-config
 - repo: https://github.com/pre-commit/mirrors-isort
 rev: v5.0.5 # pick the isort version you'd like to use from https://github.com/pre-commit/mirrors-isort/releases
 hooks:
 - id: isort
 - repo: https://github.com/psf/black
 rev: 19.10b0
 hooks:
 - id: black
 language_version: python3.8
 exclude: ^src/ocrmypdf/lib/_leptonica.py

ocrmypdf-10.3.1+dfsg/.readthedocs.yml

build:
 image: latest

python:
 version: 3.6

formats:
 - pdf

requirements_file: requirements/main.txt

ocrmypdf-10.3.1+dfsg/LICENSE

 GNU GENERAL PUBLIC LICENSE
 Version 3, 29 June 2007

 Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

 Preamble

 The GNU General Public License is a free, copyleft license for
software and other kinds of works.

 The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

 To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

 Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

 For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

 Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

 Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

 The precise terms and conditions for copying, distribution and
modification follow.

 TERMS AND CONDITIONS

 0. Definitions.

 "This License" refers to version 3 of the GNU General Public License.

 "Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

 "The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

 To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.

 A "covered work" means either the unmodified Program or a work based
on the Program.

 To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

 To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

 An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

 1. Source Code.

 The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.

 A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

 The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

 The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

 The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

 The Corresponding Source for a work in source code form is that
same work.

 2. Basic Permissions.

 All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

 You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

 Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

 3. Protecting Users' Legal Rights From Anti-Circumvention Law.

 No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

 When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.

 4. Conveying Verbatim Copies.

 You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

 You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

 5. Conveying Modified Source Versions.

 You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

 a) The work must carry prominent notices stating that you modified
 it, and giving a relevant date.

 b) The work must carry prominent notices stating that it is
 released under this License and any conditions added under section
 7. This requirement modifies the requirement in section 4 to
 "keep intact all notices".

 c) You must license the entire work, as a whole, under this
 License to anyone who comes into possession of a copy. This
 License will therefore apply, along with any applicable section 7
 additional terms, to the whole of the work, and all its parts,
 regardless of how they are packaged. This License gives no
 permission to license the work in any other way, but it does not
 invalidate such permission if you have separately received it.

 d) If the work has interactive user interfaces, each must display
 Appropriate Legal Notices; however, if the Program has interactive
 interfaces that do not display Appropriate Legal Notices, your
 work need not make them do so.

 A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

 6. Conveying Non-Source Forms.

 You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

 a) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by the
 Corresponding Source fixed on a durable physical medium
 customarily used for software interchange.

 b) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by a
 written offer, valid for at least three years and valid for as
 long as you offer spare parts or customer support for that product
 model, to give anyone who possesses the object code either (1) a
 copy of the Corresponding Source for all the software in the
 product that is covered by this License, on a durable physical
 medium customarily used for software interchange, for a price no
 more than your reasonable cost of physically performing this
 conveying of source, or (2) access to copy the
 Corresponding Source from a network server at no charge.

 c) Convey individual copies of the object code with a copy of the
 written offer to provide the Corresponding Source. This
 alternative is allowed only occasionally and noncommercially, and
 only if you received the object code with such an offer, in accord
 with subsection 6b.

 d) Convey the object code by offering access from a designated
 place (gratis or for a charge), and offer equivalent access to the
 Corresponding Source in the same way through the same place at no
 further charge. You need not require recipients to copy the
 Corresponding Source along with the object code. If the place to
 copy the object code is a network server, the Corresponding Source
 may be on a different server (operated by you or a third party)
 that supports equivalent copying facilities, provided you maintain
 clear directions next to the object code saying where to find the
 Corresponding Source. Regardless of what server hosts the
 Corresponding Source, you remain obligated to ensure that it is
 available for as long as needed to satisfy these requirements.

 e) Convey the object code using peer-to-peer transmission, provided
 you inform other peers where the object code and Corresponding
 Source of the work are being offered to the general public at no
 charge under subsection 6d.

 A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

 A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

 "Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

 If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

 The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

 Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

 7. Additional Terms.

 "Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

 When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

 Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

 a) Disclaiming warranty or limiting liability differently from the
 terms of sections 15 and 16 of this License; or

 b) Requiring preservation of specified reasonable legal notices or
 author attributions in that material or in the Appropriate Legal
 Notices displayed by works containing it; or

 c) Prohibiting misrepresentation of the origin of that material, or
 requiring that modified versions of such material be marked in
 reasonable ways as different from the original version; or

 d) Limiting the use for publicity purposes of names of licensors or
 authors of the material; or

 e) Declining to grant rights under trademark law for use of some
 trade names, trademarks, or service marks; or

 f) Requiring indemnification of licensors and authors of that
 material by anyone who conveys the material (or modified versions of
 it) with contractual assumptions of liability to the recipient, for
 any liability that these contractual assumptions directly impose on
 those licensors and authors.

 All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

 If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

 Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

 8. Termination.

 You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

 However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

 Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

 Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

 9. Acceptance Not Required for Having Copies.

 You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

 10. Automatic Licensing of Downstream Recipients.

 Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

 An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

 You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

 11. Patents.

 A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".

 A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

 Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

 In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

 If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

 If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

 A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

 Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

 12. No Surrender of Others' Freedom.

 If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

 13. Use with the GNU Affero General Public License.

 Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

 14. Revised Versions of this License.

 The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

 Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

 If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

 Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

 15. Disclaimer of Warranty.

 THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 16. Limitation of Liability.

 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

 17. Interpretation of Sections 15 and 16.

 If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program. If not, see <https://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

 If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:

 <program> Copyright (C) <year> <name of author>
 This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".

 You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.

 The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.

ocrmypdf-10.3.1+dfsg/README.md

[![Build Status][azure]](https://dev.azure.com/jim0585/ocrmypdf/_build/latest?definitionId=2&branchName=master) [![PyPI version][pypi]](https://pypi.org/project/ocrmypdf/) ![Homebrew version][homebrew] ![ReadTheDocs][docs] ![Python versions][pyversions]

[azure]: https://dev.azure.com/jim0585/ocrmypdf/_apis/build/status/jbarlow83.OCRmyPDF?branchName=master
[travis]: https://travis-ci.org/jbarlow83/OCRmyPDF.svg?branch=master "Travis build status"
[pypi]: https://img.shields.io/pypi/v/ocrmypdf.svg "PyPI version"
[homebrew]: https://img.shields.io/homebrew/v/ocrmypdf.svg "Homebrew version"
[docs]: https://readthedocs.org/projects/ocrmypdf/badge/?version=latest "RTD"
[pyversions]: https://img.shields.io/pypi/pyversions/ocrmypdf "Supported Python versions"

OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched or copy-pasted.

```bash
ocrmypdf                      # it's a scriptable command line program
   -l eng+fra                 # it supports multiple languages
   --rotate-pages             # it can fix pages that are misrotated
   --deskew                   # it can deskew crooked PDFs!
   --title "My PDF"           # it can change output metadata
   --jobs 4                   # it uses multiple cores by default
   --output-type pdfa         # it produces PDF/A by default
   input_scanned.pdf          # takes PDF input (or images)
   output_searchable.pdf      # produces validated PDF output
```

[See the release notes for details on the latest changes](https://ocrmypdf.readthedocs.io/en/latest/release_notes.html).

Main features

- Generates a searchable [PDF/A](https://en.wikipedia.org/?title=PDF/A) file from a regular PDF
- Places OCR text accurately below the image to ease copy / paste
- Keeps the exact resolution of the original embedded images
- When possible, inserts OCR information as a "lossless" operation without disrupting any other content
- Optimizes PDF images, often producing files smaller than the input file
- If requested, deskews and/or cleans the image before performing OCR
- Validates input and output files
- Distributes work across all available CPU cores
- Uses [Tesseract OCR](https://github.com/tesseract-ocr/tesseract) engine to recognize more than [100 languages](https://github.com/tesseract-ocr/tessdata)
- Scales properly to handle files with thousands of pages
- Battle-tested on millions of PDFs

For details: please consult the [documentation](https://ocrmypdf.readthedocs.io/en/latest/).

Motivation

I searched the web for a free command line tool to OCR PDF files: I found many, but none of them were really satisfying:

- Either they produced PDF files with misplaced text under the image (making copy/paste impossible)
- Or they did not handle accents and multilingual characters
- Or they changed the resolution of the embedded images
- Or they generated ridiculously large PDF files
- Or they crashed when trying to OCR
- Or they did not produce valid PDF files
- On top of that none of them produced PDF/A files (format dedicated for long time storage)

...so I decided to develop my own tool.

Installation

Linux, Windows, macOS and FreeBSD are supported. Docker images are also available.

Users of Debian 9 or later or Ubuntu 16.10 or later may simply

```bash
apt-get install ocrmypdf
```

and users of Fedora 29 or later may simply

```bash
dnf install ocrmypdf
```

and Homebrew users (macOS, Linux, Windows Subsystem for Linux) may simply

```bash
brew install ocrmypdf
```

For everyone else, [see our documentation](https://ocrmypdf.readthedocs.io/en/latest/installation.html) for installation steps.

Languages

OCRmyPDF uses Tesseract for OCR, and relies on its language packs. For Linux users, you can often find packages that provide language packs:

```bash
# Display a list of all Tesseract language packs
apt-cache search tesseract-ocr

# Debian/Ubuntu users
apt-get install tesseract-ocr-chi-sim  # Example: Install Chinese Simplified language pack

# Arch Linux users
pacman -S tesseract-data-eng tesseract-data-deu # Example: Install the English and German language packs
```

You can then pass the `-l LANG` argument to OCRmyPDF to give a hint as to what languages it should search for. Multiple languages can be requested.

Documentation and support

Once OCRmyPDF is installed, the built-in help which explains the command syntax and options can be accessed via:

```bash
ocrmypdf --help
```

Our [documentation is served on Read the Docs](https://ocrmypdf.readthedocs.io/en/latest/index.html).

Please report issues on our [GitHub issues](https://github.com/jbarlow83/OCRmyPDF/issues) page, and follow the issue template for quick response.

Requirements

In addition to the required Python version (3.6+), OCRmyPDF requires external program installations of Ghostscript, Tesseract OCR, QPDF, and Leptonica. OCRmyPDF is pure Python, but uses CFFI to portably generate library bindings. OCRmyPDF works on pretty much everything: Linux, macOS, Windows and FreeBSD.

Press & Media

- [Going paperless with OCRmyPDF](https://medium.com/@ikirichenko/going-paperless-with-ocrmypdf-e2f36143f46a)
- [Converting a scanned document into a compressed searchable PDF with redactions](https://medium.com/@treyharris/converting-a-scanned-document-into-a-compressed-searchable-pdf-with-redactions-63f61c34fe4c)
- [c't 1-2014, page 59](https://heise.de/-2279695): Detailed presentation of OCRmyPDF v1.0 in the leading German IT magazine c't
- [heise Open Source, 09/2014: Texterkennung mit OCRmyPDF](https://heise.de/-2356670)
- [heise Durchsuchbare PDF-Dokumente mit OCRmyPDF erstellen](https://www.heise.de/ratgeber/Durchsuchbare-PDF-Dokumente-mit-OCRmyPDF-erstellen-4607592.html)
- [Excellent Utilities: OCRmyPDF](https://www.linuxlinks.com/excellent-utilities-ocrmypdf-add-ocr-text-layer-scanned-pdfs/)

Business enquiries

OCRmyPDF would not be the software that it is today without companies and users choosing to provide support for feature development and consulting enquiries. We are happy to discuss all enquiries, whether for extending the existing feature set, or integrating OCRmyPDF into a larger system.

License

The OCRmyPDF software is licensed under the GNU GPLv3. Certain files are covered by other licenses, as noted in their source files.

The license for each test file varies, and is noted in tests/resources/README.rst. The documentation is licensed under Creative Commons Attribution-ShareAlike 4.0 (CC-BY-SA 4.0).

OCRmyPDF versions prior to 6.0 were distributed under the MIT License.

Disclaimer

The software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

ocrmypdf-10.3.1+dfsg/azure-pipelines.yml

trigger:
 tags:
 include:
 - v*
 branches:
 include:
 - "*"
 exclude:
 - "travis"

stages:
 - stage: "Test"
 jobs:
 - job: Windows
 pool:
 vmImage: "vs2017-win2016"
 strategy:
 matrix:
 Python36:
 python.version: "3.6"
 Python37:
 python.version: "3.7"
 Python38:
 python.version: "3.8"
 steps:
 - task: UsePythonVersion@0
 inputs:
 versionSpec: "$(python.version)"
 - pwsh: |
 choco install --yes --no-progress --pre tesseract
 choco install --yes --no-progress python3
 choco install --yes --no-progress ghostscript
 choco install --yes --no-progress pngquant
 displayName: "Install system packages"
 - pwsh: |
 refreshenv
 python -m pip install --upgrade pip wheel
 python -m pip install -r requirements/main.txt -r requirements/test.txt .
 displayName: "Install Python packages"
 - pwsh: |
 refreshenv
 $env:pathext += ';.py'
 # -n auto helps Windows
 python -m pytest -n auto --junitxml=test.xml --cov=ocrmypdf --cov-report=xml
 displayName: "Test"
 - task: PublishTestResults@2
 inputs:
 testResultsFiles: "test.xml"
 testRunTitle: "$(Agent.OS) - $(Build.DefinitionName) - Python $(python.version)"
 condition: succeededOrFailed()
 - job: "Ubuntu_1804"
 pool:
 vmImage: "ubuntu-18.04"
 strategy:
 matrix:
 Python36:
 python.version: "3.6"
 Python37:
 python.version: "3.7"
 Python38:
 python.version: "3.8"
 steps:
 - task: UsePythonVersion@0
 inputs:
 versionSpec: "$(python.version)"
 - bash: |
 sudo apt-get update
 sudo apt-get install -y --no-install-recommends \
 python3-software-properties \
 curl \
 ghostscript \
 img2pdf \
 libexempi3 \
 libffi-dev \
 liblept5 \
 libsm6 libxext6 libxrender-dev \
 pngquant \
 poppler-utils \
 tesseract-ocr \
 tesseract-ocr-deu \
 tesseract-ocr-eng \
 unpaper \
 zlib1g
 displayName: "Install system packages"
 - bash: |
 curl https://bootstrap.pypa.io/get-pip.py | python3
 pip3 install -r requirements/main.txt -r requirements/test.txt .
 displayName: "Install Python packages"
 - bash: |
 tesseract --version
 displayName: "Record versions"
 - bash: |
 # -n auto is slower on Linux and breaks on Python 3.8
 pytest -n0 --junitxml=test.xml --cov=ocrmypdf --cov-report=xml
 displayName: "Test"
 - task: PublishTestResults@2
 inputs:
 testResultsFiles: "test.xml"
 testRunTitle: "$(Agent.OS) - $(Build.DefinitionName) - Python $(python.version)"
 condition: succeededOrFailed()
 - job: "Ubuntu_1604"
 pool:
 vmImage: "ubuntu-16.04"
 strategy:
 matrix:
 Python36:
 python.version: "3.6"
 steps:
 - task: UsePythonVersion@0
 inputs:
 versionSpec: "$(python.version)"
 - bash: |
 sudo apt-get update
 sudo apt-get install -y --no-install-recommends \
 software-properties-common
 sudo add-apt-repository -y ppa:alex-p/tesseract-ocr
 sudo apt-get update
 sudo apt-get install -y --no-install-recommends \
 ghostscript \
 img2pdf \
 libexempi3 \
 libffi-dev \
 liblept5 \
 libsm6 libxext6 libxrender-dev \
 pngquant \
 poppler-utils \
 tesseract-ocr \
 tesseract-ocr-deu \
 tesseract-ocr-eng \
 unpaper \
 zlib1g
 displayName: "Install system packages"
 - bash: |
 curl https://bootstrap.pypa.io/get-pip.py | python3
 pip3 install -r requirements/main.txt -r requirements/test.txt .
 displayName: "Install Python packages"
 - bash: |
 tesseract --version
 displayName: "Record versions"
 - bash: |
 # -n auto is slower on Linux and breaks on Python 3.8
 pytest -n0 --junitxml=test.xml --cov=ocrmypdf --cov-report=xml
 displayName: "Test"
 - task: PublishTestResults@2
 inputs:
 testResultsFiles: "test.xml"
 testRunTitle: "$(Agent.OS) - $(Build.DefinitionName) - Python $(python.version)"
 condition: succeededOrFailed()
 - job: "macOS_Mojave"
 pool:
 vmImage: "macos-10.14"
 strategy:
 matrix:
 Python37:
 python.version: ""
 Python38:
 python.version: "python@3.8"
 steps:
 # https://github.com/actions/virtual-environments/issues/664
 # - task: UsePythonVersion@0
 # inputs:
 # versionSpec: "$(python.version)"
 - bash: |
 brew update
 brew unlink python@2
 if ["$(python.version)" != ""]; then
 brew upgrade $(python.version)
 else
 echo "Using Python `python3 --version`"
 fi
 displayName: "Update brew and Python"
 - bash: |
 brew install \
 exempi \
 ghostscript \
 jbig2enc \
 leptonica \
 openjpeg \
 pngquant \
 tesseract \
 unpaper
 displayName: "Install system packages"
 - bash: |
 pip3 install --upgrade pip
 pip3 install -r requirements/main.txt -r requirements/test.txt .
 displayName: "Install Python packages"
 - bash: |
 tesseract --version
 displayName: "Record versions"
 - bash: pytest -nauto --junitxml=test.xml --cov=ocrmypdf --cov-report=xml
 displayName: "Test"
 - task: PublishTestResults@2
 inputs:
 testResultsFiles: "test.xml"
 testRunTitle: "$(Agent.OS) - $(Build.DefinitionName) - Python $(python.version)"
 condition: succeededOrFailed()
 - task: PublishCodeCoverageResults@1
 inputs:
 codeCoverageTool: Cobertura
 summaryFileLocation: "$(System.DefaultWorkingDirectory)/**/coverage.xml"

 - stage: "Artifacts"
 jobs:
 - job: "sdist_wheel"
 pool:
 vmImage: "ubuntu-18.04"
 steps:
 - task: UsePythonVersion@0
 inputs:
 versionSpec: "3.7"
 - bash: |
 python -m pip install --upgrade pip wheel
 python setup.py sdist bdist_wheel
 - publish: dist
 artifact: sdist_wheel

 - stage: "Deploy"
 jobs:
 - deployment: "PyPI"
 pool:
 vmImage: "ubuntu-18.04"
 environment: "deploy"
 strategy:
 runOnce:
 deploy:
 steps:
 - download: current
 artifact: sdist_wheel
 - script: |
 mkdir -p dist
 mv $(Pipeline.Workspace)/sdist_wheel/* dist
 displayName: "Move dist files"
 - task: UsePythonVersion@0
 inputs:
 versionSpec: "3.8"
 architecture: x64
 - script: |
 pip install --upgrade twine
 displayName: "Generate artifacts"
 - script: |
 cat <<FILE >.pypirc
 [distutils]
 index-servers =
 pypi

 [pypi]
 username: __token__
 password: $(TOKEN_PYPI)

 FILE
 displayName: "Generate PyPI auth file"
 - script: |
 python -m twine upload --config-file .pypirc dist/*
 displayName: "Upload to PyPI"
 condition: and(succeeded(), startsWith(variables['Build.SourceBranch'], 'refs/tags/'))
 - script: |
 curl -X POST -d "token=$(TOKEN_RTD)" https://readthedocs.org/api/v2/webhook/pikepdf/39557/
 displayName: "Trigger ReadTheDocs"
 condition: and(succeeded(), or(startsWith(variables['Build.SourceBranch'], 'refs/tags/'), startsWith(variables['Build.SourceBranch'], 'refs/heads/master')))

ocrmypdf-10.3.1+dfsg/debian/copyright

Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
Upstream-Name: OCRmyPDF
Upstream-Contact: James R. Barlow <barlow.jim@gmail.com>
Source: https://github.com/jbarlow83/OCRmyPDF

Files: *
Copyright:
 (C) 2013-2017 The OCRmyPDF Authors
 (C) 2013-2016, 2015-2017 2016, 2017, 2017-2018, 2018 James R. Barlow
License: GPL-3+

Files: misc/watcher.py
Copyright:
 (C) 2019 Ian Alexander: https://github.com/ianalexander
 (C) 2020 James R. Barlow
License: GPL-3+

Files: misc/webservice.py
Copyright: (C) 2019 James R. Barlow
License: AGPL-3+

Files: docs tests/resources/*
Copyright: (C) 2013-2018 James R. Barlow
License: CC-BY-SA-4.0

Files: docs/images/bitmap_vs_svg.svg
Copyright: (C) 2006 Yug
License: CC-BY-SA-2.5

Files: src/ocrmypdf/hocrtransform.py
Copyright: (C) 2010 Jonathan Brinley <jonathanbrinley@gmail.com>
 (C) 2013-14 Julien Pfefferkorn
 (C) 2015-16 James R. Barlow
License: Expat

Files: src/ocrmypdf/pdfa.py
Copyright: (C) 2015 James R. Barlow
 (C) 1986-2017 The authors of GhostScript
License: GPL-3+

Files: src/ocrmypdf/_unicodefun.py
Copyright: (C) 2014 Armin Ronacher
 (C) 2017 James R. Barlow
License: BSD-3-clause

Files: tests/spoof/*
Copyright: (C) 2016, 2017, 2016-2018 James R. Barlow
License: Expat

Files: tests/resources/graph.pdf tests/resources/graph_ocred.pdf
Copyright: Public domain
License: public-domain
 Released into the public domain by author; see:
 <https://en.wikipedia.org/wiki/File:Pandas_text_analysis.png>.

Files: tests/resources/c02-22.pdf
 tests/resources/congress.jpg
 tests/resources/multipage.pdf
 tests/resources/palette.pdf
 tests/resources/jbig2.pdf
 tests/resources/encrypted_algo4.pdf
Copyright: Public domain
License: public-domain
 Copyright on these files has expired.

Files: tests/resources/linn.png
 tests/resources/linn.pdf
 tests/resources/linn.txt
 tests/resources/ccitt.pdf
 tests/resources/cardinal.pdf
 tests/resources/skew.pdf
 tests/resources/rotated_skew.pdf
 tests/resources/skew-encrypted.pdf
 tests/resources/poster.pdf
Copyright: (C) 1985 Forat Electronics
License: GFDL-1.2+ or CC-BY-SA-3.0

Files: tests/resources/lichtenstein.pdf
Copyright: (C) 2001 Andreas Tille
 (C) 2007 Alessio Damato
License: GFDL-1.2+ or CC-BY-SA-3.0

Files: tests/resources/masks.pdf
Copyright: held by the contributors to the German Wikipedia article "Linux"
 see: https://de.wikipedia.org/w/index.php?title=Linux&action=history
 (masks.pdf generated from Wikipedia article as of 2016-08-24)
License: CC-BY-SA-3.0

Files: tests/resources/epson.pdf
Copyright: held by the contributors to the Wikipedia article "Optical character recognition"
 see: https://en.wikipedia.org/w/index.php?title=Optical_character_recognition&action=history
 (epson.pdf generated from Wikipedia article as of 2016-09-14)
License: CC-BY-SA-3.0

Files: tests/resources/typewriter.png tests/resources/2400dpi.pdf
Copyright: (C) 2005 Ellywa
License: GFDL-1.2+ or CC-BY-SA-1.0 or CC-BY-SA-2.0 or CC-BY-SA-2.5 or CC-BY-SA-3.0
Comment:
 Obtained from: https://commons.wikimedia.org/wiki/File:Triumph.typewriter_text_Linzensoep.gif

Files: tests/resources/overlay.pdf
Copyright: (C) 2017 Max Anderson
License: Expat

Files:
 tests/resources/baiona*.png
 tests/resources/baiona*.jpg
 tests/resources/link.pdf
Copyright: (C) 2014 Euskaldunaa
License: CC-BY-SA-4.0

Files: tests/resources/vector.pdf
Copyright: (C) 2018 Catscratch
License: Expat

Files: tests/resources/3small.pdf
Copyright: (C) 2014 Euskaldunaa
 (C) 2017 James R. Barlow
 (C) 2005 Ellywa
License: CC-BY-SA-4.0 and (GFDL-1.2+ or CC-BY-SA-1.0 or CC-BY-SA-2.0 or CC-BY-SA-2.5 or CC-BY-SA-3.0)
Comment: concatenation of baiona_gray.png, crom.png and typewriter.png/2400dpi.pdf

Files: src/ocrmypdf/data/sRGB.icc
Copyright: Kai-Uwe Behrmann <www.behrmann.name>
 Marti Maria <www.littlecms.com>
 Photogamut <www.photogamut.org>
 Graeme Gill <www.argyllcms.com>
 ColorSolutions <www.basICColor.com>
License: Zlib

Files: debian/*
Copyright: (C) 2016 Sean Whitton <spwhitton@spwhitton.name>
License: GPL-3+

License: GPL-3+
 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or (at
 your option) any later version.
 .
 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.
 .
 You should have received a copy of the GNU General Public License
 along with this program. If not, see <http://www.gnu.org/licenses/>
 .
 On Debian systems, the complete text of the GNU General
 Public License version 3 can be found in "/usr/share/common-licenses/GPL-3".

License: AGPL-3+
 GNU AFFERO GENERAL PUBLIC LICENSE
 Version 3, 19 November 2007
 .
 Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.
 .
 Preamble
 .
 The GNU Affero General Public License is a free, copyleft license for
 software and other kinds of works, specifically designed to ensure
 cooperation with the community in the case of network server software.
 .
 The licenses for most software and other practical works are designed
 to take away your freedom to share and change the works. By contrast,
 our General Public Licenses are intended to guarantee your freedom to
 share and change all versions of a program--to make sure it remains free
 software for all its users.
 .
 When we speak of free software, we are referring to freedom, not
 price. Our General Public Licenses are designed to make sure that you
 have the freedom to distribute copies of free software (and charge for
 them if you wish), that you receive source code or can get it if you
 want it, that you can change the software or use pieces of it in new
 free programs, and that you know you can do these things.
 .
 Developers that use our General Public Licenses protect your rights
 with two steps: (1) assert copyright on the software, and (2) offer
 you this License which gives you legal permission to copy, distribute
 and/or modify the software.
 .
 A secondary benefit of defending all users' freedom is that
 improvements made in alternate versions of the program, if they
 receive widespread use, become available for other developers to
 incorporate. Many developers of free software are heartened and
 encouraged by the resulting cooperation. However, in the case of
 software used on network servers, this result may fail to come about.
 The GNU General Public License permits making a modified version and
 letting the public access it on a server without ever releasing its
 source code to the public.
 .
 The GNU Affero General Public License is designed specifically to
 ensure that, in such cases, the modified source code becomes available
 to the community. It requires the operator of a network server to
 provide the source code of the modified version running there to the
 users of that server. Therefore, public use of a modified version, on
 a publicly accessible server, gives the public access to the source
 code of the modified version.
 .
 An older license, called the Affero General Public License and
 published by Affero, was designed to accomplish similar goals. This is
 a different license, not a version of the Affero GPL, but Affero has
 released a new version of the Affero GPL which permits relicensing under
 this license.
 .
 The precise terms and conditions for copying, distribution and
 modification follow.
 .
 TERMS AND CONDITIONS
 .
 0. Definitions.
 .
 "This License" refers to version 3 of the GNU Affero General Public License.
 .
 "Copyright" also means copyright-like laws that apply to other kinds of
 works, such as semiconductor masks.
 .
 "The Program" refers to any copyrightable work licensed under this
 License. Each licensee is addressed as "you". "Licensees" and
 "recipients" may be individuals or organizations.
 .
 To "modify" a work means to copy from or adapt all or part of the work
 in a fashion requiring copyright permission, other than the making of an
 exact copy. The resulting work is called a "modified version" of the
 earlier work or a work "based on" the earlier work.
 .
 A "covered work" means either the unmodified Program or a work based
 on the Program.
 .
 To "propagate" a work means to do anything with it that, without
 permission, would make you directly or secondarily liable for
 infringement under applicable copyright law, except executing it on a
 computer or modifying a private copy. Propagation includes copying,
 distribution (with or without modification), making available to the
 public, and in some countries other activities as well.
 .
 To "convey" a work means any kind of propagation that enables other
 parties to make or receive copies. Mere interaction with a user through
 a computer network, with no transfer of a copy, is not conveying.
 .
 An interactive user interface displays "Appropriate Legal Notices"
 to the extent that it includes a convenient and prominently visible
 feature that (1) displays an appropriate copyright notice, and (2)
 tells the user that there is no warranty for the work (except to the
 extent that warranties are provided), that licensees may convey the
 work under this License, and how to view a copy of this License. If
 the interface presents a list of user commands or options, such as a
 menu, a prominent item in the list meets this criterion.
 .
 1. Source Code.
 .
 The "source code" for a work means the preferred form of the work
 for making modifications to it. "Object code" means any non-source
 form of a work.
 .
 A "Standard Interface" means an interface that either is an official
 standard defined by a recognized standards body, or, in the case of
 interfaces specified for a particular programming language, one that
 is widely used among developers working in that language.
 .
 The "System Libraries" of an executable work include anything, other
 than the work as a whole, that (a) is included in the normal form of
 packaging a Major Component, but which is not part of that Major
 Component, and (b) serves only to enable use of the work with that
 Major Component, or to implement a Standard Interface for which an
 implementation is available to the public in source code form. A
 "Major Component", in this context, means a major essential component
 (kernel, window system, and so on) of the specific operating system
 (if any) on which the executable work runs, or a compiler used to
 produce the work, or an object code interpreter used to run it.
 .
 The "Corresponding Source" for a work in object code form means all
 the source code needed to generate, install, and (for an executable
 work) run the object code and to modify the work, including scripts to
 control those activities. However, it does not include the work's
 System Libraries, or general-purpose tools or generally available free
 programs which are used unmodified in performing those activities but
 which are not part of the work. For example, Corresponding Source
 includes interface definition files associated with source files for
 the work, and the source code for shared libraries and dynamically
 linked subprograms that the work is specifically designed to require,
 such as by intimate data communication or control flow between those
 subprograms and other parts of the work.
 .
 The Corresponding Source need not include anything that users
 can regenerate automatically from other parts of the Corresponding
 Source.
 .
 The Corresponding Source for a work in source code form is that
 same work.
 .
 2. Basic Permissions.
 .
 All rights granted under this License are granted for the term of
 copyright on the Program, and are irrevocable provided the stated
 conditions are met. This License explicitly affirms your unlimited
 permission to run the unmodified Program. The output from running a
 covered work is covered by this License only if the output, given its
 content, constitutes a covered work. This License acknowledges your
 rights of fair use or other equivalent, as provided by copyright law.
 .
 You may make, run and propagate covered works that you do not
 convey, without conditions so long as your license otherwise remains
 in force. You may convey covered works to others for the sole purpose
 of having them make modifications exclusively for you, or provide you
 with facilities for running those works, provided that you comply with
 the terms of this License in conveying all material for which you do
 not control copyright. Those thus making or running the covered works
 for you must do so exclusively on your behalf, under your direction
 and control, on terms that prohibit them from making any copies of
 your copyrighted material outside their relationship with you.
 .
 Conveying under any other circumstances is permitted solely under
 the conditions stated below. Sublicensing is not allowed; section 10
 makes it unnecessary.
 .
 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
 .
 No covered work shall be deemed part of an effective technological
 measure under any applicable law fulfilling obligations under article
 11 of the WIPO copyright treaty adopted on 20 December 1996, or
 similar laws prohibiting or restricting circumvention of such
 measures.
 .
 When you convey a covered work, you waive any legal power to forbid
 circumvention of technological measures to the extent such circumvention
 is effected by exercising rights under this License with respect to
 the covered work, and you disclaim any intention to limit operation or
 modification of the work as a means of enforcing, against the work's
 users, your or third parties' legal rights to forbid circumvention of
 technological measures.
 .
 4. Conveying Verbatim Copies.
 .
 You may convey verbatim copies of the Program's source code as you
 receive it, in any medium, provided that you conspicuously and
 appropriately publish on each copy an appropriate copyright notice;
 keep intact all notices stating that this License and any
 non-permissive terms added in accord with section 7 apply to the code;
 keep intact all notices of the absence of any warranty; and give all
 recipients a copy of this License along with the Program.
 .
 You may charge any price or no price for each copy that you convey,
 and you may offer support or warranty protection for a fee.
 .
 5. Conveying Modified Source Versions.
 .
 You may convey a work based on the Program, or the modifications to
 produce it from the Program, in the form of source code under the
 terms of section 4, provided that you also meet all of these conditions:
 .
 a) The work must carry prominent notices stating that you modified
 it, and giving a relevant date.
 .
 b) The work must carry prominent notices stating that it is
 released under this License and any conditions added under section
 7. This requirement modifies the requirement in section 4 to
 "keep intact all notices".
 .
 c) You must license the entire work, as a whole, under this
 License to anyone who comes into possession of a copy. This
 License will therefore apply, along with any applicable section 7
 additional terms, to the whole of the work, and all its parts,
 regardless of how they are packaged. This License gives no
 permission to license the work in any other way, but it does not
 invalidate such permission if you have separately received it.
 .
 d) If the work has interactive user interfaces, each must display
 Appropriate Legal Notices; however, if the Program has interactive
 interfaces that do not display Appropriate Legal Notices, your
 work need not make them do so.
 .
 A compilation of a covered work with other separate and independent
 works, which are not by their nature extensions of the covered work,
 and which are not combined with it such as to form a larger program,
 in or on a volume of a storage or distribution medium, is called an
 "aggregate" if the compilation and its resulting copyright are not
 used to limit the access or legal rights of the compilation's users
 beyond what the individual works permit. Inclusion of a covered work
 in an aggregate does not cause this License to apply to the other
 parts of the aggregate.
 .
 6. Conveying Non-Source Forms.
 .
 You may convey a covered work in object code form under the terms
 of sections 4 and 5, provided that you also convey the
 machine-readable Corresponding Source under the terms of this License,
 in one of these ways:
 .
 a) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by the
 Corresponding Source fixed on a durable physical medium
 customarily used for software interchange.
 .
 b) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by a
 written offer, valid for at least three years and valid for as
 long as you offer spare parts or customer support for that product
 model, to give anyone who possesses the object code either (1) a
 copy of the Corresponding Source for all the software in the
 product that is covered by this License, on a durable physical
 medium customarily used for software interchange, for a price no
 more than your reasonable cost of physically performing this
 conveying of source, or (2) access to copy the
 Corresponding Source from a network server at no charge.
 .
 c) Convey individual copies of the object code with a copy of the
 written offer to provide the Corresponding Source. This
 alternative is allowed only occasionally and noncommercially, and
 only if you received the object code with such an offer, in accord
 with subsection 6b.
 .
 d) Convey the object code by offering access from a designated
 place (gratis or for a charge), and offer equivalent access to the
 Corresponding Source in the same way through the same place at no
 further charge. You need not require recipients to copy the
 Corresponding Source along with the object code. If the place to
 copy the object code is a network server, the Corresponding Source
 may be on a different server (operated by you or a third party)
 that supports equivalent copying facilities, provided you maintain
 clear directions next to the object code saying where to find the
 Corresponding Source. Regardless of what server hosts the
 Corresponding Source, you remain obligated to ensure that it is
 available for as long as needed to satisfy these requirements.
 .
 e) Convey the object code using peer-to-peer transmission, provided
 you inform other peers where the object code and Corresponding
 Source of the work are being offered to the general public at no
 charge under subsection 6d.
 .
 A separable portion of the object code, whose source code is excluded
 from the Corresponding Source as a System Library, need not be
 included in conveying the object code work.
 .
 A "User Product" is either (1) a "consumer product", which means any
 tangible personal property which is normally used for personal, family,
 or household purposes, or (2) anything designed or sold for incorporation
 into a dwelling. In determining whether a product is a consumer product,
 doubtful cases shall be resolved in favor of coverage. For a particular
 product received by a particular user, "normally used" refers to a
 typical or common use of that class of product, regardless of the status
 of the particular user or of the way in which the particular user
 actually uses, or expects or is expected to use, the product. A product
 is a consumer product regardless of whether the product has substantial
 commercial, industrial or non-consumer uses, unless such uses represent
 the only significant mode of use of the product.
 .
 "Installation Information" for a User Product means any methods,
 procedures, authorization keys, or other information required to install
 and execute modified versions of a covered work in that User Product from
 a modified version of its Corresponding Source. The information must
 suffice to ensure that the continued functioning of the modified object
 code is in no case prevented or interfered with solely because
 modification has been made.
 .
 If you convey an object code work under this section in, or with, or
 specifically for use in, a User Product, and the conveying occurs as
 part of a transaction in which the right of possession and use of the
 User Product is transferred to the recipient in perpetuity or for a
 fixed term (regardless of how the transaction is characterized), the
 Corresponding Source conveyed under this section must be accompanied
 by the Installation Information. But this requirement does not apply
 if neither you nor any third party retains the ability to install
 modified object code on the User Product (for example, the work has
 been installed in ROM).
 .
 The requirement to provide Installation Information does not include a
 requirement to continue to provide support service, warranty, or updates
 for a work that has been modified or installed by the recipient, or for
 the User Product in which it has been modified or installed. Access to a
 network may be denied when the modification itself materially and
 adversely affects the operation of the network or violates the rules and
 protocols for communication across the network.
 .
 Corresponding Source conveyed, and Installation Information provided,
 in accord with this section must be in a format that is publicly
 documented (and with an implementation available to the public in
 source code form), and must require no special password or key for
 unpacking, reading or copying.
 .
 7. Additional Terms.
 .
 "Additional permissions" are terms that supplement the terms of this
 License by making exceptions from one or more of its conditions.
 Additional permissions that are applicable to the entire Program shall
 be treated as though they were included in this License, to the extent
 that they are valid under applicable law. If additional permissions
 apply only to part of the Program, that part may be used separately
 under those permissions, but the entire Program remains governed by
 this License without regard to the additional permissions.
 .
 When you convey a copy of a covered work, you may at your option
 remove any additional permissions from that copy, or from any part of
 it. (Additional permissions may be written to require their own
 removal in certain cases when you modify the work.) You may place
 additional permissions on material, added by you to a covered work,
 for which you have or can give appropriate copyright permission.
 .
 Notwithstanding any other provision of this License, for material you
 add to a covered work, you may (if authorized by the copyright holders of
 that material) supplement the terms of this License with terms:
 .
 a) Disclaiming warranty or limiting liability differently from the
 terms of sections 15 and 16 of this License; or
 .
 b) Requiring preservation of specified reasonable legal notices or
 author attributions in that material or in the Appropriate Legal
 Notices displayed by works containing it; or
 .
 c) Prohibiting misrepresentation of the origin of that material, or
 requiring that modified versions of such material be marked in
 reasonable ways as different from the original version; or
 .
 d) Limiting the use for publicity purposes of names of licensors or
 authors of the material; or
 .
 e) Declining to grant rights under trademark law for use of some
 trade names, trademarks, or service marks; or
 .
 f) Requiring indemnification of licensors and authors of that
 material by anyone who conveys the material (or modified versions of
 it) with contractual assumptions of liability to the recipient, for
 any liability that these contractual assumptions directly impose on
 those licensors and authors.
 .
 All other non-permissive additional terms are considered "further
 restrictions" within the meaning of section 10. If the Program as you
 received it, or any part of it, contains a notice stating that it is
 governed by this License along with a term that is a further
 restriction, you may remove that term. If a license document contains
 a further restriction but permits relicensing or conveying under this
 License, you may add to a covered work material governed by the terms
 of that license document, provided that the further restriction does
 not survive such relicensing or conveying.
 .
 If you add terms to a covered work in accord with this section, you
 must place, in the relevant source files, a statement of the
 additional terms that apply to those files, or a notice indicating
 where to find the applicable terms.
 .
 Additional terms, permissive or non-permissive, may be stated in the
 form of a separately written license, or stated as exceptions;
 the above requirements apply either way.
 .
 8. Termination.
 .
 You may not propagate or modify a covered work except as expressly
 provided under this License. Any attempt otherwise to propagate or
 modify it is void, and will automatically terminate your rights under
 this License (including any patent licenses granted under the third
 paragraph of section 11).
 .
 However, if you cease all violation of this License, then your
 license from a particular copyright holder is reinstated (a)
 provisionally, unless and until the copyright holder explicitly and
 finally terminates your license, and (b) permanently, if the copyright
 holder fails to notify you of the violation by some reasonable means
 prior to 60 days after the cessation.
 .
 Moreover, your license from a particular copyright holder is
 reinstated permanently if the copyright holder notifies you of the
 violation by some reasonable means, this is the first time you have
 received notice of violation of this License (for any work) from that
 copyright holder, and you cure the violation prior to 30 days after
 your receipt of the notice.
 .
 Termination of your rights under this section does not terminate the
 licenses of parties who have received copies or rights from you under
 this License. If your rights have been terminated and not permanently
 reinstated, you do not qualify to receive new licenses for the same
 material under section 10.
 .
 9. Acceptance Not Required for Having Copies.
 .
 You are not required to accept this License in order to receive or
 run a copy of the Program. Ancillary propagation of a covered work
 occurring solely as a consequence of using peer-to-peer transmission
 to receive a copy likewise does not require acceptance. However,
 nothing other than this License grants you permission to propagate or
 modify any covered work. These actions infringe copyright if you do
 not accept this License. Therefore, by modifying or propagating a
 covered work, you indicate your acceptance of this License to do so.
 .
 10. Automatic Licensing of Downstream Recipients.
 .
 Each time you convey a covered work, the recipient automatically
 receives a license from the original licensors, to run, modify and
 propagate that work, subject to this License. You are not responsible
 for enforcing compliance by third parties with this License.
 .
 An "entity transaction" is a transaction transferring control of an
 organization, or substantially all assets of one, or subdividing an
 organization, or merging organizations. If propagation of a covered
 work results from an entity transaction, each party to that
 transaction who receives a copy of the work also receives whatever
 licenses to the work the party's predecessor in interest had or could
 give under the previous paragraph, plus a right to possession of the
 Corresponding Source of the work from the predecessor in interest, if
 the predecessor has it or can get it with reasonable efforts.
 .
 You may not impose any further restrictions on the exercise of the
 rights granted or affirmed under this License. For example, you may
 not impose a license fee, royalty, or other charge for exercise of
 rights granted under this License, and you may not initiate litigation
 (including a cross-claim or counterclaim in a lawsuit) alleging that
 any patent claim is infringed by making, using, selling, offering for
 sale, or importing the Program or any portion of it.
 .
 11. Patents.
 .
 A "contributor" is a copyright holder who authorizes use under this
 License of the Program or a work on which the Program is based. The
 work thus licensed is called the contributor's "contributor version".
 .
 A contributor's "essential patent claims" are all patent claims
 owned or controlled by the contributor, whether already acquired or
 hereafter acquired, that would be infringed by some manner, permitted
 by this License, of making, using, or selling its contributor version,
 but do not include claims that would be infringed only as a
 consequence of further modification of the contributor version. For
 purposes of this definition, "control" includes the right to grant
 patent sublicenses in a manner consistent with the requirements of
 this License.
 .
 Each contributor grants you a non-exclusive, worldwide, royalty-free
 patent license under the contributor's essential patent claims, to
 make, use, sell, offer for sale, import and otherwise run, modify and
 propagate the contents of its contributor version.
 .
 In the following three paragraphs, a "patent license" is any express
 agreement or commitment, however denominated, not to enforce a patent
 (such as an express permission to practice a patent or covenant not to
 sue for patent infringement). To "grant" such a patent license to a
 party means to make such an agreement or commitment not to enforce a
 patent against the party.
 .
 If you convey a covered work, knowingly relying on a patent license,
 and the Corresponding Source of the work is not available for anyone
 to copy, free of charge and under the terms of this License, through a
 publicly available network server or other readily accessible means,
 then you must either (1) cause the Corresponding Source to be so
 available, or (2) arrange to deprive yourself of the benefit of the
 patent license for this particular work, or (3) arrange, in a manner
 consistent with the requirements of this License, to extend the patent
 license to downstream recipients. "Knowingly relying" means you have
 actual knowledge that, but for the patent license, your conveying the
 covered work in a country, or your recipient's use of the covered work
 in a country, would infringe one or more identifiable patents in that
 country that you have reason to believe are valid.
 .
 If, pursuant to or in connection with a single transaction or
 arrangement, you convey, or propagate by procuring conveyance of, a
 covered work, and grant a patent license to some of the parties
 receiving the covered work authorizing them to use, propagate, modify
 or convey a specific copy of the covered work, then the patent license
 you grant is automatically extended to all recipients of the covered
 work and works based on it.
 .
 A patent license is "discriminatory" if it does not include within
 the scope of its coverage, prohibits the exercise of, or is
 conditioned on the non-exercise of one or more of the rights that are
 specifically granted under this License. You may not convey a covered
 work if you are a party to an arrangement with a third party that is
 in the business of distributing software, under which you make payment
 to the third party based on the extent of your activity of conveying
 the work, and under which the third party grants, to any of the
 parties who would receive the covered work from you, a discriminatory
 patent license (a) in connection with copies of the covered work
 conveyed by you (or copies made from those copies), or (b) primarily
 for and in connection with specific products or compilations that
 contain the covered work, unless you entered into that arrangement,
 or that patent license was granted, prior to 28 March 2007.
 .
 Nothing in this License shall be construed as excluding or limiting
 any implied license or other defenses to infringement that may
 otherwise be available to you under applicable patent law.
 .
 12. No Surrender of Others' Freedom.
 .
 If conditions are imposed on you (whether by court order, agreement or
 otherwise) that contradict the conditions of this License, they do not
 excuse you from the conditions of this License. If you cannot convey a
 covered work so as to satisfy simultaneously your obligations under this
 License and any other pertinent obligations, then as a consequence you may
 not convey it at all. For example, if you agree to terms that obligate you
 to collect a royalty for further conveying from those to whom you convey
 the Program, the only way you could satisfy both those terms and this
 License would be to refrain entirely from conveying the Program.
 .
 13. Remote Network Interaction; Use with the GNU General Public License.
 .
 Notwithstanding any other provision of this License, if you modify the
 Program, your modified version must prominently offer all users
 interacting with it remotely through a computer network (if your version
 supports such interaction) an opportunity to receive the Corresponding
 Source of your version by providing access to the Corresponding Source
 from a network server at no charge, through some standard or customary
 means of facilitating copying of software. This Corresponding Source
 shall include the Corresponding Source for any work covered by version 3
 of the GNU General Public License that is incorporated pursuant to the
 following paragraph.
 .
 Notwithstanding any other provision of this License, you have
 permission to link or combine any covered work with a work licensed
 under version 3 of the GNU General Public License into a single
 combined work, and to convey the resulting work. The terms of this
 License will continue to apply to the part which is the covered work,
 but the work with which it is combined will remain governed by version
 3 of the GNU General Public License.
 .
 14. Revised Versions of this License.
 .
 The Free Software Foundation may publish revised and/or new versions of
 the GNU Affero General Public License from time to time. Such new versions
 will be similar in spirit to the present version, but may differ in detail to
 address new problems or concerns.
 .
 Each version is given a distinguishing version number. If the
 Program specifies that a certain numbered version of the GNU Affero General
 Public License "or any later version" applies to it, you have the
 option of following the terms and conditions either of that numbered
 version or of any later version published by the Free Software
 Foundation. If the Program does not specify a version number of the
 GNU Affero General Public License, you may choose any version ever published
 by the Free Software Foundation.
 .
 If the Program specifies that a proxy can decide which future
 versions of the GNU Affero General Public License can be used, that proxy's
 public statement of acceptance of a version permanently authorizes you
 to choose that version for the Program.
 .
 Later license versions may give you additional or different
 permissions. However, no additional obligations are imposed on any
 author or copyright holder as a result of your choosing to follow a
 later version.
 .
 15. Disclaimer of Warranty.
 .
 THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
 APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
 HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
 OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
 THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
 IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
 ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
 .
 16. Limitation of Liability.
 .
 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
 WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
 THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
 GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
 USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
 DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
 PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
 EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
 SUCH DAMAGES.
 .
 17. Interpretation of Sections 15 and 16.
 .
 If the disclaimer of warranty and limitation of liability provided
 above cannot be given local legal effect according to their terms,
 reviewing courts shall apply local law that most closely approximates
 an absolute waiver of all civil liability in connection with the
 Program, unless a warranty or assumption of liability accompanies a
 copy of the Program in return for a fee.
 .
 END OF TERMS AND CONDITIONS
 .
 How to Apply These Terms to Your New Programs
 .
 If you develop a new program, and you want it to be of the greatest
 possible use to the public, the best way to achieve this is to make it
 free software which everyone can redistribute and change under these terms.
 .
 To do so, attach the following notices to the program. It is safest
 to attach them to the start of each source file to most effectively
 state the exclusion of warranty; and each file should have at least
 the "copyright" line and a pointer to where the full notice is found.
 .
 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>
 .
 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU Affero General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.
 .
 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU Affero General Public License for more details.
 .
 You should have received a copy of the GNU Affero General Public License
 along with this program. If not, see <http://www.gnu.org/licenses/>.
 .
 Also add information on how to contact you by electronic and paper mail.
 .
 If your software can interact with users remotely through a computer
 network, you should also make sure that it provides a way for users to
 get its source. For example, if your program is a web application, its
 interface could display a "Source" link that leads users to an archive
 of the code. There are many ways you could offer source, and different
 solutions will be better for different programs; see section 13 for the
 specific requirements.
 .
 You should also get your employer (if you work as a programmer) or school,
 if any, to sign a "copyright disclaimer" for the program, if necessary.
 For more information on this, and how to apply and follow the GNU AGPL, see
 <http://www.gnu.org/licenses/>.

License: Expat
 Permission is hereby granted, free of charge, to any person obtaining
 a copy of this software and associated documentation files (the
 "Software"), to deal in the Software without restriction, including
 without limitation the rights to use, copy, modify, merge, publish,
 distribute, sublicense, and/or sell copies of the Software, and to
 permit persons to whom the Software is furnished to do so, subject to
 the following conditions:
 .
 The above copyright notice and this permission notice shall be
 included in all copies or substantial portions of the Software.
 .
 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

License: GFDL-1.2+
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.2 or
 any later version published by the Free Software Foundation; with no
 Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 .
 On Debian systems, the complete text of the GNU Free Documentation
 License version 1.2 can be found in
 "/usr/share/common-licenses/GFDL-1.2".

License: CC-BY-SA-1.0
 THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
 CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
 PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
 WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE IS PROHIBITED.
 .
 BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
 AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS
 YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF
 SUCH TERMS AND CONDITIONS.
 .
 1. Definitions
 .
 "Collective Work" means a work, such as a periodical issue,
 anthology or encyclopedia, in which the Work in its entirety in
 unmodified form, along with a number of other contributions,
 constituting separate and independent works in themselves, are
 assembled into a collective whole. A work that constitutes a
 Collective Work will not be considered a Derivative Work (as
 defined below) for the purposes of this License. "Derivative
 Work" means a work based upon the Work or upon the Work and other
 pre-existing works, such as a translation, musical arrangement,
 dramatization, fictionalization, motion picture version, sound
 recording, art reproduction, abridgment, condensation, or any
 other form in which the Work may be recast, transformed, or
 adapted, except that a work that constitutes a Collective Work
 will not be considered a Derivative Work for the purpose of this
 License. "Licensor" means the individual or entity that offers
 the Work under the terms of this License. "Original Author" means
 the individual or entity who created the Work. "Work" means the
 copyrightable work of authorship offered under the terms of this
 License. "You" means an individual or entity exercising rights
 under this License who has not previously violated the terms of
 this License with respect to the Work, or who has received express
 permission from the Licensor to exercise rights under this License
 despite a previous violation.
 .
 2. Fair Use Rights. Nothing in this license is intended to reduce,
 limit, or restrict any rights arising from fair use, first sale or
 other limitations on the exclusive rights of the copyright owner under
 copyright law or other applicable laws.
 .
 3. License Grant. Subject to the terms and conditions of this License,
 Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
 perpetual (for the duration of the applicable copyright) license to
 exercise the rights in the Work as stated below:
 .
 to reproduce the Work, to incorporate the Work into one or more
 Collective Works, and to reproduce the Work as incorporated in the
 Collective Works; to create and reproduce Derivative Works; to
 distribute copies or phonorecords of, display publicly, perform
 publicly, and perform publicly by means of a digital audio
 transmission the Work including as incorporated in Collective
 Works; to distribute copies or phonorecords of, display publicly,
 perform publicly, and perform publicly by means of a digital audio
 transmission Derivative Works;
 .
 The above rights may be exercised in all media and formats whether now
 known or hereafter devised. The above rights include the right to make
 such modifications as are technically necessary to exercise the rights
 in other media and formats. All rights not expressly granted by
 Licensor are hereby reserved.
 .
 4. Restrictions. The license granted in Section 3 above is expressly
 made subject to and limited by the following restrictions:
 .
 You may distribute, publicly display, publicly perform, or
 publicly digitally perform the Work only under the terms of this
 License, and You must include a copy of, or the Uniform Resource
 Identifier for, this License with every copy or phonorecord of the
 Work You distribute, publicly display, publicly perform, or
 publicly digitally perform. You may not offer or impose any terms
 on the Work that alter or restrict the terms of this License or
 the recipients' exercise of the rights granted hereunder. You may
 not sublicense the Work. You must keep intact all notices that
 refer to this License and to the disclaimer of warranties. You may
 not distribute, publicly display, publicly perform, or publicly
 digitally perform the Work with any technological measures that
 control access or use of the Work in a manner inconsistent with
 the terms of this License Agreement. The above applies to the Work
 as incorporated in a Collective Work, but this does not require
 the Collective Work apart from the Work itself to be made subject
 to the terms of this License. If You create a Collective Work,
 upon notice from any Licensor You must, to the extent practicable,
 remove from the Collective Work any reference to such Licensor or
 the Original Author, as requested. If You create a Derivative
 Work, upon notice from any Licensor You must, to the extent
 practicable, remove from the Derivative Work any reference to such
 Licensor or the Original Author, as requested. You may
 distribute, publicly display, publicly perform, or publicly
 digitally perform a Derivative Work only under the terms of this
 License, and You must include a copy of, or the Uniform Resource
 Identifier for, this License with every copy or phonorecord of
 each Derivative Work You distribute, publicly display, publicly
 perform, or publicly digitally perform. You may not offer or
 impose any terms on the Derivative Works that alter or restrict
 the terms of this License or the recipients' exercise of the
 rights granted hereunder, and You must keep intact all notices
 that refer to this License and to the disclaimer of
 warranties. You may not distribute, publicly display, publicly
 perform, or publicly digitally perform the Derivative Work with
 any technological measures that control access or use of the Work
 in a manner inconsistent with the terms of this License
 Agreement. The above applies to the Derivative Work as
 incorporated in a Collective Work, but this does not require the
 Collective Work apart from the Derivative Work itself to be made
 subject to the terms of this License. If you distribute, publicly
 display, publicly perform, or publicly digitally perform the Work
 or any Derivative Works or Collective Works, You must keep intact
 all copyright notices for the Work and give the Original Author
 credit reasonable to the medium or means You are utilizing by
 conveying the name (or pseudonym if applicable) of the Original
 Author if supplied; the title of the Work if supplied; in the case
 of a Derivative Work, a credit identifying the use of the Work in
 the Derivative Work (e.g., "French translation of the Work by
 Original Author," or "Screenplay based on original Work by
 Original Author"). Such credit may be implemented in any
 reasonable manner; provided, however, that in the case of a
 Derivative Work or Collective Work, at a minimum such credit will
 appear where any other comparable authorship credit appears and in
 a manner at least as prominent as such other comparable authorship
 credit.
 .
 5. Representations, Warranties and Disclaimer
 .
 By offering the Work for public release under this License,
 Licensor represents and warrants that, to the best of
 Licensor's knowledge after reasonable inquiry: Licensor has
 secured all rights in the Work necessary to grant the license
 rights hereunder and to permit the lawful exercise of the
 rights granted hereunder without You having any obligation to
 pay any royalties, compulsory license fees, residuals or any
 other payments; The Work does not infringe the copyright,
 trademark, publicity rights, common law rights or any other
 right of any third party or constitute defamation, invasion of
 privacy or other tortious injury to any third party. EXCEPT
 AS EXPRESSLY STATED IN THIS LICENSE OR OTHERWISE AGREED IN
 WRITING OR REQUIRED BY APPLICABLE LAW, THE WORK IS LICENSED ON
 AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER
 EXPRESS OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY
 WARRANTIES REGARDING THE CONTENTS OR ACCURACY OF THE WORK.
 .
 6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY
 APPLICABLE LAW, AND EXCEPT FOR DAMAGES ARISING FROM LIABILITY TO A
 THIRD PARTY RESULTING FROM BREACH OF THE WARRANTIES IN SECTION 5, IN
 NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY
 SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
 ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR
 HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
 .
 7. Termination
 .
 This License and the rights granted hereunder will terminate
 automatically upon any breach by You of the terms of this
 License. Individuals or entities who have received Derivative
 Works or Collective Works from You under this License, however,
 will not have their licenses terminated provided such individuals
 or entities remain in full compliance with those
 licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
 termination of this License. Subject to the above terms and
 conditions, the license granted here is perpetual (for the
 duration of the applicable copyright in the Work). Notwithstanding
 the above, Licensor reserves the right to release the Work under
 different license terms or to stop distributing the Work at any
 time; provided, however that any such election will not serve to
 withdraw this License (or any other license that has been, or is
 required to be, granted under the terms of this License), and this
 License will continue in full force and effect unless terminated
 as stated above.
 .
 8. Miscellaneous
 .
 Each time You distribute or publicly digitally perform the Work or
 a Collective Work, the Licensor offers to the recipient a license
 to the Work on the same terms and conditions as the license
 granted to You under this License. Each time You distribute or
 publicly digitally perform a Derivative Work, Licensor offers to
 the recipient a license to the original Work on the same terms and
 conditions as the license granted to You under this License. If
 any provision of this License is invalid or unenforceable under
 applicable law, it shall not affect the validity or enforceability
 of the remainder of the terms of this License, and without further
 action by the parties to this agreement, such provision shall be
 reformed to the minimum extent necessary to make such provision
 valid and enforceable. No term or provision of this License shall
 be deemed waived and no breach consented to unless such waiver or
 consent shall be in writing and signed by the party to be charged
 with such waiver or consent. This License constitutes the entire
 agreement between the parties with respect to the Work licensed
 here. There are no understandings, agreements or representations
 with respect to the Work not specified here. Licensor shall not be
 bound by any additional provisions that may appear in any
 communication from You. This License may not be modified without
 the mutual written agreement of the Licensor and You.

License: CC-BY-SA-2.0
 THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
 CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
 PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
 WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS
 PROHIBITED.
 .
 BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
 AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS
 YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF
 SUCH TERMS AND CONDITIONS.
 .
 1. Definitions
 .
 "Collective Work" means a work, such as a periodical issue,
 anthology or encyclopedia, in which the Work in its entirety in
 unmodified form, along with a number of other contributions,
 constituting separate and independent works in themselves, are
 assembled into a collective whole. A work that constitutes a
 Collective Work will not be considered a Derivative Work (as
 defined below) for the purposes of this License. "Derivative
 Work" means a work based upon the Work or upon the Work and other
 pre-existing works, such as a translation, musical arrangement,
 dramatization, fictionalization, motion picture version, sound
 recording, art reproduction, abridgment, condensation, or any
 other form in which the Work may be recast, transformed, or
 adapted, except that a work that constitutes a Collective Work
 will not be considered a Derivative Work for the purpose of this
 License. For the avoidance of doubt, where the Work is a musical
 composition or sound recording, the synchronization of the Work in
 timed-relation with a moving image ("synching") will be considered
 a Derivative Work for the purpose of this License. "Licensor"
 means the individual or entity that offers the Work under the
 terms of this License. "Original Author" means the individual or
 entity who created the Work. "Work" means the copyrightable work
 of authorship offered under the terms of this License. "You"
 means an individual or entity exercising rights under this License
 who has not previously violated the terms of this License with
 respect to the Work, or who has received express permission from
 the Licensor to exercise rights under this License despite a
 previous violation. "License Elements" means the following
 high-level license attributes as selected by Licensor and
 indicated in the title of this License: Attribution, ShareAlike.
 .
 2. Fair Use Rights. Nothing in this license is intended to reduce,
 limit, or restrict any rights arising from fair use, first sale or
 other limitations on the exclusive rights of the copyright owner under
 copyright law or other applicable laws.
 .
 3. License Grant. Subject to the terms and conditions of this License,
 Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
 perpetual (for the duration of the applicable copyright) license to
 exercise the rights in the Work as stated below:
 .
 to reproduce the Work, to incorporate the Work into one or more
 Collective Works, and to reproduce the Work as incorporated in the
 Collective Works; to create and reproduce Derivative Works; to
 distribute copies or phonorecords of, display publicly, perform
 publicly, and perform publicly by means of a digital audio
 transmission the Work including as incorporated in Collective
 Works; to distribute copies or phonorecords of, display publicly,
 perform publicly, and perform publicly by means of a digital audio
 transmission Derivative Works.
 .
 For the avoidance of doubt, where the work is a musical
 composition: Performance Royalties Under Blanket
 Licenses. Licensor waives the exclusive right to collect,
 whether individually or via a performance rights society
 (e.g. ASCAP, BMI, SESAC), royalties for the public performance
 or public digital performance (e.g. webcast) of the Work.
 Mechanical Rights and Statutory Royalties. Licensor waives the
 exclusive right to collect, whether individually or via a
 music rights society or designated agent (e.g. Harry Fox
 Agency), royalties for any phonorecord You create from the
 Work ("cover version") and distribute, subject to the
 compulsory license created by 17 USC Section 115 of the US
 Copyright Act (or the equivalent in other jurisdictions).
 Webcasting Rights and Statutory Royalties. For the avoidance
 of doubt, where the Work is a sound recording, Licensor waives
 the exclusive right to collect, whether individually or via a
 performance-rights society (e.g. SoundExchange), royalties for
 the public digital performance (e.g. webcast) of the Work,
 subject to the compulsory license created by 17 USC Section
 114 of the US Copyright Act (or the equivalent in other
 jurisdictions).
 .
 The above rights may be exercised in all media and formats whether now
 known or hereafter devised. The above rights include the right to make
 such modifications as are technically necessary to exercise the rights
 in other media and formats. All rights not expressly granted by
 Licensor are hereby reserved.
 .
 4. Restrictions.The license granted in Section 3 above is expressly
 made subject to and limited by the following restrictions:
 .
 You may distribute, publicly display, publicly perform, or
 publicly digitally perform the Work only under the terms of this
 License, and You must include a copy of, or the Uniform Resource
 Identifier for, this License with every copy or phonorecord of the
 Work You distribute, publicly display, publicly perform, or
 publicly digitally perform. You may not offer or impose any terms
 on the Work that alter or restrict the terms of this License or
 the recipients' exercise of the rights granted hereunder. You may
 not sublicense the Work. You must keep intact all notices that
 refer to this License and to the disclaimer of warranties. You may
 not distribute, publicly display, publicly perform, or publicly
 digitally perform the Work with any technological measures that
 control access or use of the Work in a manner inconsistent with
 the terms of this License Agreement. The above applies to the Work
 as incorporated in a Collective Work, but this does not require
 the Collective Work apart from the Work itself to be made subject
 to the terms of this License. If You create a Collective Work,
 upon notice from any Licensor You must, to the extent practicable,
 remove from the Collective Work any reference to such Licensor or
 the Original Author, as requested. If You create a Derivative
 Work, upon notice from any Licensor You must, to the extent
 practicable, remove from the Derivative Work any reference to such
 Licensor or the Original Author, as requested. You may
 distribute, publicly display, publicly perform, or publicly
 digitally perform a Derivative Work only under the terms of this
 License, a later version of this License with the same License
 Elements as this License, or a Creative Commons iCommons license
 that contains the same License Elements as this License
 (e.g. Attribution-ShareAlike 2.0 Japan). You must include a copy
 of, or the Uniform Resource Identifier for, this License or other
 license specified in the previous sentence with every copy or
 phonorecord of each Derivative Work You distribute, publicly
 display, publicly perform, or publicly digitally perform. You may
 not offer or impose any terms on the Derivative Works that alter
 or restrict the terms of this License or the recipients' exercise
 of the rights granted hereunder, and You must keep intact all
 notices that refer to this License and to the disclaimer of
 warranties. You may not distribute, publicly display, publicly
 perform, or publicly digitally perform the Derivative Work with
 any technological measures that control access or use of the Work
 in a manner inconsistent with the terms of this License
 Agreement. The above applies to the Derivative Work as
 incorporated in a Collective Work, but this does not require the
 Collective Work apart from the Derivative Work itself to be made
 subject to the terms of this License. If you distribute, publicly
 display, publicly perform, or publicly digitally perform the Work
 or any Derivative Works or Collective Works, You must keep intact
 all copyright notices for the Work and give the Original Author
 credit reasonable to the medium or means You are utilizing by
 conveying the name (or pseudonym if applicable) of the Original
 Author if supplied; the title of the Work if supplied; to the
 extent reasonably practicable, the Uniform Resource Identifier, if
 any, that Licensor specifies to be associated with the Work,
 unless such URI does not refer to the copyright notice or
 licensing information for the Work; and in the case of a
 Derivative Work, a credit identifying the use of the Work in the
 Derivative Work (e.g., "French translation of the Work by Original
 Author," or "Screenplay based on original Work by Original
 Author"). Such credit may be implemented in any reasonable manner;
 provided, however, that in the case of a Derivative Work or
 Collective Work, at a minimum such credit will appear where any
 other comparable authorship credit appears and in a manner at
 least as prominent as such other comparable authorship credit.
 .
 5. Representations, Warranties and Disclaimer
 .
 UNLESS OTHERWISE AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS
 THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND
 CONCERNING THE MATERIALS, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
 INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY,
 FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF
 LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF
 ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW
 THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY
 TO YOU.
 .
 6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY
 APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY
 LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR
 EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK,
 EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
 .
 7. Termination
 .
 This License and the rights granted hereunder will terminate
 automatically upon any breach by You of the terms of this
 License. Individuals or entities who have received Derivative
 Works or Collective Works from You under this License, however,
 will not have their licenses terminated provided such individuals
 or entities remain in full compliance with those
 licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
 termination of this License. Subject to the above terms and
 conditions, the license granted here is perpetual (for the
 duration of the applicable copyright in the Work). Notwithstanding
 the above, Licensor reserves the right to release the Work under
 different license terms or to stop distributing the Work at any
 time; provided, however that any such election will not serve to
 withdraw this License (or any other license that has been, or is
 required to be, granted under the terms of this License), and this
 License will continue in full force and effect unless terminated
 as stated above.
 .
 8. Miscellaneous
 .
 Each time You distribute or publicly digitally perform the Work or
 a Collective Work, the Licensor offers to the recipient a license
 to the Work on the same terms and conditions as the license
 granted to You under this License. Each time You distribute or
 publicly digitally perform a Derivative Work, Licensor offers to
 the recipient a license to the original Work on the same terms and
 conditions as the license granted to You under this License. If
 any provision of this License is invalid or unenforceable under
 applicable law, it shall not affect the validity or enforceability
 of the remainder of the terms of this License, and without further
 action by the parties to this agreement, such provision shall be
 reformed to the minimum extent necessary to make such provision
 valid and enforceable. No term or provision of this License shall
 be deemed waived and no breach consented to unless such waiver or
 consent shall be in writing and signed by the party to be charged
 with such waiver or consent. This License constitutes the entire
 agreement between the parties with respect to the Work licensed
 here. There are no understandings, agreements or representations
 with respect to the Work not specified here. Licensor shall not be
 bound by any additional provisions that may appear in any
 communication from You. This License may not be modified without
 the mutual written agreement of the Licensor and You.

License: CC-BY-SA-2.5
 THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
 CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
 PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
 WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS
 PROHIBITED.
 .
 BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
 AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS
 YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF
 SUCH TERMS AND CONDITIONS.
 .
 1. Definitions
 .
 "Collective Work" means a work, such as a periodical issue,
 anthology or encyclopedia, in which the Work in its entirety in
 unmodified form, along with a number of other contributions,
 constituting separate and independent works in themselves, are
 assembled into a collective whole. A work that constitutes a
 Collective Work will not be considered a Derivative Work (as
 defined below) for the purposes of this License. "Derivative
 Work" means a work based upon the Work or upon the Work and other
 pre-existing works, such as a translation, musical arrangement,
 dramatization, fictionalization, motion picture version, sound
 recording, art reproduction, abridgment, condensation, or any
 other form in which the Work may be recast, transformed, or
 adapted, except that a work that constitutes a Collective Work
 will not be considered a Derivative Work for the purpose of this
 License. For the avoidance of doubt, where the Work is a musical
 composition or sound recording, the synchronization of the Work in
 timed-relation with a moving image ("synching") will be considered
 a Derivative Work for the purpose of this License. "Licensor"
 means the individual or entity that offers the Work under the
 terms of this License. "Original Author" means the individual or
 entity who created the Work. "Work" means the copyrightable work
 of authorship offered under the terms of this License. "You"
 means an individual or entity exercising rights under this License
 who has not previously violated the terms of this License with
 respect to the Work, or who has received express permission from
 the Licensor to exercise rights under this License despite a
 previous violation. "License Elements" means the following
 high-level license attributes as selected by Licensor and
 indicated in the title of this License: Attribution, ShareAlike.
 .
 2. Fair Use Rights. Nothing in this license is intended to reduce,
 limit, or restrict any rights arising from fair use, first sale or
 other limitations on the exclusive rights of the copyright owner under
 copyright law or other applicable laws.
 .
 3. License Grant. Subject to the terms and conditions of this License,
 Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
 perpetual (for the duration of the applicable copyright) license to
 exercise the rights in the Work as stated below:
 .
 to reproduce the Work, to incorporate the Work into one or more
 Collective Works, and to reproduce the Work as incorporated in the
 Collective Works; to create and reproduce Derivative Works; to
 distribute copies or phonorecords of, display publicly, perform
 publicly, and perform publicly by means of a digital audio
 transmission the Work including as incorporated in Collective
 Works; to distribute copies or phonorecords of, display publicly,
 perform publicly, and perform publicly by means of a digital audio
 transmission Derivative Works.
 .
 For the avoidance of doubt, where the work is a musical
 composition: Performance Royalties Under Blanket
 Licenses. Licensor waives the exclusive right to collect,
 whether individually or via a performance rights society
 (e.g. ASCAP, BMI, SESAC), royalties for the public performance
 or public digital performance (e.g. webcast) of the Work.
 Mechanical Rights and Statutory Royalties. Licensor waives the
 exclusive right to collect, whether individually or via a
 music rights society or designated agent (e.g. Harry Fox
 Agency), royalties for any phonorecord You create from the
 Work ("cover version") and distribute, subject to the
 compulsory license created by 17 USC Section 115 of the US
 Copyright Act (or the equivalent in other jurisdictions).
 Webcasting Rights and Statutory Royalties. For the avoidance
 of doubt, where the Work is a sound recording, Licensor waives
 the exclusive right to collect, whether individually or via a
 performance-rights society (e.g. SoundExchange), royalties for
 the public digital performance (e.g. webcast) of the Work,
 subject to the compulsory license created by 17 USC Section
 114 of the US Copyright Act (or the equivalent in other
 jurisdictions).
 .
 The above rights may be exercised in all media and formats whether now
 known or hereafter devised. The above rights include the right to make
 such modifications as are technically necessary to exercise the rights
 in other media and formats. All rights not expressly granted by
 Licensor are hereby reserved.
 .
 4. Restrictions.The license granted in Section 3 above is expressly
 made subject to and limited by the following restrictions:
 .
 You may distribute, publicly display, publicly perform, or
 publicly digitally perform the Work only under the terms of this
 License, and You must include a copy of, or the Uniform Resource
 Identifier for, this License with every copy or phonorecord of the
 Work You distribute, publicly display, publicly perform, or
 publicly digitally perform. You may not offer or impose any terms
 on the Work that alter or restrict the terms of this License or
 the recipients' exercise of the rights granted hereunder. You may
 not sublicense the Work. You must keep intact all notices that
 refer to this License and to the disclaimer of warranties. You may
 not distribute, publicly display, publicly perform, or publicly
 digitally perform the Work with any technological measures that
 control access or use of the Work in a manner inconsistent with
 the terms of this License Agreement. The above applies to the Work
 as incorporated in a Collective Work, but this does not require
 the Collective Work apart from the Work itself to be made subject
 to the terms of this License. If You create a Collective Work,
 upon notice from any Licensor You must, to the extent practicable,
 remove from the Collective Work any credit as required by clause
 4(c), as requested. If You create a Derivative Work, upon notice
 from any Licensor You must, to the extent practicable, remove from
 the Derivative Work any credit as required by clause 4(c), as
 requested. You may distribute, publicly display, publicly
 perform, or publicly digitally perform a Derivative Work only
 under the terms of this License, a later version of this License
 with the same License Elements as this License, or a Creative
 Commons iCommons license that contains the same License Elements
 as this License (e.g. Attribution-ShareAlike 2.5 Japan). You must
 include a copy of, or the Uniform Resource Identifier for, this
 License or other license specified in the previous sentence with
 every copy or phonorecord of each Derivative Work You distribute,
 publicly display, publicly perform, or publicly digitally
 perform. You may not offer or impose any terms on the Derivative
 Works that alter or restrict the terms of this License or the
 recipients' exercise of the rights granted hereunder, and You must
 keep intact all notices that refer to this License and to the
 disclaimer of warranties. You may not distribute, publicly
 display, publicly perform, or publicly digitally perform the
 Derivative Work with any technological measures that control
 access or use of the Work in a manner inconsistent with the terms
 of this License Agreement. The above applies to the Derivative
 Work as incorporated in a Collective Work, but this does not
 require the Collective Work apart from the Derivative Work itself
 to be made subject to the terms of this License. If you
 distribute, publicly display, publicly perform, or publicly
 digitally perform the Work or any Derivative Works or Collective
 Works, You must keep intact all copyright notices for the Work and
 provide, reasonable to the medium or means You are utilizing: (i)
 the name of the Original Author (or pseudonym, if applicable) if
 supplied, and/or (ii) if the Original Author and/or Licensor
 designate another party or parties (e.g. a sponsor institute,
 publishing entity, journal) for attribution in Licensor's
 copyright notice, terms of service or by other reasonable means,
 the name of such party or parties; the title of the Work if
 supplied; to the extent reasonably practicable, the Uniform
 Resource Identifier, if any, that Licensor specifies to be
 associated with the Work, unless such URI does not refer to the
 copyright notice or licensing information for the Work; and in the
 case of a Derivative Work, a credit identifying the use of the
 Work in the Derivative Work (e.g., "French translation of the Work
 by Original Author," or "Screenplay based on original Work by
 Original Author"). Such credit may be implemented in any
 reasonable manner; provided, however, that in the case of a
 Derivative Work or Collective Work, at a minimum such credit will
 appear where any other comparable authorship credit appears and in
 a manner at least as prominent as such other comparable authorship
 credit.
 .
 5. Representations, Warranties and Disclaimer
 .
 UNLESS OTHERWISE AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS
 THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND
 CONCERNING THE MATERIALS, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
 INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY,
 FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF
 LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF
 ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW
 THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY
 TO YOU.
 .
 6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY
 APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY
 LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR
 EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK,
 EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
 .
 7. Termination
 .
 This License and the rights granted hereunder will terminate
 automatically upon any breach by You of the terms of this
 License. Individuals or entities who have received Derivative
 Works or Collective Works from You under this License, however,
 will not have their licenses terminated provided such individuals
 or entities remain in full compliance with those
 licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
 termination of this License. Subject to the above terms and
 conditions, the license granted here is perpetual (for the
 duration of the applicable copyright in the Work). Notwithstanding
 the above, Licensor reserves the right to release the Work under
 different license terms or to stop distributing the Work at any
 time; provided, however that any such election will not serve to
 withdraw this License (or any other license that has been, or is
 required to be, granted under the terms of this License), and this
 License will continue in full force and effect unless terminated
 as stated above.
 .
 8. Miscellaneous
 .
 Each time You distribute or publicly digitally perform the Work or
 a Collective Work, the Licensor offers to the recipient a license
 to the Work on the same terms and conditions as the license
 granted to You under this License. Each time You distribute or
 publicly digitally perform a Derivative Work, Licensor offers to
 the recipient a license to the original Work on the same terms and
 conditions as the license granted to You under this License. If
 any provision of this License is invalid or unenforceable under
 applicable law, it shall not affect the validity or enforceability
 of the remainder of the terms of this License, and without further
 action by the parties to this agreement, such provision shall be
 reformed to the minimum extent necessary to make such provision
 valid and enforceable. No term or provision of this License shall
 be deemed waived and no breach consented to unless such waiver or
 consent shall be in writing and signed by the party to be charged
 with such waiver or consent. This License constitutes the entire
 agreement between the parties with respect to the Work licensed
 here. There are no understandings, agreements or representations
 with respect to the Work not specified here. Licensor shall not be
 bound by any additional provisions that may appear in any
 communication from You. This License may not be modified without
 the mutual written agreement of the Licensor and You.

License: CC-BY-SA-3.0
 THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
 CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
 PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
 WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS
 PROHIBITED.
 .
 BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
 AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS
 LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU
 THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH
 TERMS AND CONDITIONS.
 .
 1. Definitions
 .
 a. "Adaptation" means a work based upon the Work, or upon the Work and
 other pre-existing works, such as a translation, adaptation,
 derivative work, arrangement of music or other alterations of a
 literary or artistic work, or phonogram or performance and includes
 cinematographic adaptations or any other form in which the Work may be
 recast, transformed, or adapted including in any form recognizably
 derived from the original, except that a work that constitutes a
 Collection will not be considered an Adaptation for the purpose of
 this License. For the avoidance of doubt, where the Work is a musical
 work, performance or phonogram, the synchronization of the Work in
 timed-relation with a moving image ("synching") will be considered an
 Adaptation for the purpose of this License.
 .
 b. "Collection" means a collection of literary or artistic works, such
 as encyclopedias and anthologies, or performances, phonograms or
 broadcasts, or other works or subject matter other than works listed
 in Section 1(f) below, which, by reason of the selection and
 arrangement of their contents, constitute intellectual creations, in
 which the Work is included in its entirety in unmodified form along
 with one or more other contributions, each constituting separate and
 independent works in themselves, which together are assembled into a
 collective whole. A work that constitutes a Collection will not be
 considered an Adaptation (as defined below) for the purposes of this
 License.
 .
 c. "Creative Commons Compatible License" means a license that is
 listed at http://creativecommons.org/compatiblelicenses that has been
 approved by Creative Commons as being essentially equivalent to this
 License, including, at a minimum, because that license: (i) contains
 terms that have the same purpose, meaning and effect as the License
 Elements of this License; and, (ii) explicitly permits the relicensing
 of adaptations of works made available under that license under this
 License or a Creative Commons jurisdiction license with the same
 License Elements as this License.
 .
 d. "Distribute" means to make available to the public the original and
 copies of the Work or Adaptation, as appropriate, through sale or
 other transfer of ownership.
 .
 e. "License Elements" means the following high-level license
 attributes as selected by Licensor and indicated in the title of this
 License: Attribution, ShareAlike.
 .
 f. "Licensor" means the individual, individuals, entity or entities
 that offer(s) the Work under the terms of this License.
 .
 g. "Original Author" means, in the case of a literary or artistic
 work, the individual, individuals, entity or entities who created the
 Work or if no individual or entity can be identified, the publisher;
 and in addition (i) in the case of a performance the actors, singers,
 musicians, dancers, and other persons who act, sing, deliver, declaim,
 play in, interpret or otherwise perform literary or artistic works or
 expressions of folklore; (ii) in the case of a phonogram the producer
 being the person or legal entity who first fixes the sounds of a
 performance or other sounds; and, (iii) in the case of broadcasts, the
 organization that transmits the broadcast.
 .
 h. "Work" means the literary and/or artistic work offered under the
 terms of this License including without limitation any production in
 the literary, scientific and artistic domain, whatever may be the mode
 or form of its expression including digital form, such as a book,
 pamphlet and other writing; a lecture, address, sermon or other work
 of the same nature; a dramatic or dramatico-musical work; a
 choreographic work or entertainment in dumb show; a musical
 composition with or without words; a cinematographic work to which are
 assimilated works expressed by a process analogous to cinematography;
 a work of drawing, painting, architecture, sculpture, engraving or
 lithography; a photographic work to which are assimilated works
 expressed by a process analogous to photography; a work of applied
 art; an illustration, map, plan, sketch or three-dimensional work
 relative to geography, topography, architecture or science; a
 performance; a broadcast; a phonogram; a compilation of data to the
 extent it is protected as a copyrightable work; or a work performed by
 a variety or circus performer to the extent it is not otherwise
 considered a literary or artistic work.
 .
 i. "You" means an individual or entity exercising rights under this
 License who has not previously violated the terms of this License with
 respect to the Work, or who has received express permission from the
 Licensor to exercise rights under this License despite a previous
 violation.
 .
 j. "Publicly Perform" means to perform public recitations of the Work
 and to communicate to the public those public recitations, by any
 means or process, including by wire or wireless means or public
 digital performances; to make available to the public Works in such a
 way that members of the public may access these Works from a place and
 at a place individually chosen by them; to perform the Work to the
 public by any means or process and the communication to the public of
 the performances of the Work, including by public digital performance;
 to broadcast and rebroadcast the Work by any means including signs,
 sounds or images.
 .
 k. "Reproduce" means to make copies of the Work by any means including
 without limitation by sound or visual recordings and the right of
 fixation and reproducing fixations of the Work, including storage of a
 protected performance or phonogram in digital form or other electronic
 medium.
 .
 2. Fair Dealing Rights. Nothing in this License is intended to reduce,
 limit, or restrict any uses free from copyright or rights arising from
 limitations or exceptions that are provided for in connection with the
 copyright protection under copyright law or other applicable laws.
 .
 3. License Grant. Subject to the terms and conditions of this License,
 Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
 perpetual (for the duration of the applicable copyright) license to
 exercise the rights in the Work as stated below:
 .
 a. to Reproduce the Work, to incorporate the Work into one or more
 Collections, and to Reproduce the Work as incorporated in the
 Collections;
 .
 b. to create and Reproduce Adaptations provided that any such
 Adaptation, including any translation in any medium, takes reasonable
 steps to clearly label, demarcate or otherwise identify that changes
 were made to the original Work. For example, a translation could be
 marked "The original work was translated from English to Spanish," or
 a modification could indicate "The original work has been modified.";
 .
 c. to Distribute and Publicly Perform the Work including as
 incorporated in Collections; and,
 .
 d. to Distribute and Publicly Perform Adaptations.
 .
 e. For the avoidance of doubt:
 .
 i. Non-waivable Compulsory License Schemes. In those jurisdictions in
 which the right to collect royalties through any statutory or
 compulsory licensing scheme cannot be waived, the Licensor reserves
 the exclusive right to collect such royalties for any exercise by You
 of the rights granted under this License;
 .
 ii. Waivable Compulsory License Schemes. In those jurisdictions in
 which the right to collect royalties through any statutory or
 compulsory licensing scheme can be waived, the Licensor waives the
 exclusive right to collect such royalties for any exercise by You of
 the rights granted under this License; and,
 .
 iii. Voluntary License Schemes. The Licensor waives the right to
 collect royalties, whether individually or, in the event that the
 Licensor is a member of a collecting society that administers
 voluntary licensing schemes, via that society, from any exercise by
 You of the rights granted under this License.
 .
 The above rights may be exercised in all media and formats whether now
 known or hereafter devised. The above rights include the right to make
 such modifications as are technically necessary to exercise the rights
 in other media and formats. Subject to Section 8(f), all rights not
 expressly granted by Licensor are hereby reserved.
 .
 4. Restrictions. The license granted in Section 3 above is expressly
 made subject to and limited by the following restrictions:
 .
 a. You may Distribute or Publicly Perform the Work only under the
 terms of this License. You must include a copy of, or the Uniform
 Resource Identifier (URI) for, this License with every copy of the
 Work You Distribute or Publicly Perform. You may not offer or impose
 any terms on the Work that restrict the terms of this License or the
 ability of the recipient of the Work to exercise the rights granted to
 that recipient under the terms of the License. You may not sublicense
 the Work. You must keep intact all notices that refer to this License
 and to the disclaimer of warranties with every copy of the Work You
 Distribute or Publicly Perform. When You Distribute or Publicly
 Perform the Work, You may not impose any effective technological
 measures on the Work that restrict the ability of a recipient of the
 Work from You to exercise the rights granted to that recipient under
 the terms of the License. This Section 4(a) applies to the Work as
 incorporated in a Collection, but this does not require the Collection
 apart from the Work itself to be made subject to the terms of this
 License. If You create a Collection, upon notice from any Licensor You
 must, to the extent practicable, remove from the Collection any credit
 as required by Section 4(c), as requested. If You create an
 Adaptation, upon notice from any Licensor You must, to the extent
 practicable, remove from the Adaptation any credit as required by
 Section 4(c), as requested.
 .
 b. You may Distribute or Publicly Perform an Adaptation only under the
 terms of: (i) this License; (ii) a later version of this License with
 the same License Elements as this License; (iii) a Creative Commons
 jurisdiction license (either this or a later license version) that
 contains the same License Elements as this License (e.g.,
 Attribution-ShareAlike 3.0 US)); (iv) a Creative Commons Compatible
 License. If you license the Adaptation under one of the licenses
 mentioned in (iv), you must comply with the terms of that license. If
 you license the Adaptation under the terms of any of the licenses
 mentioned in (i), (ii) or (iii) (the "Applicable License"), you must
 comply with the terms of the Applicable License generally and the
 following provisions: (I) You must include a copy of, or the URI for,
 the Applicable License with every copy of each Adaptation You
 Distribute or Publicly Perform; (II) You may not offer or impose any
 terms on the Adaptation that restrict the terms of the Applicable
 License or the ability of the recipient of the Adaptation to exercise
 the rights granted to that recipient under the terms of the Applicable
 License; (III) You must keep intact all notices that refer to the
 Applicable License and to the disclaimer of warranties with every copy
 of the Work as included in the Adaptation You Distribute or Publicly
 Perform; (IV) when You Distribute or Publicly Perform the Adaptation,
 You may not impose any effective technological measures on the
 Adaptation that restrict the ability of a recipient of the Adaptation
 from You to exercise the rights granted to that recipient under the
 terms of the Applicable License. This Section 4(b) applies to the
 Adaptation as incorporated in a Collection, but this does not require
 the Collection apart from the Adaptation itself to be made subject to
 the terms of the Applicable License.
 .
 c. If You Distribute, or Publicly Perform the Work or any Adaptations
 or Collections, You must, unless a request has been made pursuant to
 Section 4(a), keep intact all copyright notices for the Work and
 provide, reasonable to the medium or means You are utilizing: (i) the
 name of the Original Author (or pseudonym, if applicable) if supplied,
 and/or if the Original Author and/or Licensor designate another party
 or parties (e.g., a sponsor institute, publishing entity, journal) for
 attribution ("Attribution Parties") in Licensor's copyright notice,
 terms of service or by other reasonable means, the name of such party
 or parties; (ii) the title of the Work if supplied; (iii) to the
 extent reasonably practicable, the URI, if any, that Licensor
 specifies to be associated with the Work, unless such URI does not
 refer to the copyright notice or licensing information for the Work;
 and (iv) , consistent with Ssection 3(b), in the case of an
 Adaptation, a credit identifying the use of the Work in the Adaptation
 (e.g., "French translation of the Work by Original Author," or
 "Screenplay based on original Work by Original Author"). The credit
 required by this Section 4(c) may be implemented in any reasonable
 manner; provided, however, that in the case of a Adaptation or
 Collection, at a minimum such credit will appear, if a credit for all
 contributing authors of the Adaptation or Collection appears, then as
 part of these credits and in a manner at least as prominent as the
 credits for the other contributing authors. For the avoidance of
 doubt, You may only use the credit required by this Section for the
 purpose of attribution in the manner set out above and, by exercising
 Your rights under this License, You may not implicitly or explicitly
 assert or imply any connection with, sponsorship or endorsement by the
 Original Author, Licensor and/or Attribution Parties, as appropriate,
 of You or Your use of the Work, without the separate, express prior
 written permission of the Original Author, Licensor and/or Attribution
 Parties.
 .
 d. Except as otherwise agreed in writing by the Licensor or as may be
 otherwise permitted by applicable law, if You Reproduce, Distribute or
 Publicly Perform the Work either by itself or as part of any
 Adaptations or Collections, You must not distort, mutilate, modify or
 take other derogatory action in relation to the Work which would be
 prejudicial to the Original Author's honor or reputation. Licensor
 agrees that in those jurisdictions (e.g. Japan), in which any exercise
 of the right granted in Section 3(b) of this License (the right to
 make Adaptations) would be deemed to be a distortion, mutilation,
 modification or other derogatory action prejudicial to the Original
 Author's honor and reputation, the Licensor will waive or not assert,
 as appropriate, this Section, to the fullest extent permitted by the
 applicable national law, to enable You to reasonably exercise Your
 right under Section 3(b) of this License (right to make Adaptations)
 but not otherwise.
 .
 5. Representations, Warranties and Disclaimer
 .
 UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING,
 LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR
 WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED,
 STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF
 TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE,
 NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY,
 OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT
 DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED
 WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.
 .
 6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY
 APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY
 LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR
 EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK,
 EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
 .
 7. Termination
 .
 a. This License and the rights granted hereunder will terminate
 automatically upon any breach by You of the terms of this
 License. Individuals or entities who have received Adaptations or
 Collections from You under this License, however, will not have their
 licenses terminated provided such individuals or entities remain in
 full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8
 will survive any termination of this License.
 .
 b. Subject to the above terms and conditions, the license granted here
 is perpetual (for the duration of the applicable copyright in the
 Work). Notwithstanding the above, Licensor reserves the right to
 release the Work under different license terms or to stop distributing
 the Work at any time; provided, however that any such election will
 not serve to withdraw this License (or any other license that has
 been, or is required to be, granted under the terms of this License),
 and this License will continue in full force and effect unless
 terminated as stated above.
 .
 8. Miscellaneous
 .
 a. Each time You Distribute or Publicly Perform the Work or a
 Collection, the Licensor offers to the recipient a license to the Work
 on the same terms and conditions as the license granted to You under
 this License.
 .
 b. Each time You Distribute or Publicly Perform an Adaptation,
 Licensor offers to the recipient a license to the original Work on the
 same terms and conditions as the license granted to You under this
 License.
 .
 c. If any provision of this License is invalid or unenforceable under
 applicable law, it shall not affect the validity or enforceability of
 the remainder of the terms of this License, and without further action
 by the parties to this agreement, such provision shall be reformed to
 the minimum extent necessary to make such provision valid and
 enforceable.
 .
 d. No term or provision of this License shall be deemed waived and no
 breach consented to unless such waiver or consent shall be in writing
 and signed by the party to be charged with such waiver or consent.
 .
 e. This License constitutes the entire agreement between the parties
 with respect to the Work licensed here. There are no understandings,
 agreements or representations with respect to the Work not specified
 here. Licensor shall not be bound by any additional provisions that
 may appear in any communication from You. This License may not be
 modified without the mutual written agreement of the Licensor and You.
 .
 f. The rights granted under, and the subject matter referenced, in
 this License were drafted utilizing the terminology of the Berne
 Convention for the Protection of Literary and Artistic Works (as
 amended on September 28, 1979), the Rome Convention of 1961, the WIPO
 Copyright Treaty of 1996, the WIPO Performances and Phonograms Treaty
 of 1996 and the Universal Copyright Convention (as revised on July 24,
 1971). These rights and subject matter take effect in the relevant
 jurisdiction in which the License terms are sought to be enforced
 according to the corresponding provisions of the implementation of
 those treaty provisions in the applicable national law. If the
 standard suite of rights granted under applicable copyright law
 includes additional rights not granted under this License, such
 additional rights are deemed to be included in the License; this
 License is not intended to restrict the license of any rights under
 applicable law.

License: Zlib
 The zlib/libpng License
 .
 This software is provided 'as-is', without any express or implied
 warranty. In no event will the authors be held liable for any damages
 arising from the use of this software.
 .
 Permission is granted to anyone to use this software for any purpose,
 including commercial applications, and to alter it and redistribute it
 freely, subject to the following restrictions:
 .
 1. The origin of this software must not be misrepresented; you must not
 claim that you wrote the original software. If you use this software
 in a product, an acknowledgment in the product documentation would be
 appreciated but is not required.
 .
 2. Altered source versions must be plainly marked as such, and must not be
 misrepresented as being the original software.
 .
 3. This notice may not be removed or altered from any source
 distribution.
 .
 NO WARRANTY
 .
 BECAUSE THE DATA IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
 FOR THE DATA, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
 OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
 PROVIDE THE DATA "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
 OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
 TO THE QUALITY AND PERFORMANCE OF THE DATA IS WITH YOU. SHOULD THE
 DATA PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
 REPAIR OR CORRECTION.
 .
 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
 WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
 REDISTRIBUTE THE DATA AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
 INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
 OUT OF THE USE OR INABILITY TO USE THE DATA (INCLUDING BUT NOT LIMITED
 TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
 YOU OR THIRD PARTIES OR A FAILURE OF THE DATA TO OPERATE WITH ANY OTHER
 PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
 POSSIBILITY OF SUCH DAMAGES.

License: CC-BY-SA-4.0
 By exercising the Licensed Rights (defined below), You accept and agree to be
 bound by the terms and conditions of this Creative Commons
 Attribution-ShareAlike 4.0 International Public License ("Public License"). To
 the extent this Public License may be interpreted as a contract, You are
 granted the Licensed Rights in consideration of Your acceptance of these terms
 and conditions, and the Licensor grants You such rights in consideration of
 benefits the Licensor receives from making the Licensed Material available
 under these terms and conditions.
 .
 Section 1 â�� Definitions.
 .
 a. Adapted Material means material subject to Copyright and Similar Rights
 that is derived from or based upon the Licensed Material and in which the
 Licensed Material is translated, altered, arranged, transformed, or
 otherwise modified in a manner requiring permission under the Copyright and
 Similar Rights held by the Licensor. For purposes of this Public License,
 where the Licensed Material is a musical work, performance, or sound
 recording, Adapted Material is always produced where the Licensed Material
 is synched in timed relation with a moving image.
 b. Adapter's License means the license You apply to Your Copyright and Similar
 Rights in Your contributions to Adapted Material in accordance with the
 terms and conditions of this Public License.
 c. BY-SA Compatible License means a license listed at creativecommons.org/
 compatiblelicenses, approved by Creative Commons as essentially the
 equivalent of this Public License.
 d. Copyright and Similar Rights means copyright and/or similar rights closely
 related to copyright including, without limitation, performance, broadcast,
 sound recording, and Sui Generis Database Rights, without regard to how the
 rights are labeled or categorized. For purposes of this Public License, the
 rights specified in Section 2(b)(1)-(2) are not Copyright and Similar
 Rights.
 e. Effective Technological Measures means those measures that, in the absence
 of proper authority, may not be circumvented under laws fulfilling
 obligations under Article 11 of the WIPO Copyright Treaty adopted on
 December 20, 1996, and/or similar international agreements.
 f. Exceptions and Limitations means fair use, fair dealing, and/or any other
 exception or limitation to Copyright and Similar Rights that applies to
 Your use of the Licensed Material.
 g. License Elements means the license attributes listed in the name of a
 Creative Commons Public License. The License Elements of this Public
 License are Attribution and ShareAlike.
 h. Licensed Material means the artistic or literary work, database, or other
 material to which the Licensor applied this Public License.
 i. Licensed Rights means the rights granted to You subject to the terms and
 conditions of this Public License, which are limited to all Copyright and
 Similar Rights that apply to Your use of the Licensed Material and that the
 Licensor has authority to license.
 j. Licensor means the individual(s) or entity(ies) granting rights under this
 Public License.
 k. Share means to provide material to the public by any means or process that
 requires permission under the Licensed Rights, such as reproduction, public
 display, public performance, distribution, dissemination, communication, or
 importation, and to make material available to the public including in ways
 that members of the public may access the material from a place and at a
 time individually chosen by them.
 l. Sui Generis Database Rights means rights other than copyright resulting
 from Directive 96/9/EC of the European Parliament and of the Council of 11
 March 1996 on the legal protection of databases, as amended and/or
 succeeded, as well as other essentially equivalent rights anywhere in the
 world.
 m. You means the individual or entity exercising the Licensed Rights under
 this Public License. Your has a corresponding meaning.
 .
 Section 2 â�� Scope.
 .
 a. License grant.
 1. Subject to the terms and conditions of this Public License, the
 Licensor hereby grants You a worldwide, royalty-free,
 non-sublicensable, non-exclusive, irrevocable license to exercise the
 Licensed Rights in the Licensed Material to:
 A. reproduce and Share the Licensed Material, in whole or in part; and
 B. produce, reproduce, and Share Adapted Material.
 2. Exceptions and Limitations. For the avoidance of doubt, where
 Exceptions and Limitations apply to Your use, this Public License does
 not apply, and You do not need to comply with its terms and conditions.
 3. Term. The term of this Public License is specified in Section 6(a).
 4. Media and formats; technical modifications allowed. The Licensor
 authorizes You to exercise the Licensed Rights in all media and formats
 whether now known or hereafter created, and to make technical
 modifications necessary to do so. The Licensor waives and/or agrees not
 to assert any right or authority to forbid You from making technical
 modifications necessary to exercise the Licensed Rights, including
 technical modifications necessary to circumvent Effective Technological
 Measures. For purposes of this Public License, simply making
 modifications authorized by this Section 2(a)(4) never produces Adapted
 Material.
 5. Downstream recipients.
 A. Offer from the Licensor â�� Licensed Material. Every recipient of the
 Licensed Material automatically receives an offer from the Licensor
 to exercise the Licensed Rights under the terms and conditions of
 this Public License.
 B. Additional offer from the Licensor â�� Adapted Material. Every
 recipient of Adapted Material from You automatically receives an
 offer from the Licensor to exercise the Licensed Rights in the
 Adapted Material under the conditions of the Adapterâ��s License You
 apply.
 C. No downstream restrictions. You may not offer or impose any
 additional or different terms or conditions on, or apply any
 Effective Technological Measures to, the Licensed Material if doing
 so restricts exercise of the Licensed Rights by any recipient of
 the Licensed Material.
 6. No endorsement. Nothing in this Public License constitutes or may be
 construed as permission to assert or imply that You are, or that Your
 use of the Licensed Material is, connected with, or sponsored,
 endorsed, or granted official status by, the Licensor or others
 designated to receive attribution as provided in Section 3(a)(1)(A)(i).
 b. Other rights.
 .
 1. Moral rights, such as the right of integrity, are not licensed under
 this Public License, nor are publicity, privacy, and/or other similar
 personality rights; however, to the extent possible, the Licensor
 waives and/or agrees not to assert any such rights held by the Licensor
 to the limited extent necessary to allow You to exercise the Licensed
 Rights, but not otherwise.
 2. Patent and trademark rights are not licensed under this Public License.
 3. To the extent possible, the Licensor waives any right to collect
 royalties from You for the exercise of the Licensed Rights, whether
 directly or through a collecting society under any voluntary or
 waivable statutory or compulsory licensing scheme. In all other cases
 the Licensor expressly reserves any right to collect such royalties.
 .
 Section 3 â�� License Conditions.
 .
 Your exercise of the Licensed Rights is expressly made subject to the following
 conditions.
 .
 a. Attribution.
 .
 1. If You Share the Licensed Material (including in modified form), You
 must:
 .
 A. retain the following if it is supplied by the Licensor with the
 Licensed Material:
 i. identification of the creator(s) of the Licensed Material and
 any others designated to receive attribution, in any reasonable
 manner requested by the Licensor (including by pseudonym if
 designated);
 ii. a copyright notice;
 iii. a notice that refers to this Public License;
 iv. a notice that refers to the disclaimer of warranties;
 v. a URI or hyperlink to the Licensed Material to the extent
 reasonably practicable;
 B. indicate if You modified the Licensed Material and retain an
 indication of any previous modifications; and
 C. indicate the Licensed Material is licensed under this Public
 License, and include the text of, or the URI or hyperlink to, this
 Public License.
 2. You may satisfy the conditions in Section 3(a)(1) in any reasonable
 manner based on the medium, means, and context in which You Share the
 Licensed Material. For example, it may be reasonable to satisfy the
 conditions by providing a URI or hyperlink to a resource that includes
 the required information.
 3. If requested by the Licensor, You must remove any of the information
 required by Section 3(a)(1)(A) to the extent reasonably practicable.
 b. ShareAlike.
 .
 In addition to the conditions in Section 3(a), if You Share Adapted
 Material You produce, the following conditions also apply.
 .
 1. The Adapterâ��s License You apply must be a Creative Commons license with
 the same License Elements, this version or later, or a BY-SA Compatible
 License.
 2. You must include the text of, or the URI or hyperlink to, the Adapter's
 License You apply. You may satisfy this condition in any reasonable
 manner based on the medium, means, and context in which You Share
 Adapted Material.
 3. You may not offer or impose any additional or different terms or
 conditions on, or apply any Effective Technological Measures to,
 Adapted Material that restrict exercise of the rights granted under the
 Adapter's License You apply.
 .
 Section 4 â�� Sui Generis Database Rights.
 .
 Where the Licensed Rights include Sui Generis Database Rights that apply to
 Your use of the Licensed Material:
 .
 a. for the avoidance of doubt, Section 2(a)(1) grants You the right to
 extract, reuse, reproduce, and Share all or a substantial portion of the
 contents of the database;
 b. if You include all or a substantial portion of the database contents in a
 database in which You have Sui Generis Database Rights, then the database
 in which You have Sui Generis Database Rights (but not its individual
 contents) is Adapted Material, including for purposes of Section 3(b); and
 c. You must comply with the conditions in Section 3(a) if You Share all or a
 substantial portion of the contents of the database.
 .
 For the avoidance of doubt, this Section 4 supplements and does not replace
 Your obligations under this Public License where the Licensed Rights include
 other Copyright and Similar Rights.
 .
 Section 5 â�� Disclaimer of Warranties and Limitation of Liability.
 .
 a. Unless otherwise separately undertaken by the Licensor, to the extent
 possible, the Licensor offers the Licensed Material as-is and as-available,
 and makes no representations or warranties of any kind concerning the
 Licensed Material, whether express, implied, statutory, or other. This
 includes, without limitation, warranties of title, merchantability, fitness
 for a particular purpose, non-infringement, absence of latent or other
 defects, accuracy, or the presence or absence of errors, whether or not
 known or discoverable. Where disclaimers of warranties are not allowed in
 full or in part, this disclaimer may not apply to You.
 b. To the extent possible, in no event will the Licensor be liable to You on
 any legal theory (including, without limitation, negligence) or otherwise
 for any direct, special, indirect, incidental, consequential, punitive,
 exemplary, or other losses, costs, expenses, or damages arising out of this
 Public License or use of the Licensed Material, even if the Licensor has
 been advised of the possibility of such losses, costs, expenses, or
 damages. Where a limitation of liability is not allowed in full or in part,
 this limitation may not apply to You.
 .
 c. The disclaimer of warranties and limitation of liability provided above
 shall be interpreted in a manner that, to the extent possible, most closely
 approximates an absolute disclaimer and waiver of all liability.
 .
 Section 6 â�� Term and Termination.
 .
 a. This Public License applies for the term of the Copyright and Similar
 Rights licensed here. However, if You fail to comply with this Public
 License, then Your rights under this Public License terminate
 automatically.
 b. Where Your right to use the Licensed Material has terminated under Section
 6(a), it reinstates:
 .
 1. automatically as of the date the violation is cured, provided it is
 cured within 30 days of Your discovery of the violation; or
 2. upon express reinstatement by the Licensor.
 For the avoidance of doubt, this Section 6(b) does not affect any right the
 Licensor may have to seek remedies for Your violations of this Public
 License.
 c. For the avoidance of doubt, the Licensor may also offer the Licensed
 Material under separate terms or conditions or stop distributing the
 Licensed Material at any time; however, doing so will not terminate this
 Public License.
 d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.
 .
 Section 7 â�� Other Terms and Conditions.
 .
 a. The Licensor shall not be bound by any additional or different terms or
 conditions communicated by You unless expressly agreed.
 b. Any arrangements, understandings, or agreements regarding the Licensed
 Material not stated herein are separate from and independent of the terms
 and conditions of this Public License.
 .
 Section 8 â�� Interpretation.
 .
 a. For the avoidance of doubt, this Public License does not, and shall not be
 interpreted to, reduce, limit, restrict, or impose conditions on any use of
 the Licensed Material that could lawfully be made without permission under
 this Public License.
 b. To the extent possible, if any provision of this Public License is deemed
 unenforceable, it shall be automatically reformed to the minimum extent
 necessary to make it enforceable. If the provision cannot be reformed, it
 shall be severed from this Public License without affecting the
 enforceability of the remaining terms and conditions.
 c. No term or condition of this Public License will be waived and no failure
 to comply consented to unless expressly agreed to by the Licensor.
 d. Nothing in this Public License constitutes or may be interpreted as a
 limitation upon, or waiver of, any privileges and immunities that apply to
 the Licensor or You, including from the legal processes of any jurisdiction
 or authority.

License: BSD-3-clause
 Some rights reserved.
 .
 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions are
 met:
 .
 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 .
 * Redistributions in binary form must reproduce the above
 copyright notice, this list of conditions and the following
 disclaimer in the documentation and/or other materials provided
 with the distribution.
 .
 * The names of the contributors may not be used to endorse or
 promote products derived from this software without specific
 prior written permission.
 .
 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

ocrmypdf-10.3.1+dfsg/docs/advanced.rst

=================
Advanced features
=================

Control of unpaper
==================

OCRmyPDF uses ``unpaper`` to provide the implementation of the
``--clean`` and ``--clean-final`` arguments.
`unpaper <https://github.com/Flameeyes/unpaper/blob/master/doc/basic-concepts.md>`__
provides a variety of image processing filters to improve images.

By default, OCRmyPDF uses only ``unpaper`` arguments that were found to
be safe to use on almost all files without having to inspect every page
of the file afterwards. This is particularly true when only ``--clean``
is used, since that instructs OCRmyPDF to only clean the image before
OCR and not the final image.

However, if you wish to use the more aggressive options in ``unpaper``,
you may use ``--unpaper-args '...'`` to override the OCRmyPDF's defaults
and forward other arguments to unpaper. This option will forward
arguments to ``unpaper`` without any knowledge of what that program
considers to be valid arguments. The string of arguments must be quoted
as shown in the examples below. No filename arguments may be included.
OCRmyPDF will assume it can append input and output filename of
intermediate images to the ``--unpaper-args`` string.

In this example, we tell ``unpaper`` to expect two pages of text on a
sheet (image), such as occurs when two facing pages of a book are
scanned. ``unpaper`` uses this information to deskew each independently
and clean up the margins of both.

.. code-block:: bash

 ocrmypdf --clean --clean-final --unpaper-args '--layout double' input.pdf output.pdf
 ocrmypdf --clean --clean-final --unpaper-args '--layout double --no-noisefilter' input.pdf output.pdf

.. warning::

 Some ``unpaper`` features will reposition text within the image.
 ``--clean-final`` is recommended to avoid this issue.

.. warning::

 Some ``unpaper`` features cause multiple input or output files to be
 consumed or produced. OCRmyPDF requires ``unpaper`` to consume one
 file and produce one file. An deviation from that condition will
 result in errors.

.. note::

 ``unpaper`` uses uncompressed PBM/PGM/PPM files for its intermediate
 files. For large images or documents, it can take a lot of temporary
 disk space.

Control of OCR options
======================

OCRmyPDF provides many features to control the behavior of the OCR
engine, Tesseract.

When OCR is skipped

If a page in a PDF seems to have text, by default OCRmyPDF will exit
without modifying the PDF. This is to ensure that PDFs that were
previously OCRed or were "born digital" rather than scanned are not
processed.

If ``--skip-text`` is issued, then no OCR will be performed on pages
that already have text. The page will be copied to the output. This may
be useful for documents that contain both "born digital" and scanned
content, or to use OCRmyPDF to normalize and convert to PDF/A regardless
of their contents.

If ``--redo-ocr`` is issued, then a detailed text analysis is performed.
Text is categorized as either visible or invisible. Invisible text (OCR)
is stripped out. Then an image of each page is created with visible text
masked out. The page image is sent for OCR, and any additional text is
inserted as OCR. If a file contains a mix of text and bitmap images that
contain text, OCRmyPDF will locate the additional text in images without
disrupting the existing text.

If ``--force-ocr`` is issued, then all pages will be rasterized to
images, discarding any hidden OCR text, and rasterizing any printable
text. This is useful for redoing OCR, for fixing OCR text with a damaged
character map (text is selectable but not searchable), and destroying
redacted information. Any forms and vector graphics will be rasterized
as well.

Time and image size limits

By default, OCRmyPDF permits tesseract to run for three minutes (180
seconds) per page. This is usually more than enough time to find all
text on a reasonably sized page with modern hardware.

If a page is skipped, it will be inserted without OCR. If preprocessing
was requested, the preprocessed image layer will be inserted.

If you want to adjust the amount of time spent on OCR, change
``--tesseract-timeout``. You can also automatically skip images that
exceed a certain number of megapixels with ``--skip-big``. (A 300 DPI,
8.5×11" page is 8.4 megapixels.)

.. code-block:: bash

 # Allow 300 seconds for OCR; skip any page larger than 50 megapixels
 ocrmypdf --tesseract-timeout 300 --skip-big 50 bigfile.pdf output.pdf

Overriding default tesseract

OCRmyPDF checks the system ``PATH`` for the ``tesseract`` binary.

Some relevant environment variables that influence Tesseract's behavior
include:

.. envvar:: TESSDATA_PREFIX

 Overrides the path to Tesseract's data files. This can allow
 simultaneous installation of the "best" and "fast" training data
 sets. OCRmyPDF does not manage this environment variable.

.. envvar:: OMP_THREAD_LIMIT

 Controls the number of threads Tesseract will use. OCRmyPDF will
 manage this environment if it is not already set. (Currently, it will
 set it to 1 because this gives the best results in testing.)

For example, if you have a development build of Tesseract don't wish to
use the system installation, you can launch OCRmyPDF as follows:

.. code-block:: bash

 env \
 PATH=/home/user/src/tesseract/api:$PATH \
 TESSDATA_PREFIX=/home/user/src/tesseract \
 ocrmypdf input.pdf output.pdf

In this example ``TESSDATA_PREFIX`` is required to redirect Tesseract to
an alternate folder for its "tessdata" files.

Overriding other support programs

In addition to tesseract, OCRmyPDF uses the following external binaries:

- ``gs`` (Ghostscript)
- ``unpaper``
- ``pngquant``
- ``jbig2``

In each case OCRmyPDF will search the ``PATH`` environment variable to
locate the binaries.

Changing tesseract configuration variables
--

You can override tesseract's default `control
parameters <https://github.com/tesseract-ocr/tesseract/wiki/ControlParams>`__
with a configuration file.

As an example, this configuration will disable Tesseract's dictionary
for current language. Normally the dictionary is helpful for
interpolating words that are unclear, but it may interfere with OCR if
the document does not contain many words (for example, a list of part
numbers).

Create a file named "no-dict.cfg" with these contents:

::

 load_system_dawg 0
 language_model_penalty_non_dict_word 0
 language_model_penalty_non_freq_dict_word 0

then run ocrmypdf as follows (along with any other desired arguments):

.. code-block:: bash

 ocrmypdf --tesseract-config no-dict.cfg input.pdf output.pdf

.. warning::

 Some combinations of control parameters will break Tesseract or break
 assumptions that OCRmyPDF makes about Tesseract's output.

Changing the PDF renderer
=========================

rasterizing
 Converting a PDF to an image for display.

rendering
 Creating a new PDF from other data (such as an existing PDF).

OCRmyPDF has these PDF renderers: ``sandwich`` and ``hocr``. The
renderer may be selected using ``--pdf-renderer``. The default is
``auto`` which lets OCRmyPDF select the renderer to use. Currently,
``auto`` always selects ``sandwich``.

The ``sandwich`` renderer

The ``sandwich`` renderer uses Tesseract's new text-only PDF feature,
which produces a PDF page that lays out the OCR in invisible text. This
page is then "sandwiched" onto the original PDF page, allowing lossless
application of OCR even to PDF pages that contain other vector objects.

Currently this is the best renderer for most uses, however it is
implemented in Tesseract so OCRmyPDF cannot influence it. Currently some
problematic PDF viewers like Mozilla PDF.js and macOS Preview have
problems with segmenting its text output, and
mightrunseveralwordstogether.

When image preprocessing features like ``--deskew`` are used, the
original PDF will be rendered as a full page and the OCR layer will be
placed on top.

The ``hocr`` renderer

The ``hocr`` renderer works with older versions of Tesseract. The image
layer is copied from the original PDF page if possible, avoiding
potentially lossy transcoding or loss of other PDF information. If
preprocessing is specified, then the image layer is a new PDF.

Unlike ``sandwich`` this renderer is implemented within OCRmyPDF; anyone
looking to customize how OCR is presented should look here. A major
disadvantage of this renderer is it not capable of correctly handling
text outside the Latin alphabet. Pull requests to improve the situation
are welcome.

Currently, this renderer has the best compatibility with Mozilla's
PDF.js viewer.

This works in all versions of Tesseract.

The ``tesseract`` renderer

The ``tesseract`` renderer was removed. OCRmyPDF's new approach to text
layer grafting makes it functionally equivalent to ``sandwich``.

Return code policy
==================

OCRmyPDF writes all messages to ``stderr``. ``stdout`` is reserved for
piping output files. ``stdin`` is reserved for piping input files.

The return codes generated by the OCRmyPDF are considered part of the
stable user interface. They may be imported from
``ocrmypdf.exceptions``.

.. list-table:: Return codes
 :widths: 5 35 60
 :header-rows: 1

 *	- Code
 - Name
 - Interpretation
 *	- 0
 - ``ExitCode.ok``
 - Everything worked as expected.
 *	- 1
 - ``ExitCode.bad_args``
 - Invalid arguments, exited with an error.
 *	- 2
 - ``ExitCode.input_file``
 - The input file does not seem to be a valid PDF.
 *	- 3
 - ``ExitCode.missing_dependency``
 - An external program required by OCRmyPDF is missing.
 *	- 4
 - ``ExitCode.invalid_output_pdf``
 - An output file was created, but it does not seem to be a valid PDF. The file will be available.
 *	- 5
 - ``ExitCode.file_access_error``
 - The user running OCRmyPDF does not have sufficient permissions to read the input file and write the output file.
 *	- 6
 - ``ExitCode.already_done_ocr``
 - The file already appears to contain text so it may not need OCR. See output message.
 *	- 7
 - ``ExitCode.child_process_error``
 - An error occurred in an external program (child process) and OCRmyPDF cannot continue.
 *	- 8
 - ``ExitCode.encrypted_pdf``
 - The input PDF is encrypted. OCRmyPDF does not read encrypted PDFs. Use another program such as ``qpdf`` to remove encryption.
 *	- 9
 - ``ExitCode.invalid_config``
 - A custom configuration file was forwarded to Tesseract using ``--tesseract-config``, and Tesseract rejected this file.
 * - 10
 - ``ExitCode.pdfa_conversion_failed``
 - A valid PDF was created, PDF/A conversion failed. The file will be available.
 *	- 15
 - ``ExitCode.other_error``
 - Some other error occurred.
 *	- 130
 - ``ExitCode.ctrl_c``
 - The program was interrupted by pressing Ctrl+C.

Debugging the intermediate files
================================

OCRmyPDF normally saves its intermediate results to a temporary folder
and deletes this folder when it exits, whether it succeeded or failed.

If the ``-k`` argument is issued on the command line, OCRmyPDF will keep
the temporary folder and print the location, whether it succeeded or
failed (provided the Python interpreter did not crash). An example
message is:

.. code-block:: none

 Temporary working files retained at:
 /tmp/com.github.ocrmypdf.u20wpz07

The organization of this folder is an implementation detail and subject
to change between releases. However the general organization is that
working files on a per page basis have the page number as a prefix
(starting with page 1), an infix indicates the processing stage, and a
suffix indicates the file type. Some important files include:

- ``_rasterize.png`` - what the input page looks like
- ``_ocr.png`` - the file that is sent to Tesseract for OCR; depending
 on arguments this may differ from the presentation image
- ``_pp_deskew.png`` - the image, after deskewing
- ``_pp_clean.png`` - the image, after cleaning with unpaper
- ``_ocr_tess.pdf`` - the OCR file; appears as a blank page with invisible
 text embedded
- ``_ocr_tess.txt`` - the OCR text (not necessarily all text on the page,
 if the page is mixed format)
- ``fix_docinfo.pdf`` - a temporary file created to fix the PDF DocumentInfo
 data structure
- ``graft_layers.pdf`` - the rendered PDF with OCR layers grafted on
- ``pdfa.pdf`` - ``graft_layers.pdf`` after conversion to PDF/A
- ``pdfa.ps`` - a PostScript file used by Ghostscript for PDF/A conversion
- ``optimize.pdf`` - the PDF generated before optimization
- ``optimize.out.pdf`` - the PDF generated by optimization
- ``origin`` - the input file
- ``origin.pdf`` - the input file or the input image converted to PDF
- ``images/*`` - images extracted during the optimization process; here
 the prefix indicates a PDF object ID not a page number

ocrmypdf-10.3.1+dfsg/docs/api.rst

======================
Using the OCRmyPDF API
======================

OCRmyPDF originated as a command line program and continues to have this
legacy, but parts of it can be imported and used in other Python
applications.

Some applications may want to consider running ocrmypdf from a
subprocess call anyway, as this provides isolation of its activities.

Example
=======

OCRmyPDF one high-level function to run its main engine from an
application. The parameters are symmetric to the command line arguments
and largely have the same functions.

.. code-block:: python

 import ocrmypdf

 ocrmypdf.ocr('input.pdf', 'output.pdf', deskew=True)

With a few exceptions, all of the command line arguments are available
and may be passed as equivalent keywords.

A few differences are that ``verbose`` and ``quiet`` are not available.
Instead, output should be managed by configuring logging.

Parent process requirements

The :func:`ocrmypdf.ocr` function runs OCRmyPDF similar to command line
execution. To do this, it will:

- create a monitoring thread
- create worker processes (forking itself)
- manage the signal flags of worker processes
- execute other subprocesses (forking and executing other programs)

The Python process that calls ``ocrmypdf.ocr()`` must be sufficiently
privileged to perform these actions. If it is not, ``ocrmypdf()`` will
fail.

There is no currently no option to manage how jobs are scheduled other
than the argument ``jobs=`` which will limit the number of worker
processes.

Forking a child process to call ``ocrmypdf.ocr()`` is suggested. That
way your application will survive and remain interactive even if
OCRmyPDF does not.

.. warning::

 On Windows, the script that calls ``ocrmypdf.ocr()`` must be protected
 by an "ifmain" guard (``if __name__ == '__main__'``) or you must use
 ``ocrmypdf.ocr(...use_threads=True)``. If you do not take at least one
 of these steps, Windows process semantics will prevent OCRmyPDF from working
 correctly.

Logging

OCRmyPDF will log under loggers named ``ocrmypdf``. In addition, it
imports ``pdfminer`` and ``PIL``, both of which post log messages under
those logging namespaces.

You can configure the logging as desired for your application or call
:func:`ocrmypdf.configure_logging` to configure logging the same way
OCRmyPDF itself does. The command line parameters such as ``--quiet``
and ``--verbose`` have no equivalents in the API; you must use the
provided configuration function or do configuration in a way that suits
your use case.

Progress monitoring

OCRmyPDF uses the ``tqdm`` package to implement its progress bars.
:func:`ocrmypdf.configure_logging` will set up logging output to
``sys.stderr`` in a way that is compatible with the display of the
progress bar. Use ``ocrmypdf.ocr(...progress_bar=False)`` to disable
the progress bar.

Exceptions

OCRmyPDF may throw standard Python exceptions, ``ocrmypdf.exceptions.*``
exceptions, some exceptions related to multiprocessing, and
``KeyboardInterrupt``. The parent process should provide an exception
handler. OCRmyPDF will clean up its temporary files and worker processes
automatically when an exception occurs.

Programs that call OCRmyPDF should consider trapping KeyboardInterrupt
so that they allow OCR to terminate with the whole program terminating.

When OCRmyPDF succeeds conditionally, it returns an integer exit code.

Reference

.. autofunction:: ocrmypdf.ocr

.. autoclass:: ocrmypdf.Verbosity
 :members:
 :undoc-members:

.. autofunction:: ocrmypdf.configure_logging

ocrmypdf-10.3.1+dfsg/docs/apiref.rst

=============
API Reference
=============

This page summarizes the rest of the public API. Generally speaking this
should mainly of interest to plugin developers.

ocrmypdf.exceptions
===================

.. automodule:: ocrmypdf.exceptions
 :members:
 :undoc-members:

ocrmypdf.helpers
================

.. automodule:: ocrmypdf.helpers
 :members:

ocrmypdf.hocrtransform
======================

.. automodule:: ocrmypdf.hocrtransform
 :members:

ocrmypdf.pdfa
=============

.. automodule:: ocrmypdf.pdfa
 :members:

ocrmypdf.quality
================

.. automodule:: ocrmypdf.quality
 :members:

ocrmypdf.subprocess
===================

.. automodule:: ocrmypdf.subprocess
 :members:

ocrmypdf-10.3.1+dfsg/docs/batch.rst

================
Batch processing
================

This article provides information about running OCRmyPDF on multiple
files or configuring it as a service triggered by file system events.

Batch jobs
==========

Consider using the excellent `GNU
Parallel <https://www.gnu.org/software/parallel/>`__ to apply OCRmyPDF
to multiple files at once.

Both ``parallel`` and ``ocrmypdf`` will try to use all available
processors. To maximize parallelism without overloading your system with
processes, consider using ``parallel -j 2`` to limit parallel to running
two jobs at once.

This command will run all ocrmypdf all files named ``*.pdf`` in the
current directory and write them to the previous created ``output/``
folder. It will not search subdirectories.

The ``--tag`` argument tells parallel to print the filename as a prefix
whenever a message is printed, so that one can trace any errors to the
file that produced them.

.. code-block:: bash

 parallel --tag -j 2 ocrmypdf '{}' 'output/{}' ::: *.pdf

OCRmyPDF automatically repairs PDFs before parsing and gathering
information from them.

Directory trees
===============

This will walk through a directory tree and run OCR on all files in
place, printing the output in a way that makes

.. code-block:: bash

 find . -printf '%p' -name '*.pdf' -exec ocrmypdf '{}' '{}' \;

Alternatively, with a docker container (mounts a volume to the container
where the PDFs are stored):

.. code-block:: bash

 find . -printf '%p' -name '*.pdf' -exec docker run --rm -v <host dir>:<container dir> jbarlow83/ocrmypdf '<container dir>/{}' '<container dir>/{}' \;

This only runs one ``ocrmypdf`` process at a time. This variation uses
``find`` to create a directory list and ``parallel`` to parallelize runs
of ``ocrmypdf``, again updating files in place.

.. code-block:: bash

 find . -name '*.pdf' | parallel --tag -j 2 ocrmypdf '{}' '{}'

In a Windows batch file, use

.. code-block:: bat

 for /r %%f in (*.pdf) do ocrmypdf %%f %%f

Sample script

This user contributed script also provides an example of batch
processing.

.. literalinclude:: ../misc/batch.py
 :caption: misc/batch.py

Synology DiskStations

Synology DiskStations (Network Attached Storage devices) can run the
Docker image of OCRmyPDF if the Synology `Docker
package <https://www.synology.com/en-global/dsm/packages/Docker>`__ is
installed. Attached is a script to address particular quirks of using
OCRmyPDF on one of these devices.

This is only possible for x86-based Synology products. Some Synology
products use ARM or Power processors and do not support Docker. Further
adjustments might be needed to deal with the Synology's relatively
limited CPU and RAM.

.. literalinclude:: ../misc/synology.py
 :caption: misc/synology.py - Sample script for Synology DiskStations

Huge batch jobs

If you have thousands of files to work with, contact the author.
Consulting work related to OCRmyPDF helps fund this open source project
and all inquiries are appreciated.

Hot (watched) folders
=====================

Watched folders with watcher.py

OCRmyPDF has a folder watcher called watcher.py, which is currently included in source
distributions but not part of the main program. It may be used natively or may run
in a Docker container. Native instances tend to give better performance. watcher.py
works on all platforms.

Users may need to customize the script to meet their requirements.

.. code-block:: bash

 pip3 install -r requirements/watcher.txt

 env OCR_INPUT_DIRECTORY=/mnt/input-pdfs \
 OCR_OUTPUT_DIRECTORY=/mnt/output-pdfs \
 OCR_OUTPUT_DIRECTORY_YEAR_MONTH=1 \
 python3 watcher.py

.. csv-table:: watcher.py environment variables
 :header: "Environment variable", "Description"
 :widths: 50, 50

 "OCR_INPUT_DIRECTORY", "Set input directory to monitor (recursive)"
 "OCR_OUTPUT_DIRECTORY", "Set output directory (should not be under input)"
 "OCR_ON_SUCCESS_DELETE", "This will delete the input file if the exit code is 0 (OK)"
 "OCR_OUTPUT_DIRECTORY_YEAR_MONTH", "This will place files in the output in ``{output}/{year}/{month}/{filename}``"
 "OCR_DESKEW", "Apply deskew to crooked input PDFs"
 "OCR_JSON_SETTINGS", "A JSON string specifying any other arguments for ``ocrmypdf.ocr``, e.g. ``'OCR_JSON_SETTINGS={"rotate_pages": true}'``.
 "OCR_POLL_NEW_FILE_SECONDS", "Polling interval"
 "OCR_LOGLEVEL", "Level of log messages to report"

One could configure a networked scanner or scanning computer to drop files in the
watched folder.

Watched folders with Docker

The watcher service is included in the OCRmyPDF Docker image. To run it:

.. code-block:: bash

 docker run \
 -v <path to files to convert>:/input \
 -v <path to store results>:/output \
 -e OCR_OUTPUT_DIRECTORY_YEAR_MONTH=1 \
 -e OCR_ON_SUCCESS_DELETE=1 \
 -e OCR_DESKEW=1 \
 -e PYTHONUNBUFFERED=1 \
 -it --entrypoint python3 \
 jbarlow83/ocrmypdf \
 watcher.py

This service will watch for a file that matches ``/input/*.pdf`` and will
convert it to a OCRed PDF in ``/output/``. The parameters to this image are:

.. csv-table:: watcher.py parameters for Docker
 :header: "Parameter", "Description"
 :widths: 50, 50

 "``-v <path to files to convert>:/input``", "Files placed in this location will be OCRed"
 "``-v <path to store results>:/output``", "This is where OCRed files will be stored"
 "``-e OCR_OUTPUT_DIRECTORY_YEAR_MONTH=1``", "Define environment variable OCR_OUTPUT_DIRECTORY_YEAR_MONTH=1"
 "``-e OCR_ON_SUCCESS_DELETE=1``", "Define environment variable"
 "``-e OCR_DESKEW=1``", "Define environment variable"
 "``-e PYTHONBUFFERED=1``", "This will force STDOUT to be unbuffered and allow you to see messages in docker logs"

This service relies on polling to check for changes to the filesystem. It
may not be suitable for some environments, such as filesystems shared on a
slow network.

A configuration manager such as Docker Compose could be used to ensure that the
service is always available.

.. literalinclude:: ../misc/docker-compose.example.yml
 :language: yaml
 :caption: misc/docker-compose.example.yml

Caveats

- ``watchmedo`` may not work properly on a networked file system,
 depending on the capabilities of the file system client and server.
- This simple recipe does not filter for the type of file system event,
 so file copies, deletes and moves, and directory operations, will all
 be sent to ocrmypdf, producing errors in several cases. Disable your
 watched folder if you are doing anything other than copying files to
 it.
- If the source and destination directory are the same, watchmedo may
 create an infinite loop.
- On BSD, FreeBSD and older versions of macOS, you may need to increase
 the number of file descriptors to monitor more files, using
 ``ulimit -n 1024`` to watch a folder of up to 1024 files.

Alternatives

- On Linux, `systemd user services <https://wiki.archlinux.org/index.php/Systemd/User>`__
 can be configured to automatically perform OCR on a collection of files.

- `Watchman <https://facebook.github.io/watchman/>`__ is a more
 powerful alternative to ``watchmedo``.

AWS Lambda is not viable

AWS Lambda and its equivalents have low limits on execution time and payload
size, relative to OCRmyPDF's needs. As of this writing, the request/response
payload for AWS Lambda was 6 MB, which means many PDFs will not fit.

macOS Automator
===============

You can use the Automator app with macOS, to create a Workflow or Quick
Action. Use a *Run Shell Script* action in your workflow. In the context
of Automator, the ``PATH`` may be set differently your Terminal's
``PATH``; you may need to explicitly set the PATH to include
``ocrmypdf``. The following example may serve as a starting point:

.. figure:: images/macos-workflow.png
 :alt: Example macOS Automator workflow

You may customize the command sent to ocrmypdf.

ocrmypdf-10.3.1+dfsg/docs/conf.py

#!/usr/bin/env python3
#
ocrmypdf documentation build configuration file, created by
sphinx-quickstart on Sun Sep 4 14:29:43 2016.
#
This file is execfile()d with the current directory set to its
containing dir.
#
Note that not all possible configuration values are present in this
autogenerated file.
#
All configuration values have a default; values that are commented out
serve to show the default.

If extensions (or modules to document with autodoc) are in another directory,
add these directories to sys.path here. If the directory is relative to the
documentation root, use os.path.abspath to make it absolute, like shown here.
#
import os
import sys
sys.path.insert(0, os.path.abspath('.'))

"""isort:skip_file"""

-- General configuration --

If your documentation needs a minimal Sphinx version, state it here.
#
needs_sphinx = '1.0'

Add any Sphinx extension module names here, as strings. They can be
extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
ones.
extensions = ['sphinx.ext.napoleon']

napoleon_use_rtype = False

Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates']

The suffix(es) of source filenames.
You can specify multiple suffix as a list of string:
#
source_suffix = ['.rst', '.md']
source_suffix = '.rst'

The encoding of source files.
#
source_encoding = 'utf-8-sig'

The master toctree document.
master_doc = 'index'

General information about the project.
project = 'ocrmypdf'
copyright = (
 '2020, James R. Barlow. Licensed under Creative Commons Attribution-ShareAlike 4.0.'
)
author = 'James R. Barlow'

The version info for the project you're documenting, acts as replacement for
|version| and |release|, also used in various other places throughout the
built documents.
#
The short X.Y version.

import os

on_rtd = os.environ.get('READTHEDOCS') == 'True'

if on_rtd:
 # Help ReadTheDocs avoid having to install any binary extension modules
 import sys
 from unittest.mock import MagicMock

 class Mock(MagicMock):
 @classmethod
 def __getattr__(cls, name):
 return MagicMock()

 MOCK_MODULES = [
 'pikepdf',
 'pikepdf.models',
 'pikepdf.models.metadata',
 'ocrmypdf.leptonica',
]
 sys.modules.update((mod_name, Mock()) for mod_name in MOCK_MODULES)

from pkg_resources import get_distribution, DistributionNotFound

The full version, including alpha/beta/rc tags.
release = get_distribution('ocrmypdf').version
version = '.'.join(release.split('.')[:2])

The language for content autogenerated by Sphinx. Refer to documentation
for a list of supported languages.
#
This is also used if you do content translation via gettext catalogs.
Usually you set "language" from the command line for these cases.
language = None

There are two options for replacing |today|: either, you set today to some
non-false value, then it is used:
#
today = ''
#
Else, today_fmt is used as the format for a strftime call.
#
today_fmt = '%Y-%m-%d'

List of patterns, relative to source directory, that match files and
directories to ignore when looking for source files.
This patterns also effect to html_static_path and html_extra_path
exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store']

The reST default role (used for this markup: `text`) to use for all
documents.
#
default_role = None

If true, '()' will be appended to :func: etc. cross-reference text.
#
add_function_parentheses = True

If true, the current module name will be prepended to all description
unit titles (such as .. function::).
#
add_module_names = True

If true, sectionauthor and moduleauthor directives will be shown in the
output. They are ignored by default.
#
show_authors = False

The name of the Pygments (syntax highlighting) style to use.
pygments_style = 'sphinx'

A list of ignored prefixes for module index sorting.
modindex_common_prefix = []

If true, keep warnings as "system message" paragraphs in the built documents.
keep_warnings = False

If true, `todo` and `todoList` produce output, else they produce nothing.
todo_include_todos = False

-- Options for HTML output --

import sphinx_rtd_theme

The theme to use for HTML and HTML Help pages. See the documentation for
a list of builtin themes.
#
html_theme = 'sphinx_rtd_theme'
html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]

Theme options are theme-specific and customize the look and feel of a theme
further. For a list of options available for each theme, see the
documentation.
#
html_theme_options = {'display_version': False}

Add any paths that contain custom themes here, relative to this directory.
html_theme_path = []

The name for this set of Sphinx documents.
"<project> v<release> documentation" by default.
#
html_title = 'ocrmypdf v4.2'

A shorter title for the navigation bar. Default is the same as html_title.
#
html_short_title = None

The name of an image file (relative to this directory) to place at the top
of the sidebar.
#
html_logo = "images/logo.svg" # looks bad

The name of an image file (relative to this directory) to use as a favicon of
the docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32
pixels large.
#
html_favicon = None

Add any paths that contain custom static files (such as style sheets) here,
relative to this directory. They are copied after the builtin static files,
so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ['_static']

Add any extra paths that contain custom files (such as robots.txt or
.htaccess) here, relative to this directory. These files are copied
directly to the root of the documentation.
#
html_extra_path = []

If not None, a 'Last updated on:' timestamp is inserted at every page
bottom, using the given strftime format.
The empty string is equivalent to '%b %d, %Y'.
#
html_last_updated_fmt = None

If true, SmartyPants will be used to convert quotes and dashes to
typographically correct entities.
#
html_use_smartypants = True

Custom sidebar templates, maps document names to template names.
#
html_sidebars = {}

Additional templates that should be rendered to pages, maps page names to
template names.
#
html_additional_pages = {}

If false, no module index is generated.
#
html_domain_indices = True

If false, no index is generated.
#
html_use_index = True

If true, the index is split into individual pages for each letter.
#
html_split_index = False

If true, links to the reST sources are added to the pages.
#
html_show_sourcelink = True

If true, "Created using Sphinx" is shown in the HTML footer. Default is True.
#
html_show_sphinx = True

If true, "(C) Copyright ..." is shown in the HTML footer. Default is True.
#
html_show_copyright = True

If true, an OpenSearch description file will be output, and all pages will
contain a <link> tag referring to it. The value of this option must be the
base URL from which the finished HTML is served.
#
html_use_opensearch = ''

This is the file name suffix for HTML files (e.g. ".xhtml").
html_file_suffix = None

Language to be used for generating the HTML full-text search index.
Sphinx supports the following languages:
'da', 'de', 'en', 'es', 'fi', 'fr', 'h', 'it', 'ja'
'nl', 'no', 'pt', 'ro', 'r', 'sv', 'tr', 'zh'
#
html_search_language = 'en'

A dictionary with options for the search language support, empty by default.
'ja' uses this config value.
'zh' user can custom change `jieba` dictionary path.
#
html_search_options = {'type': 'default'}

The name of a javascript file (relative to the configuration directory) that
implements a search results scorer. If empty, the default will be used.
#
html_search_scorer = 'scorer.js'

Output file base name for HTML help builder.
htmlhelp_basename = 'ocrmypdfdoc'

-- Options for LaTeX output ---

latex_elements = {
 # The paper size ('letterpaper' or 'a4paper').
 #
 # 'papersize': 'letterpaper',
 # The font size ('10pt', '11pt' or '12pt').
 #
 # 'pointsize': '10pt',
 # Additional stuff for the LaTeX preamble.
 #
 # 'preamble': '',
 # Latex figure (float) alignment
 #
 # 'figure_align': 'htbp',
}

Grouping the document tree into LaTeX files. List of tuples
(source start file, target name, title,
author, documentclass [howto, manual, or own class]).
latex_documents = [
 (master_doc, 'ocrmypdf.tex', 'ocrmypdf Documentation', 'James R. Barlow', 'manual')
]

The name of an image file (relative to this directory) to place at the top of
the title page.
#
latex_logo = None

For "manual" documents, if this is true, then toplevel headings are parts,
not chapters.
#
latex_use_parts = False

If true, show page references after internal links.
#
latex_show_pagerefs = False

If true, show URL addresses after external links.
#
latex_show_urls = False

Documents to append as an appendix to all manuals.
#
latex_appendices = []

# It false, will not define \strong, \code, 	itleref, \crossref ... but only
\sphinxstrong, ..., \sphinxtitleref, ... To help avoid clash with user added
packages.
#
latex_keep_old_macro_names = True

If false, no module index is generated.
#
latex_domain_indices = True

-- Options for manual page output ---------------------------------------

One entry per manual page. List of tuples
(source start file, name, description, authors, manual section).
man_pages = [(master_doc, 'ocrmypdf', 'ocrmypdf Documentation', [author], 1)]

If true, show URL addresses after external links.
#
man_show_urls = False

-- Options for Texinfo output ---

Grouping the document tree into Texinfo files. List of tuples
(source start file, target name, title, author,
dir menu entry, description, category)
texinfo_documents = [
 (
 master_doc,
 'ocrmypdf',
 'ocrmypdf Documentation',
 author,
 'ocrmypdf',
 'One line description of project.',
 'Miscellaneous',
)
]

Documents to append as an appendix to all manuals.
#
texinfo_appendices = []

If false, no module index is generated.
#
texinfo_domain_indices = True

How to display URL addresses: 'footnote', 'no', or 'inline'.
#
texinfo_show_urls = 'footnote'

If true, do not generate a @detailmenu in the "Top" node's menu.
#
texinfo_no_detailmenu = False

ocrmypdf-10.3.1+dfsg/docs/contributing.rst

=======================
Contributing guidelines
=======================

Contributions are welcome!

Big changes
===========

Please open a new issue to discuss or propose a major change. Not only is it fun
to discuss big ideas, but we might save each other's time too. Perhaps some of the
work you're contemplating is already half-done in a development branch.

Code style
==========

We use PEP8, ``black`` for code formatting and ``isort`` for import sorting. The
settings for these programs are in ``pyproject.toml`` and ``setup.cfg``. Pull
requests should follow the style guide. One difference we use from "black" style
is that strings shown to the user are always in double quotes (``"``) and strings
for internal uses are in single quotes (``'``).

Tests
=====

New features should come with tests that confirm their correctness.

New Python dependencies
=======================

If you are proposing a change that will require a new Python dependency, we
prefer dependencies that are already packaged by Debian or Red Hat. This makes
life much easier for our downstream package maintainers.

Python dependencies must also be GPLv3 compatible.

New non-Python dependencies
===========================

OCRmyPDF uses several external programs (Tesseract, Ghostscript and others) for
its functionality. In general we prefer to avoid adding new external programs.

Style guide: Is it OCRmyPDF or ocrmypdf?
==

The program/project is OCRmyPDF and the name of the executable or library is ocrmypdf.

Known ports/packagers
=====================

OCRmyPDF has been ported to many platforms already. If you are interesting in
porting to a new platform, check with
`Repology <https://repology.org/projects/?search=ocrmypdf>`__ to see the status
of that platform.

Packager maintainers, please ensure that the command line completion scripts in
``misc/`` are installed.

ocrmypdf-10.3.1+dfsg/docs/cookbook.rst

========
Cookbook
========

Basic examples
==============

Help!

ocrmypdf has built-in help.

.. code-block:: bash

 ocrmypdf --help

Add an OCR layer and convert to PDF/A

.. code-block:: bash

 ocrmypdf input.pdf output.pdf

Add an OCR layer and output a standard PDF
--

.. code-block:: bash

 ocrmypdf --output-type pdf input.pdf output.pdf

Create a PDF/A with all color and grayscale images converted to JPEG
--

.. code-block:: bash

 ocrmypdf --output-type pdfa --pdfa-image-compression jpeg input.pdf output.pdf

Modify a file in place

The file will only be overwritten if OCRmyPDF is successful.

.. code-block:: bash

 ocrmypdf myfile.pdf myfile.pdf

Correct page rotation

OCR will attempt to automatic correct the rotation of each page. This
can help fix a scanning job that contains a mix of landscape and
portrait pages.

.. code-block:: bash

 ocrmypdf --rotate-pages myfile.pdf myfile.pdf

You can increase (decrease) the parameter ``--rotate-pages-threshold``
to make page rotation more (less) aggressive. The threshold number is the ratio
of how confidence the OCR engine is that the document image should be changed,
compared to kept the same. A value of ``15.0`` is the default, and is fairly
conservative. A value of ``2.0`` will produce more rotations, and more false
positives.

If the page is "just a little off horizontal", like a crooked picture,
then you want ``--deskew``. ``--rotate-pages`` is for when the cardinal
angle is wrong.

OCR languages other than English

OCRmyPDF assumes the document is in English unless told otherwise. OCR
quality may be poor if the wrong language is used.

.. code-block:: bash

 ocrmypdf -l fra LeParisien.pdf LeParisien.pdf
 ocrmypdf -l eng+fra Bilingual-English-French.pdf Bilingual-English-French.pdf

Language packs must be installed for all languages specified. See
:ref:`Installing additional language packs <lang-packs>`.

Unfortunately, the Tesseract OCR engine has no ability to detect the
language when it is unknown.

Produce PDF and text file containing OCR text

This produces a file named "output.pdf" and a companion text file named
"output.txt".

.. code-block:: bash

 ocrmypdf --sidecar output.txt input.pdf output.pdf

.. note::

 The sidecar file contains the **OCR text** found by OCRmyPDF. If the document
 contains pages that already have text, that text will not appear in the
 sidecar. If the option ``--pages`` is used, only those pages on which OCR
 was performed will be included in the sidecar. If certain pages were skipped
 because of options like ``--skip-big`` or ``--tesseract-timeout``, those pages
 will not be in the sidecar.

 To extract all text from a PDF, whether generated from OCR or otherwise,
 use a program like Poppler's ``pdftotext`` or ``pdfgrep``.

OCR images, not PDFs

Option: use Tesseract
~~~~~~~~~~~~~~~~~~~~~

If you are starting with images, you can just use Tesseract directly to
convert images to PDFs:

.. code-block:: bash

    tesseract my-image.jpg output-prefix pdf

.. code-block:: bash

    # When there are multiple images
    tesseract text-file-containing-list-of-image-filenames.txt output-prefix pdf

Tesseract's PDF output is quite good – OCRmyPDF uses it internally, in
some cases. However, OCRmyPDF has many features not available in
Tesseract like image processing, metadata control, and PDF/A generation.

Option: use img2pdf
~~~~~~~~~~~~~~~~~~~

You can also use a program like
`img2pdf <https://gitlab.mister-muffin.de/josch/img2pdf>`__ to convert
your images to PDFs, and then pipe the results to run ocrmypdf. The
``-`` tells ocrmypdf to read standard input.

.. code-block:: bash

 img2pdf my-images*.jpg | ocrmypdf - myfile.pdf

``img2pdf`` is recommended because it does an excellent job at
generating PDFs without transcoding images.

Option: use OCRmyPDF (single images only)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

For convenience, OCRmyPDF can also convert single images to PDFs on its
own. If the resolution (dots per inch, DPI) of an image is not set or is
incorrect, it can be overridden with ``--image-dpi``. (As 1 inch is 2.54
cm, 1 dpi = 0.39 dpcm).

.. code-block:: bash

    ocrmypdf --image-dpi 300 image.png myfile.pdf

If you have multiple images, you must use ``img2pdf`` to convert the
images to PDF.

Not recommended
~~~~~~~~~~~~~~~

We caution against using ImageMagick or Ghostscript to convert images to
PDF, since they may transcode images or produce downsampled images,
sometimes without warning.

Image processing
================

OCRmyPDF perform some image processing on each page of a PDF, if
desired. The same processing is applied to each page. It is suggested
that the user review files after image processing as these commands
might remove desirable content, especially from poor quality scans.

- ``--rotate-pages`` attempts to determine the correct orientation for
 each page and rotates the page if necessary.
- ``--remove-background`` attempts to detect and remove a noisy
 background from grayscale or color images. Monochrome images are
 ignored. This should not be used on documents that contain color
 photos as it may remove them.
- ``--deskew`` will correct pages were scanned at a skewed angle by
 rotating them back into place. Skew determination and correction is
 performed using `Postl's variance of line
 sums <http://www.leptonica.org/skew-measurement.html>`__ algorithm as
 implemented in `Leptonica <http://www.leptonica.org/index.html>`__.
- ``--clean`` uses
 `unpaper <https://www.flameeyes.eu/projects/unpaper>`__ to clean up
 pages before OCR, but does not alter the final output. This makes it
 less likely that OCR will try to find text in background noise.
- ``--clean-final`` uses unpaper to clean up pages before OCR and
 inserts the page into the final output. You will want to review each
 page to ensure that unpaper did not remove something important.

.. note::

 In many cases image processing will rasterize PDF pages as images,
 potentially losing quality.

.. warning::

 ``--clean-final`` and ``-remove-background`` may leave undesirable
 visual artifacts in some images where their algorithms have
 shortcomings. Files should be visually reviewed after using these
 options.

Example: OCR and correct document skew (crooked scan)

Deskew:

.. code-block:: bash

 ocrmypdf --deskew input.pdf output.pdf

Image processing commands can be combined. The order in which options
are given does not matter. OCRmyPDF always applies the steps of the
image processing pipeline in the same order (rotate, remove background,
deskew, clean).

.. code-block:: bash

 ocrmypdf --deskew --clean --rotate-pages input.pdf output.pdf

Don't actually OCR my PDF
=========================

If you set ``--tesseract-timeout 0`` OCRmyPDF will apply its image
processing without performing OCR, if all you want to is to apply image
processing or PDF/A conversion.

.. code-block:: bash

 ocrmypdf --tesseract-timeout=0 --remove-background input.pdf output.pdf

Optimize images without performing OCR

You can also optimize all images without performing any OCR:

.. code-block:: bash

 ocrmypdf --tesseract-timeout=0 --optimize 3 --skip-text input.pdf output.pdf

Perform OCR only certain pages

You can ask OCRmyPDF to only apply OCR to certain pages.

.. code-block:: bash

 ocrmypdf --pages 2,3,13-17 input.pdf output.pdf

Hyphens denote a range of pages and commas separate page numbers. If you prefer
to use spaces, quote all of the page numbers: ``--pages '2, 3, 5, 7'``.

OCRmyPDF will warn if your list of page numbers contains duplicates or
overlap pages. OCRmyPDF does not currently account for document page numbers,
such as an introduction section of a book that uses Roman numerals. It simply
counts the number of virtual pieces of paper since the start.

Regardless of the argument to ``--pages``, OCRmyPDF will optimize all pages in
the file and convert it to PDF/A, unless you disable those options. In this
example, we want to OCR only the title and otherwise change the PDF as little
as possible:

.. code-block:: bash

 ocrmypdf --pages 1 --output-type pdf --optimize 0 input.pdf output.pdf

Redo existing OCR
=================

To redo OCR on a file OCRed with other OCR software or a previous
version of OCRmyPDF and/or Tesseract, you may use the ``--redo-ocr``
argument. (Normally, OCRmyPDF will exit with an error if asked to modify
a file with OCR.)

This may be helpful for users who want to take advantage of accuracy
improvements in Tesseract 4.0 for files they previously OCRed with an
earlier version of Tesseract and OCRmyPDF.

.. code-block:: bash

 ocrmypdf --redo-ocr input.pdf output.pdf

This method will replace OCR without rasterizing, reducing quality or
removing vector content. If a file contains a mix of pure digital text
and OCR, digital text will be ignored and OCR will be replaced. As such
this mode is incompatible with image processing options, since they
alter the appearance of the file.

In some cases, existing OCR cannot be detected or replaced. Files
produced by OCRmyPDF v2.2 or earlier, for example, are internally
represented as having visible text with an opaque image drawn on top.
This situation cannot be detected.

If ``--redo-ocr`` does not work, you can use ``--force-ocr``, which will
force rasterization of all pages, potentially reducing quality or losing
vector content.

Improving OCR quality
=====================

The `Image processing <#image-processing>`__ features can improve OCR
quality.

Rotating pages and deskewing helps to ensure that the page orientation
is correct before OCR begins. Removing the background and/or cleaning
the page can also improve results. The ``--oversample DPI`` argument can
be specified to resample images to higher resolution before attempting
OCR; this can improve results as well.

OCR quality will suffer if the resolution of input images is not correct
(since the range of pixel sizes that will be checked for possible fonts
will also be incorrect).

PDF optimization
================

By default OCRmyPDF will attempt to perform lossless optimizations on
the images inside PDFs after OCR is complete. Optimization is performed
even if no OCR text is found.

The ``--optimize N`` (short form ``-O``) argument controls optimization,
where ``N`` ranges from 0 to 3 inclusive, analogous to the optimization
levels in the GCC compiler.

.. list-table::
 :widths: auto
 :header-rows: 1

 * - Level
 - Comments
 * - ``--optimize 0``
 - Disables optimization.
 * - ``--optimize 1``
 - Enables lossless optimizations, such as transcoding images to more
 efficient formats. Also compress other uncompressed objects in the
 PDF and enables the more efficient "object streams" within the PDF.
 * - ``--optimize 2``
 - All of the above, and enables lossy optimizations and color quantization.
 * - ``--optimize 3``
 - All of the above, and enables more aggressive optimizations and targets lower image quality.

Optimization is improved when a JBIG2 encoder is available and when
``pngquant`` is installed. If either of these components are missing,
then some types of images cannot be optimized.

The types of optimization available may expand over time. By default,
OCRmyPDF compresses data streams inside PDFs, and will change
inefficient compression modes to more modern versions. A program like
``qpdf`` can be used to change encodings, e.g. to inspect the internals
fo a PDF.

.. code-block:: bash

 ocrmypdf --optimize 3 in.pdf out.pdf # Make it small

Some users may consider enabling lossy JBIG2. See: :ref:`jbig2-lossy`.

ocrmypdf-10.3.1+dfsg/docs/docker.rst

=====================
OCRmyPDF Docker image
=====================

OCRmyPDF is also available in a Docker image that packages recent
versions of all dependencies.

For users who already have Docker installed this may be an easy and
convenient option. However, it is less performant than a system
installation and may require Docker engine configuration.

OCRmyPDF needs a generous amount of RAM, CPU cores, temporary storage
space, whether running in a Docker container or on its own. It may be
necessary to ensure the container is provisioned with additional
resources.

.. _docker-install:

Installing the Docker image
===========================

If you have `Docker <https://docs.docker.com/>`__ installed on your
system, you can install a Docker image of the latest release.

If you can run this command successfully, your system is ready to download and
execute the image:

.. code-block:: bash

 docker run hello-world

The recommended OCRmyPDF Docker image is currently named ``ocrmypdf``:

.. code-block:: bash

 docker pull jbarlow83/ocrmypdf

OCRmyPDF will use all available CPU cores. By default, the VirtualBox
machine instance on Windows and macOS has only a single CPU core
enabled. Use the VirtualBox Manager to determine the name of your Docker
engine host, and then follow these optional steps to enable multiple
CPUs:

.. code-block:: bash

 # Optional step for Mac OS X users
 docker-machine stop "yourVM"
 VBoxManage modifyvm "yourVM" --cpus 2 # or whatever number of core is desired
 docker-machine start "yourVM"
 eval $(docker-machine env "yourVM")

See the Docker documentation for
`adjusting memory and CPU on other platforms <https://docs.docker.com/config/containers/resource_constraints/>`__.

Using the Docker image on the command line
==

Unlike typical Docker containers, in this section the OCRmyPDF Docker
container is emphemeral – it runs for one OCR job and terminates, just like a
command line program. We are using Docker to deliver an application (as opposed
to the more conventional case, where a Docker container runs as a server).

To start a Docker container (instance of the image):

.. code-block:: bash

 docker tag jbarlow83/ocrmypdf ocrmypdf
 docker run --rm -i ocrmypdf (... all other arguments here...) - -

For convenience, create a shell alias to hide the Docker command. It is
easier to send the input file as stdin and read the output from
stdout – **this avoids the messy permission issues with Docker entirely**.

.. code-block:: bash

 alias docker_ocrmypdf='docker run --rm -i ocrmypdf'
 docker_ocrmypdf --version # runs docker version
 docker_ocrmypdf - - <input.pdf >output.pdf

Or in the wonderful `fish shell <https://fishshell.com/>`__:

.. code-block:: fish

 alias docker_ocrmypdf 'docker run --rm ocrmypdf'
 funcsave docker_ocrmypdf

Alternately, you could mount the local current working directory as a
Docker volume:

.. code-block:: bash

 alias docker_ocrmypdf='docker run --rm -i --user "$(id -u):$(id -g)" --workdir /data -v "$PWD:/data" ocrmypdf'
 docker_ocrmypdf /data/input.pdf /data/output.pdf

.. _docker-lang-packs:

Adding languages to the Docker image
====================================

By default the Docker image includes English, German, Simplified Chinese,
French, Portuguese and Spanish, the most popular languages for OCRmyPDF
users based on feedback. You may add other languages by creating a new
Dockerfile based on the public one:

.. code-block:: dockerfile

 FROM jbarlow83/ocrmypdf

 # Add French
 RUN apt install tesseract-ocr-fra

You can also copy training data to ``/usr/share/tesseract-ocr/<tesseract version>/tessdata``.

Executing the test suite
========================

The OCRmyPDF test suite is installed with image. To run it:

.. code-block:: bash

 docker run --entrypoint python3 jbarlow83/ocrmypdf -m pytest

Accessing the shell
===================

To use the bash shell in the Docker image:

.. code-block:: bash

 docker run -it --entrypoint bash jbarlow83/ocrmypdf

Using the OCRmyPDF web service wrapper
======================================

The OCRmyPDF Docker image includes an example, barebones HTTP web
service. The webservice may be launched as follows:

.. code-block:: bash

 docker run --entrypoint python3 -p 5000:5000 jbarlow83/ocrmypdf webservice.py

This will configure the machine to listen on port 5000. On Linux machines
this is port 5000 of localhost. On macOS or Windows machines running
Docker, this is port 5000 of the virtual machine that runs your Docker
images. You can find its IP address using the command ``docker-machine ip``.

Unlike command line usage this program will open a socket and wait for
connections.

.. warning::

 The OCRmyPDF web service wrapper is intended for demonstration or
 development. It provides no security, no authentication, no
 protection against denial of service attacks, and no load balancing.
 The default Flask WSGI server is used, which is intended for
 development only. The server is single-threaded and so can respond to
 only one client at a time. While running OCR, it cannot respond to
 any other clients.

Clients must keep their open connection while waiting for OCR to
complete. This may entail setting a long timeout; this interface is more
useful for internal HTTP API calls.

Unlike the rest of OCRmyPDF, this web service is licensed under the
Affero GPLv3 (AGPLv3) since Ghostscript, a dependency of OCRmyPDF, is
also licensed in this way.

In addition to the above, please read our
:ref:`general remarks on using OCRmyPDF as a service <ocr-service>`.

ocrmypdf-10.3.1+dfsg/docs/errors.rst

=====================
Common error messages
=====================

Page already has text
=====================

.. code-block::

 ERROR - 1: page already has text! – aborting (use --force-ocr to force OCR)

You ran ocrmypdf on a file that already contains printable text or a
hidden OCR text layer (it can't quite tell the difference). You probably
don't want to do this, because the file is already searchable.

As the error message suggests, your options are:

- ``ocrmypdf --force-ocr`` to :ref:`rasterize <raster-vector>` all
 vector content and run OCR on the images. This is useful if a
 previous OCR program failed, or if the document contains a text
 watermark.
- ``ocrmypdf --skip-text`` to skip OCR and other processing on any
 pages that contain text. Text pages will be copied into the output
 PDF without modification.
- ``ocrmypdf --redo-ocr`` to scan the file for any existing OCR
 (non-printing text), remove it, and do OCR again. This is one way
 to take advantage of improvements in OCR accuracy. Printable vector
 text is excluded from OCR, so this can be used on files that contain
 a mix of digital and scanned files.

Input file 'filename' is not a valid PDF
==

OCRmyPDF checks files with pikepdf, a library that in turn uses libqpdf to fixes
errors in PDFs, before it tries to work on them. In most cases this happens
because the PDF is corrupt and truncated (incomplete file copying) and not much
can be done.

You can try rewriting the file with Ghostscript:

.. code-block:: bash

 gs -o output.pdf -dSAFER -sDEVICE=pdfwrite input.pdf

``pdftk`` can also rewrite PDFs:

.. code-block:: bash

 pdftk input.pdf cat output output.pdf

Sometimes Acrobat can repair PDFs with its `Preflight
tool <https://helpx.adobe.com/acrobat/using/correcting-problem-areas-preflight-tool.html>`__.

ocrmypdf-10.3.1+dfsg/docs/images/bitmap_vs_svg.svg

 Raster
 Vector

 .jpeg .gif .png
 .svg

ocrmypdf-10.3.1+dfsg/docs/images/macos-workflow.png

ocrmypdf-10.3.1+dfsg/docs/index.rst

OCRmyPDF documentation
======================

OCRmyPDF adds an optical charcter recognition (OCR) text layer to scanned PDF
files, allowing them to be searched.

PDF is the best format for storing and exchanging scanned documents.
Unfortunately, PDFs can be difficult to modify. OCRmyPDF makes it easy to apply
image processing and OCR to existing PDFs.

.. toctree::
 :maxdepth: 1

 introduction
 release_notes
 installation
 optimizer
 languages
 jbig2

.. toctree::
 :caption: Usage
 :maxdepth: 2

 cookbook
 docker
 advanced
 batch
 performance
 pdfsecurity
 errors

.. toctree::
 :caption: Developers
 :maxdepth: 2

 api
 plugins
 apiref
 contributing

Indices and tables
==================

* :ref:`genindex`
* :ref:`modindex`
* :ref:`search`

ocrmypdf-10.3.1+dfsg/docs/installation.rst

===================
Installing OCRmyPDF
===================

.. |latest| image:: https://img.shields.io/pypi/v/ocrmypdf.svg
 :alt: OCRmyPDF latest released version on PyPI

|latest|

The easiest way to install OCRmyPDF is to follow the steps for your operating
system/platform. This version may be out of date, however.

These platforms have one-liner installs:

+-----------------------------+-------------------------------+
| Debian, Ubuntu | ``apt install ocrmypdf`` |
+-----------------------------+-------------------------------+
| Windows Subsystem for Linux | ``apt install ocrmypdf`` |
+-----------------------------+-------------------------------+
| Fedora | ``dnf install ocrmypdf`` |
+-----------------------------+-------------------------------+
| macOS | ``brew install ocrmypdf`` |
+-----------------------------+-------------------------------+
| LinuxBrew | ``brew install ocrmypdf`` |
+-----------------------------+-------------------------------+
| FreeBSD | ``pkg install py37-ocrmypdf`` |
+-----------------------------+-------------------------------+

More detailed procedures are outlined below. If you want to do a manual
install, or install a more recent version than your platform provides, read on.

.. contents:: Platform-specific steps
 :depth: 2
 :local:

Installing on Linux
===================

Debian and Ubuntu 18.04 or newer

.. |deb-stable| image:: https://repology.org/badge/version-for-repo/debian_stable/ocrmypdf.svg
 :alt: Debian 9 stable ("stretch")

.. |deb-testing| image:: https://repology.org/badge/version-for-repo/debian_testing/ocrmypdf.svg
 :alt: Debian 10 testing ("buster")

.. |deb-unstable| image:: https://repology.org/badge/version-for-repo/debian_unstable/ocrmypdf.svg
 :alt: Debian unstable

.. |ubu-1804| image:: https://repology.org/badge/version-for-repo/ubuntu_18_04/ocrmypdf.svg
 :alt: Ubuntu 18.04 LTS

.. |ubu-2004| image:: https://repology.org/badge/version-for-repo/ubuntu_20_04/ocrmypdf.svg
 :alt: Ubuntu 20.04 LTS

+---+
| **OCRmyPDF versions in Debian & Ubuntu** |
+---+
| |latest| |
+---+
| |deb-stable| |deb-testing| |deb-unstable| |
+---+
| |ubu-1804| |ubu-2004| |
+---+

Users of Debian 9 ("stretch") or later, or Ubuntu 18.04 or later, including users
of Windows Subsystem for Linux, may simply

.. code-block:: bash

 apt-get install ocrmypdf

As indicated in the table above, Debian and Ubuntu releases may lag
behind the latest version. If the version available for your platform is
out of date, you could opt to install the latest version from source.
See `Installing HEAD revision from
sources <#installing-head-revision-from-sources>`__. Ubuntu 16.10 to 17.10
inclusive also had ocrmypdf, but these versions are end of life.

For full details on version availability for your platform, check the
`Debian Package Tracker <https://tracker.debian.org/pkg/ocrmypdf>`__ or
`Ubuntu launchpad.net <https://launchpad.net/ocrmypdf>`__.

.. note::

 OCRmyPDF for Debian and Ubuntu currently omit the JBIG2 encoder.
 OCRmyPDF works fine without it but will produce larger output files.
 If you build jbig2enc from source, ocrmypdf 7.0.0 and later will
 automatically detect it (specifically the ``jbig2`` binary) on the
 ``PATH``. To add JBIG2 encoding, see :ref:`jbig2`.

Fedora 29 or newer

.. |fedora-31| image:: https://repology.org/badge/version-for-repo/fedora_31/ocrmypdf.svg
 :alt: Fedora 31

.. |fedora-32| image:: https://repology.org/badge/version-for-repo/fedora_32/ocrmypdf.svg
 :alt: Fedora 32

.. |fedora-rawhide| image:: https://repology.org/badge/version-for-repo/fedora_rawhide/ocrmypdf.svg
 :alt: Fedore Rawhide

+---+
| **OCRmyPDF version** |
+---+
| |latest| |
+---+
| |fedora-31| |fedora-32| |fedora-rawhide| |
+---+

Users of Fedora 29 or later may simply

.. code-block:: bash

 dnf install ocrmypdf

For full details on version availability, check the `Fedora Package
Tracker <https://apps.fedoraproject.org/packages/ocrmypdf>`__.

If the version available for your platform is out of date, you could opt
to install the latest version from source. See `Installing HEAD revision
from sources <#installing-head-revision-from-sources>`__.

.. note::

 OCRmyPDF for Fedora currently omits the JBIG2 encoder due to patent
 issues. OCRmyPDF works fine without it but will produce larger output
 files. If you build jbig2enc from source, ocrmypdf 7.0.0 and later
 will automatically detect it on the ``PATH``. To add JBIG2 encoding,
 see `Installing the JBIG2 encoder <jbig2>`__.

.. _ubuntu-lts-latest:

Installing the latest version on Ubuntu 20.04 LTS

Ubuntu 20.04 includes ocrmypdf 9.6.0 - you can install that with ``apt``. To
install a more recent version, uninstall the system-provided version of
ocrmypdf, and install the following dependencies:

.. code-block:: bash

 sudo apt-get -y remove ocrmypdf # remove system ocrmypdf, if installed
 sudo apt-get -y update
 sudo apt-get -y install \
 ghostscript \
 icc-profiles-free \
 liblept5 \
 libxml2 \
 pngquant \
 python3-pip \
 tesseract-ocr \
 zlib1g

To install ocrmypdf for the system:

.. code-block:: bash

 sudo pip3 install ocrmypdf

To install for the current user only:

.. code-block:: bash

 export PATH=$HOME/.local/bin:$PATH
 pip3 install --user ocrmypdf

Ubuntu 18.04 LTS

Ubuntu 18.04 includes ocrmypdf 6.1.2 - you can install that with ``apt``, but
it is quite old now. To install a more recent version, uninstall the old version
of ocrmypdf, and install the following dependencies:

.. code-block:: bash

 sudo apt-get -y remove ocrmypdf
 sudo apt-get -y update
 sudo apt-get -y install \
 ghostscript \
 icc-profiles-free \
 liblept5 \
 libxml2 \
 pngquant \
 python3-cffi \
 python3-distutils \
 python3-pkg-resources \
 python3-reportlab \
 qpdf \
 tesseract-ocr \
 zlib1g

We will need a newer version of ``pip`` then was available for Ubuntu 18.04:

.. code-block:: bash

 wget https://bootstrap.pypa.io/get-pip.py && python3 get-pip.py

Then install the most recent ocrmypdf for the local user and set the
user's ``PATH`` to check for the user's Python packages.

.. code-block:: bash

 export PATH=$HOME/.local/bin:$PATH
 python3 -m pip install --user ocrmypdf

To add JBIG2 encoding, see :ref:`jbig2`.

Ubuntu 16.04 LTS

No package is available for Ubuntu 16.04. OCRmyPDF 8.0 and newer require
Python 3.6. Ubuntu 16.04 ships Python 3.5, but you can install Python
3.6 on it. Or, you can skip Python 3.6 and install OCRmyPDF 7.x or older
- for that procedure, please see the installation documentation for the
version of OCRmyPDF you plan to use.

Install system packages for OCRmyPDF

.. code-block:: bash

 sudo apt-get update
 sudo apt-get install -y software-properties-common python-software-properties
 sudo add-apt-repository -y \
 ppa:jonathonf/python-3.6 \
 ppa:alex-p/tesseract-ocr
 sudo apt-get update
 sudo apt-get install -y \
 ghostscript \
 libexempi3 \
 libffi6 \
 pngquant \
 python3.6 \
 qpdf \
 tesseract-ocr \
 unpaper

This will install a Python 3.6 binary at ``/usr/bin/python3.6``
alongside the system's Python 3.5. Do not remove the system Python. This
will also install Tesseract 4.0 from a PPA, since the version available
in Ubuntu 16.04 is too old for OCRmyPDF.

Now install pip for Python 3.6. This will install the Python 3.6 version
of ``pip`` at ``/usr/local/bin/pip``.

.. code-block:: bash

 curl https://bootstrap.pypa.io/get-pip.py | sudo python3.6

Install OCRmyPDF

OCRmyPDF requires the locale to be set for UTF-8. **On some minimal
Ubuntu installations**, such as the Ubuntu 16.04 Docker images it may be
necessary to set the locale.

.. code-block:: bash

 # Optional: Only need to set these if they are not already set
 export LC_ALL=C.UTF-8
 export LANG=C.UTF-8

Now install OCRmyPDF for the current user, and ensure that the ``PATH``
environment variable contains ``$HOME/.local/bin``.

.. code-block:: bash

 export PATH=$HOME/.local/bin:$PATH
 pip3.6 install --user ocrmypdf

To add JBIG2 encoding, see :ref:`jbig2`.

Arch Linux (AUR)

.. image:: https://repology.org/badge/version-for-repo/aur/ocrmypdf.svg
 :alt: ArchLinux
 :target: https://repology.org/metapackage/ocrmypdf

There is an `Arch User Repository (AUR) package for OCRmyPDF
<https://aur.archlinux.org/packages/ocrmypdf/>`__.

Installing AUR packages as root is not allowed, so you must first `setup a
non-root user
<https://wiki.archlinux.org/index.php/Users_and_groups#User_management>`__ and
`configure sudo <https://wiki.archlinux.org/index.php/Sudo#Configuration>`__.
The standard Docker image, ``archlinux/base:latest``, does **not** have a
non-root user configured, so users of that image must follow these guides. If
you are using a VM image, such as `the official Vagrant image
<https://app.vagrantup.com/archlinux/boxes/archlinux>`__, this work may already
be completed for you.

Next you should install the `base-devel package group
<https://www.archlinux.org/groups/x86_64/base-devel/>`__. This includes the
standard tooling needed to build packages, such as a compiler and binary tools.

.. code-block:: bash

 sudo pacman -S base-devel

Now you are ready to install the OCRmyPDF package.

.. code-block:: bash

 curl -O https://aur.archlinux.org/cgit/aur.git/snapshot/ocrmypdf.tar.gz
 tar xvzf ocrmypdf.tar.gz
 cd ocrmypdf
 makepkg -sri

At this point you will have a working install of OCRmyPDF, but the Tesseract
install won’t include any OCR language data. You can install `the
tesseract-data package group
<https://www.archlinux.org/groups/any/tesseract-data/>`__ to add all supported
languages, or use that package listing to identify the appropriate package for
your desired language.

.. code-block:: bash

 sudo pacman -S tesseract-data-eng

As an alternative to this manual procedure, consider using an `AUR helper
<https://wiki.archlinux.org/index.php/AUR_helpers>`__. Such a tool will
automatically fetch, build and install the AUR package, resolve dependencies
(including dependencies on AUR packages), and ease the upgrade procedure.

If you have any difficulties with installation, check the repository package
page.

.. note::

 The OCRmyPDF AUR package currently omits the JBIG2 encoder. OCRmyPDF works
 fine without it but will produce larger output files. The encoder is
 available from `the jbig2enc-git AUR package
 <https://aur.archlinux.org/packages/jbig2enc-git/>`__ and may be installed
 using the same series of steps as for the installation OCRmyPDF AUR
 package. Alternatively, it may be built manually from source following the
 instructions in `Installing the JBIG2 encoder <jbig2>`__. If JBIG2 is
 installed, OCRmyPDF 7.0.0 and later will automatically detect it.

Alpine Linux

.. image:: https://repology.org/badge/version-for-repo/alpine_edge/ocrmypdf.svg
 :alt: Alpine Linux
 :target: https://repology.org/metapackage/ocrmypdf

To install OCRmyPDF for Alpine Linux:

.. code-block:: bash

 apk add ocrmypdf

Mageia 7

Install the following dependencies:

.. code-block:: bash

 # As root user
 urpmi.update -a
 urpmi \
 ghostscript \
 icc-profiles-openicc \
 jbig2dec \
 lib64leptonica5 \
 pngquant \
 python3-pip \
 python3-cffi \
 python3-distutils-extra \
 python3-pkg-resources \
 python3-reportlab \
 qpdf \
 tesseract \
 tesseract-osd \
 tesseract-eng \
 tesseract-fra

To install ocrmypdf for the system:

 # As root user
 pip3 install ocrmypdf
 ldconfig

Or, to install for the current user only:

 export PATH=$HOME/.local/bin:$PATH
 pip3 install --user ocrmypdf

Other Linux packages

See the
`Repology <https://repology.org/metapackage/ocrmypdf/versions>`__ page.

In general, first install the OCRmyPDF package for your system, then
optionally use the procedure `Installing with Python
pip <#installing-with-python-pip>`__ to install a more recent version.

Installing on macOS
===================

Homebrew

.. image:: https://img.shields.io/homebrew/v/ocrmypdf.svg
 :alt: homebrew
 :target: http://brewformulas.org/Ocrmypdf

OCRmyPDF is now a standard `Homebrew <https://brew.sh>`__ formula. To
install on macOS:

.. code-block:: bash

 brew install ocrmypdf

This will include only the English language pack. If you need other
languages you can optionally install them all:

.. code-block:: bash

 brew install tesseract-lang # Optional: Install all language packs

.. note::

 Users who previously installed OCRmyPDF on macOS using
 ``pip install ocrmypdf`` should remove the pip version
 (``pip3 uninstall ocrmypdf``) before switching to the Homebrew
 version.

.. note::

 Users who previously installed OCRmyPDF from the private tap should
 switch to the mainline version (``brew untap jbarlow83/ocrmypdf``)
 and install from there.

Manual installation on macOS

These instructions probably work on all macOS supported by Homebrew, and are
for installing a more current version of OCRmyPDF than is available from
Homebrew. Note that the Homebrew versions usually track the release versions
fairly closely.

If it's not already present, `install Homebrew <http://brew.sh/>`__.

Update Homebrew:

.. code-block:: bash

 brew update

Install or upgrade the required Homebrew packages, if any are missing.
To do this, use ``brew edit ocrmypdf`` to obtain a recent list of Homebrew
dependencies. You could also check the ``azure-pipelines.yml``.

This will include the English, French, German and Spanish language
packs. If you need other languages you can optionally install them all:

.. _macos-all-languages:

 .. code-block:: bash

 brew install tesseract-lang # Option 2: for all language packs

Update the homebrew pip:

.. code-block:: bash

 pip3 install --upgrade pip

You can then install OCRmyPDF from PyPI, for the current user:

.. code-block:: bash

 pip3 install --user ocrmypdf

or system-wide:

.. code-block:: bash

 pip3 install ocrmypdf

The command line program should now be available:

.. code-block:: bash

 ocrmypdf --help

Installing on Windows
=====================

Native Windows

.. note::

 It is easier to install OCRmyPDF on Windows Subsystem for Linux.

.. note::

 Administrator privileges will be required for some of these steps.

You must install the following for Windows:

* Python 3.7 (64-bit) or later
* Tesseract 4.0 or later
* Ghostscript 9.50 or later

You can install these with the Chocolatey package manager:

* ``choco install python3``
* ``choco install --pre tesseract``
* ``choco install ghostscript``

Also consider adding:

* ``choco install pngquant``

Windows 10 64-bit and 64-bit versions of applications are recommended. Earlier
versions of Windows and 32-bit versions of these programs are not tested, and not
supported at this time.

OCRmyPDF will check for Tesseract-OCR and Ghostscript in your Program Files folder.
If they are in some other location, you may need to modify the ``PATH``
environment variable so Tesseract, Ghostscript, and other any optional executables can
be found. You can enter it in the command line or
`follow these directions <https://www.computerhope.com/issues/ch000549.htm#dospath>`_
to make the change persistent and system-wide.

You may then use pip to install ocrmypdf:

* ``pip install ocrmypdf``

Windows Subsystem for Linux

#. Install Ubuntu 18.04 for Windows Subsystem for Linux, if not already installed.
#. Follow the procedure to install :ref:`OCRmyPDF on Ubuntu 18.04 <ubuntu-lts-latest>`.
#. Open the Windows command prompt and create a symlink:

.. code-block:: powershell

 wsl sudo ln -s /home/$USER/.local/bin/ocrmypdf /usr/local/bin/ocrmypdf

Then confirm that the expected version from PyPI (|latest|) is installed:

.. code-block:: powershell

 wsl ocrmypdf --version

You can then run OCRmyPDF in the Windows command prompt or Powershell, prefixing
``wsl``, and call it from Windows programs or batch files.

Cygwin64

First install the the following prerequisite Cygwin packages using ``setup-x86_64.exe``::

 python36 (or later)
 python3?-devel
 python3?-pip
 python3?-lxml
 python3?-imaging

 (where 3? means match the version of python3 you installed)

 gcc-g++
 ghostscript (<=9.50 or >=9.52-2 see note below)
 libexempi3
 libexempi-devel
 libffi6
 libffi-devel
 pngquant
 qpdf
 libqpdf-devel
 tesseract-ocr
 tesseract-ocr-devel

.. note::

 The Cygwin package for Ghostscript in versions 9.52 and
 9.52-1 contained a bug that caused an exception to occur when
 ocrmypdf invoked gs. Make sure you have either 9.50 (or earlier)
 or 9.52-2 (or later).

Then open a Cygwin terminal (i.e. ``mintty``), run the following commands. Note
that if you are using the version of ``pip`` that was installed with the Cygwin
Python package, the command name will be ``pip3``. If you have since updated
``pip`` (with, for instance ``pip3 install --upgrade pip``) the the command is
likely just ``pip`` instead of ``pip3``:

.. code-block:: bash

 pip3 install wheel
 pip3 install ocrmypdf

The optional dependency "unpaper" that is currently not available under Cygwin.
Without it, certain options such as ``--clean`` will produce an error message.
However, the OCR-to-text-layer functionality is available.

Docker

You can also :ref:`Install the Docker <docker-install>` container on Windows. Ensure that
your command prompt can run the docker "hello world" container.

Installing on FreeBSD
=====================

.. image:: https://repology.org/badge/version-for-repo/freebsd/python:ocrmypdf.svg
 :alt: FreeBSD
 :target: https://repology.org/project/python:ocrmypdf/versions

FreeBSD 11.3, 12.0, 12.1-RELEASE and 13.0-CURRENT are supported. Other
versions likely work but have not been tested.

.. code-block:: bash

 pkg install py37-ocrmypdf

To install a more recent version, you could attempt to first install the system
version with ``pkg``, then use ``pip install --user ocrmypdf``.

Installing the Docker image
===========================

For some users, installing the Docker image will be easier than
installing all of OCRmyPDF's dependencies.

See `OCRmyPDF Docker Image <docker>`__ for more information.

Installing with Python pip
==========================

OCRmyPDF is delivered by PyPI because it is a convenient way to install
the latest version. However, PyPI and ``pip`` cannot address the fact
that ``ocrmypdf`` depends on certain non-Python system libraries and
programs being instsalled.

For best results, first install `your platform's
version <https://repology.org/metapackage/ocrmypdf/versions>`__ of
``ocrmypdf``, using the instructions elsewhere in this document. Then
you can use ``pip`` to get the latest version if your platform version
is out of date. Chances are that this will satisfy most dependencies.

Use ``ocrmypdf --version`` to confirm what version was installed.

Then you can install the latest OCRmyPDF from the Python wheels. First
try:

.. code-block:: bash

 pip3 install --user ocrmypdf

You should then be able to run ``ocrmypdf --version`` and see that the
latest version was located.

Since ``pip3 install --user`` does not work correctly on some platforms,
notably Ubuntu 16.04 and older, and the Homebrew version of Python,
instead use this for a system wide installation:

.. code-block:: bash

 pip3 install ocrmypdf

.. note::

 AArch64 (ARM64) users: this process will be difficult because most
 Python packages are not available as binary wheels for your platform.
 You're probably better off using a platform install on Debian, Ubuntu,
 or Fedora.

Requirements for pip and HEAD install

OCRmyPDF currently requires these external programs and libraries to be
installed, and must be satisfied using the operating system package
manager. ``pip`` cannot provide them.

- Python 3.6 or newer
- Ghostscript 9.15 or newer
- qpdf 8.1.0 or newer
- Tesseract 4.0.0-beta or newer

As of ocrmypdf 7.2.1, the following versions are recommended:

- Python 3.7 or 3.8
- Ghostscript 9.23 or newer
- qpdf 8.2.1
- Tesseract 4.0.0 or newer
- jbig2enc 0.29 or newer
- pngquant 2.5 or newer
- unpaper 6.1

jbig2enc, pngquant, and unpaper are optional. If missing certain
features are disabled. OCRmyPDF will discover them as soon as they are
available.

jbig2enc, if present, will be used to optimize the encoding of
monochrome images. This can significantly reduce the file size of the
output file. It is not required.
`jbig2enc <https://github.com/agl/jbig2enc>`__ is not generally
available for Ubuntu or Debian due to lingering concerns about patent
issues, but can easily be built from source. To add JBIG2 encoding, see
:ref:`jbig2`.

pngquant, if present, is optionally used to optimize the encoding of
PNG-style images in PDFs (actually, any that are that losslessly
encoded) by lossily quantizing to a smaller color palette. It is only
activated then the ``--optimize`` argument is ``2`` or ``3``.

unpaper, if present, enables the ``--clean`` and ``--clean-final``
command line options.

These are in addition to the Python packaging dependencies, meaning that
unfortunately, the ``pip install`` command cannot satisfy all of them.

Installing HEAD revision from sources
=====================================

If you have ``git`` and Python 3.6 or newer installed, you can install
from source. When the ``pip`` installer runs, it will alert you if
dependencies are missing.

If you prefer to build every from source, you will need to `build
pikepdf from
source <https://pikepdf.readthedocs.io/en/latest/installation.html#building-from-source>`__.
First ensure you can build and install pikepdf.

To install the HEAD revision from sources in the current Python 3
environment:

.. code-block:: bash

 pip3 install git+https://github.com/jbarlow83/OCRmyPDF.git

Or, to install in `development
mode <https://pythonhosted.org/setuptools/setuptools.html#development-mode>`__,
allowing customization of OCRmyPDF, use the ``-e`` flag:

.. code-block:: bash

 pip3 install -e git+https://github.com/jbarlow83/OCRmyPDF.git

You may find it easiest to install in a virtual environment, rather than
system-wide:

.. code-block:: bash

 git clone -b master https://github.com/jbarlow83/OCRmyPDF.git
 python3 -m venv
 source venv/bin/activate
 cd OCRmyPDF
 pip3 install .

However, ``ocrmypdf`` will only be accessible on the system PATH when
you activate the virtual environment.

To run the program:

.. code-block:: bash

 ocrmypdf --help

If not yet installed, the script will notify you about dependencies that
need to be installed. The script requires specific versions of the
dependencies. Older version than the ones mentioned in the release notes
are likely not to be compatible to OCRmyPDF.

For development

To install all of the development and test requirements:

.. code-block:: bash

 git clone -b master https://github.com/jbarlow83/OCRmyPDF.git
 python3 -m venv
 source venv/bin/activate
 cd OCRmyPDF
 pip install -e .
 pip install -r requirements/dev.txt -r requirements/test.txt

To add JBIG2 encoding, see :ref:`jbig2`.

Shell completions
=================

Completions for ``bash`` and ``fish`` are available in the project's
``misc/completion`` folder. The ``bash`` completions are likely ``zsh``
compatible but this has not been confirmed. Package maintainers, please
install these at the appropriate locations for your system.

To manually install the ``bash`` completion, copy
``misc/completion/ocrmypdf.bash`` to ``/etc/bash_completion.d/ocrmypdf``
(rename the file).

To manually install the ``fish`` completion, copy
``misc/completion/ocrmypdf.fish`` to
``~/.config/fish/completions/ocrmypdf.fish``.

ocrmypdf-10.3.1+dfsg/docs/introduction.rst

============
Introduction
============

OCRmyPDF is a Python 3 application and library that adds OCR layers to PDFs.

About OCR
=========

`Optical character
recognition <https://en.wikipedia.org/wiki/Optical_character_recognition>`__
is technology that converts images of typed or handwritten text, such as
in a scanned document, to computer text that can be selected, searched and copied.

OCRmyPDF uses
`Tesseract <https://github.com/tesseract-ocr/tesseract>`__, the best
available open source OCR engine, to perform OCR.

.. _raster-vector:

About PDFs
==========

PDFs are page description files that attempts to preserve a layout
exactly. They contain `vector
graphics <http://vector-conversions.com/vectorizing/raster_vs_vector.html>`__
that can contain raster objects such as scanned images. Because PDFs can
contain multiple pages (unlike many image formats) and can contain fonts
and text, it is a good formats for exchanging scanned documents.

|image|

A PDF page might contain multiple images, even if it only appears to
have one image. Some scanners or scanning software will segment pages
into monochromatic text and color regions for example, to improve the
compression ratio and appearance of the page.

Rasterizing a PDF is the process of generating an image suitable for
display or analyzing with an OCR engine. OCR engines like Tesseract work
with images, not vector objects.

About PDF/A
===========

`PDF/A <https://en.wikipedia.org/wiki/PDF/A>`__ is an ISO-standardized
subset of the full PDF specification that is designed for archiving (the
'A' stands for Archive). PDF/A differs from PDF primarily by omitting
features that would make it difficult to read the file in the future,
such as embedded Javascript, video, audio and references to external
fonts. All fonts and resources needed to interpret the PDF must be
contained within it. Because PDF/A disables Javascript and other types
of embedded content, it is probably more secure.

There are various conformance levels and versions, such as "PDF/A-2b".

Generally speaking, the best format for scanned documents is PDF/A. Some
governments and jurisdictions, US Courts in particular, `mandate the use
of PDF/A <https://pdfblog.com/2012/02/13/what-is-pdfa/>`__ for scanned
documents.

Since most people who scan documents are interested in reading them
indefinitely into the future, OCRmyPDF generates PDF/A-2b by default.

PDF/A has a few drawbacks. Some PDF viewers include an alert that the
file is a PDF/A, which may confuse some users. It also tends to produce
larger files than PDF, because it embeds certain resources even if they
are commonly available. PDF/A files can be digitally signed, but may not
be encrypted, to ensure they can be read in the future. Fortunately,
converting from PDF/A to a regular PDF is trivial, and any PDF viewer
can view PDF/A.

What OCRmyPDF does
==================

OCRmyPDF analyzes each page of a PDF to determine the colorspace and
resolution (DPI) needed to capture all of the information on that page
without losing content. It uses
`Ghostscript <http://ghostscript.com/>`__ to rasterize the page, and
then performs on OCR on the rasterized image to create an OCR "layer".
The layer is then grafted back onto the original PDF.

While one can use a program like Ghostscript or ImageMagick to get an
image and put the image through Tesseract, that actually creates a new
PDF and many details may be lost. OCRmyPDF can produce a minimally
changed PDF as output.

OCRmyPDF also some image processing options like deskew which improve
the appearance of files and quality of OCR. When these are used, the OCR
layer is grafted onto the processed image instead.

By default, OCRmyPDF produces archival PDFs – PDF/A, which are a
stricter subset of PDF features designed for long term archives. If
regular PDFs are desired, this can be disabled with
``--output-type pdf``.

Why you shouldn't do this manually
==================================

A PDF is similar to an HTML file, in that it contains document structure
along with images. Sometimes a PDF does nothing more than present a full
page image, but often there is additional content that would be lost.

A manual process could work like either of these:

1. Rasterize each page as an image, OCR the images, and combine the
 output into a PDF. This preserves the layout of each page, but
 resamples all images (possibly losing quality, increasing file size,
 introducing compression artifacts, etc.).
2. Extract each image, OCR, and combine the output into a PDF. This
 loses the context in which images are used in the PDF, meaning that
 cropping, rotation and scaling of pages may be lost. Some scanned
 PDFs use multiple images segmented into black and white, grayscale
 and color regions, with stencil masks to prevent overlap, as this can
 enhance the appearance of a file while reducing file size. Clearly,
 reassembling these images will be easy. This also loses and text or
 vector art on any pages in a PDF with both scanned and pure digital
 content.

In the case of a PDF that is nothing other than a container of images
(no rotation, scaling, cropping, one image per page), the second
approach can be lossless.

OCRmyPDF uses several strategies depending on input options and the
input PDF itself, but generally speaking it rasterizes a page for OCR
and then grafts the OCR back onto the original. As such it can handle
complex PDFs and still preserve their contents as much as possible.

OCRmyPDF also supports a many, many edge cases that have cropped over
several years of development. We support PDF features like images inside
of Form XObjects, and pages with UserUnit scaling. We support rare image
formats like non-monochrome 1-bit images. We warn about files you may
not to OCR. Thanks to pikepdf and QPDF, we auto-repair PDFs that are
damaged. (Not that you need to know what any of these are! You should be
able to throw any PDF at it.)

Limitations
===========

OCRmyPDF is limited by the Tesseract OCR engine. As such it experiences
these limitations, as do any other programs that rely on Tesseract:

- The OCR is not as accurate as commercial solutions such as Abbyy.
- It is not capable of recognizing handwriting.
- It may find gibberish and report this as OCR output.
- If a document contains languages outside of those given in the
 ``-l LANG`` arguments, results may be poor.
- It is not always good at analyzing the natural reading order of
 documents. For example, it may fail to recognize that a document
 contains two columns, and may try to join text across columns.
- Poor quality scans may produce poor quality OCR. Garbage in, garbage
 out.
- It does not expose information about what font family text belongs
 to.

OCRmyPDF is also limited by the PDF specification:

- PDF encodes the position of text glyphs but does not encode document
 structure. There is no markup that divides a document in sections,
 paragraphs, sentences, or even words (since blank spaces are not
 represented). As such all elements of document structure including
 the spaces between words must be derived heuristically. Some PDF
 viewers do a better job of this than others.
- Because some popular open source PDF viewers have a particularly hard
 time with spaces between words, OCRmyPDF appends a space to each text
 element as a workaround (when using ``--pdf-renderer hocr``). While
 this mixes document structure with graphical information that ideally
 should be left to the PDF viewer to interpret, it improves
 compatibility with some viewers and does not cause problems for
 better ones.

Ghostscript also imposes some limitations:

- PDFs containing JBIG2-encoded content will be converted to CCITT
 Group4 encoding, which has lower compression ratios, if Ghostscript
 PDF/A is enabled.
- PDFs containing JPEG 2000-encoded content will be converted to JPEG
 encoding, which may introduce compression artifacts, if Ghostscript
 PDF/A is enabled.
- Ghostscript may transcode grayscale and color images, either lossy to
 lossless or lossless to lossy, based on an internal algorithm. This
 behavior can be suppressed by setting ``--pdfa-image-compression`` to
 ``jpeg`` or ``lossless`` to set all images to one type or the other.
 Ghostscript has no option to maintain the input image's format.
 (Ghostscript 9.25+ can copy JPEG images without transcoding them;
 earlier versions will transcode.)
- Ghostscript's PDF/A conversion removes any XMP metadata that is not
 one of the standard XMP metadata namespaces for PDFs. In particular,
 PRISM Metdata is removed.

Regarding OCRmyPDF itself:

- PDFs that use transparency are not currently represented in the test
 suite

Similar programs
================

To the author's knowledge, OCRmyPDF is the most feature-rich and
thoroughly tested command line OCR PDF conversion tool. If it does not
meet your needs, contributions and suggestions are welcome. If not,
consider one of these similar open source programs:

- pdf2pdfocr
- pdfsandwich
- pypdfocr
- pdfbeads

Web front-ends
==============

The Docker image ``ocrmypdf`` provides a web service front-end
that allows files to submitted over HTTP and the results "downloaded".
This is an HTTP server intended to simplify web services deployments; it
is not intended to be deployed on the public internet and no real
security measures to speak of.

In addition, the following third-party integrations are available:

- `Nextcloud OCR <https://github.com/janis91/ocr>`__ is a free software
 plugin for the Nextcloud private cloud software

OCRmyPDF is not designed to be secure against malware-bearing PDFs (see
`Using OCRmyPDF online <ocr-service>`__). Users should ensure they
comply with OCRmyPDF's licenses and the licenses of all dependencies. In
particular, OCRmyPDF requires Ghostscript, which is licensed under
AGPLv3.

.. |image| image:: images/bitmap_vs_svg.svg

ocrmypdf-10.3.1+dfsg/docs/jbig2.rst

.. _jbig2:

============================
Installing the JBIG2 encoder
============================

Most Linux distributions do not include a JBIG2 encoder since JBIG2
encoding was patented for a long time. All known JBIG2 US patents have
expired as of 2017, but it is possible that unknown patents exist.

JBIG2 encoding is recommended for OCRmyPDF and is used to losslessly
create smaller PDFs. If JBIG2 encoding not available, lower quality
encodings will be used.

JBIG2 decoding is not patented and is performed automatically by most
PDF viewers. It is widely supported has been part of the PDF
specification since 2001.

On macOS, Homebrew packages jbig2enc and OCRmyPDF includes it by
default. The Docker image for OCRmyPDF also builds its own JBIG2 encoder
from source.

For all other Linux, you must build a JBIG2 encoder from source:

.. code-block:: bash

 git clone https://github.com/agl/jbig2enc
 cd jbig2enc
 ./autogen.sh
 ./configure && make
 [sudo] make install

.. _jbig2-lossy:

Lossy mode JBIG2
================

OCRmyPDF provides lossy mode JBIG2 as an advanced feature. Users should
`review the technical concerns with JBIG2 in lossy
mode <https://abbyy.technology/en:kb:tip:jbig2_compression_and_ocr>`__
and decide if this feature is acceptable for their use case.

JBIG2 lossy mode does achieve higher compression ratios than any other
monochrome (bitonal) compression technology; for large text documents
the savings are considerable. JBIG2 lossless still gives great
compression ratios and is a major improvement over the older CCITT G4
standard. As explained above, there is some risk of substitution errors.

To turn on JBIG2 lossy mode, add the argument ``--jbig2-lossy``.
``--optimize {1,2,3}`` are necessary for the argument to take effect
also required. Also, a JBIG2 encoder must be installed as described in
the previous section.

*Due to an oversight, ocrmypdf v7.0 and v7.1 used lossy mode by
default.*

ocrmypdf-10.3.1+dfsg/docs/languages.rst

.. _lang-packs:

====================================
Installing additional language packs
====================================

OCRmyPDF uses Tesseract for OCR, and relies on its language packs for all languages.
On most platforms, English is installed with Tesseract by default, but not always.

Tesseract supports `most
languages <https://github.com/tesseract-ocr/tesseract/blob/master/doc/tesseract.1.asc#languages>`__.
Languages are identified by standardized three-letter codes (called ISO 639-2 Alpha-3).
Tesseract's documentation also lists the three-letter code for your language.
Some are anglicized, e.g. Spanish is ``spa`` rather than ``esp``, while others
are not, e.g. German is ``deu``.

After you have installed a language pack, you can use it ``ocrmypdf -l <language>``,
for example ``ocrmypdf -l spa``. For multilingual documents, you can specify
all languages to be expected, e.g. ``ocrmypdf -l eng+fra`` for English and French.
English is assumed by default unless other language(s) are specified.

For Linux users, you can often find packages that provide language
packs:

Debian and Ubuntu users
=======================

.. code-block:: bash

 # Display a list of all Tesseract language packs
 apt-cache search tesseract-ocr

 # Install Chinese Simplified language pack
 apt-get install tesseract-ocr-chi-sim

You can then pass the ``-l LANG`` argument to OCRmyPDF to give a hint as
to what languages it should search for. Multiple languages can be
requested using either ``-l eng+fre`` (English and French) or
``-l eng -l fre``.

Fedora users
============

.. code-block:: bash

 # Display a list of all Tesseract language packs
 dnf search tesseract

 # Install Chinese Simplified language pack
 dnf install tesseract-langpack-chi_sim

You can then pass the ``-l LANG`` argument to OCRmyPDF to give a hint as
to what languages it should search for. Multiple languages can be
requested using either ``-l eng+fre`` (English and French) or
``-l eng -l fre``.

macOS users
===========

You can install additional language packs by
:ref:`installing Tesseract using Homebrew with all language packs <macos-all-languages>`.

Docker users
============

Users of the OCRmyPDF Docker image should install language packs into a
derived Docker image as
:ref:`described in that section <docker-lang-packs>`.

Windows users
=============

The Tesseract installer provided by Chocolatey already includes 100 languages.

ocrmypdf-10.3.1+dfsg/docs/optimizer.rst

================
PDF optimization
================

OCRmyPDF includes an image-oriented PDF optimizer. By default, the optimizer
runs with safe settings with the goal of improving compression at no loss of
quality. At higher optimization levels, lossy optimizations may be applied and
tuned. Optimization occurs after OCR, and only if OCR succeeded. It does not
perform other possible optimizations such as deduplicating resources,
consolidating fonts, simplifying vector drawings, or anything of that nature.

Optimization ranges from ``-O0`` through ``-O3``, where ``0`` disables
optimization and ``3`` implements all options. ``1``, the default, performs only
safe and lossless optimizations. (This is similar to GCC's optimization
parameter.) The exact type of optimizations performed will vary over time.

PDF optimization requires third-party, optional tools for certain optimizations.
If these are not installed or cannot be found by OCRmyPDF, optimization will not
be as good.

Optimizations that always occurs
================================

OCRmyPDF will automatically replace obsolete or inferior compression schemes
such as RLE or LZW with superior schemes such as Deflate and converting
monochrome images to CCITT G4. Since this is harmless it always occurs and there
is no way to disable it. Other non-image compressed objects are compressed as
well.

Fast web view
=============

OCRmyPDF automatically optimizes PDFs for "fast web view" in Adobe Acrobat's
parlance, or equivalently, linearizes PDFs so that the resources they reference
are presented in the order a viewer needs them for sequential display. This
reduces the latency of viewing a PDF both online and from local storage. This
actually slightly increases the file size.

To disable this optimization and all others, use ``ocrmypdf --optimize 0 ...``
or the shorthand ``-O0``.

Lossless optimizations
======================

At optimization level ``-O1`` (the default), OCRmyPDF will also attempt lossless
image optimization.

If a JBIG2 encoder is available, then monochrome images will be converted to
JBIG2, with the potential for huge savings on large black and white images,
since JBIG2 is far more efficient than any other monochrome (bi-level)
compression. (All known US patents related to JBIG2 have probably expired, but
it remains the responsibility of the user to supply a JBIG2 encoder such as
`jbig2enc <https://github.com/agl/jbig2enc>`__. OCRmyPDF does not implement
JBIG2 encoding on its own.)

OCRmyPDF currently does not attempt to recompress losslessly compressed objects
more aggressively.

Lossy optimizations
===================

At optimization level ``-O2`` and ``-O3``, OCRmyPDF will some attempt lossy
image optimization.

If ``pngquant`` is installed, OCRmyPDF will use it to perform quantize paletted
images to reduce their size.

The quality of JPEGs may be lowered, on the assumption that a lower quality
image may be suitable for storage after OCR.

It is not possible to optimize all image types. Uncommon image types may be
skipped by the optimizer.

OCRmyPDF provides :ref:`lossy mode JBIG2 <jbig2-lossy>` as an advanced feature
that additional requires the argument ``--jbig2-lossy``.

ocrmypdf-10.3.1+dfsg/docs/pdfsecurity.rst

===================
PDF security issues
===================

 OCRmyPDF should only be used on PDFs you trust. It is not designed to
 protect you against malware.

Recognizing that many users have an interest in handling PDFs and
applying OCR to PDFs they did not generate themselves, this article
discusses the security implications of PDFs and how users can protect
themselves.

The disclaimer applies: this software has no warranties of any kind.

PDFs may contain malware
========================

PDF is a rich, complex file format. The official PDF 1.7 specification,
ISO 32000:2008, is hundreds of pages long and references several annexes
each of which are similar in length. PDFs can contain video, audio, XML,
JavaScript and other programming, and forms. In some cases, they can
open internet connections to pre-selected URLs. All of these possible
attack vectors.

In short, PDFs `may contain
viruses <https://security.stackexchange.com/questions/64052/can-a-pdf-file-contain-a-virus>`__.

This
`article <https://theinvisiblethings.blogspot.ca/2013/02/converting-untrusted-pdfs-into-trusted.html>`__
describes a high-paranoia method which allows potentially hostile PDFs
to be viewed and rasterized safely in a disposable virtual machine. A
trusted PDF created in this manner is converted to images and loses all
information making it searchable and losing all compression. OCRmyPDF
could be used restore searchability.

How OCRmyPDF processes PDFs
===========================

OCRmyPDF must open and interpret your PDF in order to insert an OCR
layer. First, it runs all PDFs through
`pikepdf <https://github.com/pikepdf/pikepdf>`__, a library based on
`qpdf <https://github.com/qpdf/qpdf>`__, a program that repairs PDFs
with syntax errors. This is done because, in the author's experience, a
significant number of PDFs in the wild especially those created by
scanners are not well-formed files. qpdf makes it more likely that
OCRmyPDF will succeed, but offers no security guarantees. qpdf is also
used to split the PDF into single page PDFs.

Finally, OCRmyPDF rasterizes each page of the PDF using
`Ghostscript <http://ghostscript.com/>`__ in ``-dSAFER`` mode.

Depending on the options specified, OCRmyPDF may graft the OCR layer
into the existing PDF or it may essentially reconstruct ("re-fry") a
visually identical PDF that may be quite different at the binary level.
That said, OCRmyPDF is not a tool designed for sanitizing PDFs.

.. _ocr-service:

Using OCRmyPDF online or as a service
=====================================

OCRmyPDF is not designed for use as a public web service where a
malicious user could upload a chosen PDF. In particular, it is not
necessarily secure against PDF malware or PDFs that cause denial of
service. OCRmyPDF relies on Ghostscript, and therefore, if deployed
online one should be prepared to comply with Ghostscript's Affero GPL
license, OCRmyPDF's GPL license, and any other licenses.

Setting aside these concerns, a side effect of OCRmyPDF is it may
incidentally sanitize PDFs that contain certain types of malware. It
repairs the PDF with pikepdf/libqpdf, which could correct malformed PDF
structures that are part of an attack. When PDF/A output is selected
(the default), the input PDF is partially reconstructed by Ghostscript.
When ``--force-ocr`` is used, all pages are rasterized and reconverted
to PDF, which could remove malware in embedded images.

OCRmyPDF should be relatively safe to use in a trusted intranet, with
some considerations:

Limiting CPU usage

OCRmyPDF will attempt to use all available CPUs and storage, so
executing ``nice ocrmypdf`` or limiting the number of jobs with the
``-j`` argument may ensure the server remains available. Another option
would be run OCRmyPDF jobs inside a Docker container, a virtual machine,
or a cloud instance, which can impose its own limits on CPU usage and be
terminated "from orbit" if it fails to complete.

Temporary storage requirements

OCRmyPDF will use a large amount of temporary storage for its work,
proportional to the total number of pixels needed to rasterize the PDF.
The raster image of a 8.5×11" color page at 300 DPI takes 25 MB
uncompressed; OCRmyPDF saves its intermediates as PNG, but that still
means it requires about 9 MB per intermediate based on average
compression ratios. Multiple intermediates per page are also required,
depending on the command line given. A rule of thumb would be to allow
100 MB of temporary storage per page in a file – meaning that a small
cloud servers or small VM partitions should be provisioned with plenty
of extra space, if say, a 500 page file might be sent.

To check temporary storage usage on actual files, run
``ocrmypdf -k ...`` which will preserve and print the path to temporary
storage when the job is done.

To change where temporary files are stored, change the ``TMPDIR``
environment variable for ocrmypdf's environment. (Python's
``tempfile.gettempdir()`` returns the root directory in which temporary
files will be stored.) For example, one could redirect ``TMPDIR`` to a
large RAM disk to avoid wear on HDD/SSD and potentially improve
performance. On Amazon Web Services, ``TMPDIR`` can be set to `empheral
storage <https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html>`__.

Timeouts

To prevent excessively long OCR jobs consider setting
``--tesseract-timeout`` and/or ``--skip-big`` arguments. ``--skip-big``
is particularly helpful if your PDFs include documents such as reports
on standard page sizes with large images attached - often large images
are not worth OCR'ing anyway.

Commercial alternatives

The author also provides professional services that include OCR and
building databases around PDFs, and is happy to provide consultation.

Abbyy Cloud OCR is a viable commercial alternative with a web services
API.

Password protection, digital signatures and certification
===

Password protected PDFs usually have two passwords, and owner and user
password. When the user password is set to empty, PDF readers will open
the file automatically and marked it as "(SECURED)". While not as
reliable as a digital signature, this indicates that whoever set the
password approved of the file at that time. When the user password is
set, the document cannot be viewed without the password.

Either way, OCRmyPDF does not remove passwords from PDFs and exits with
an error on encountering them.

``qpdf`` can remove passwords. If the owner and user password are set, a
password is required for ``qpdf``. If only the owner password is set, then the
password can be stripped, even if one does not have the owner password.

After OCR is applied, password protection is not permitted on PDF/A
documents but the file can be converted to regular PDF.

Many programs exist which are capable of inserting an image of someone's
signature. On its own, this offers no security guarantees. It is trivial
to remove the signature image and apply it to other files. This practice
offers no real security.

Important documents can be digitally signed and certified to attest to
their authorship. OCRmyPDF cannot do this. Open source tools such as
pdfbox (Java) have this capability as does Adobe Acrobat.

ocrmypdf-10.3.1+dfsg/docs/performance.rst

===========
Performance
===========

Some users have noticed that current versions of OCRmyPDF do not run as quickly
as some older versions (specifically 6.x and older). This is because OCRmyPDF
added image optimization as a postprocessing step, and it is enabled by default.

Speed
=====

If running OCRmyPDF quickly is your main goal, you can use settings such as:

* ``--optimize 0`` to disable file size optimization
* ``--output-type pdf`` to disable PDF/A generation
* ``--fast-web-view 0`` to disable fast web view optimization
* ``--skip-big`` to skip large images, if some pages have large images

You can also avoid:

* ``--force-ocr``
* Image preprocessing

ocrmypdf-10.3.1+dfsg/docs/pipeline.svg

 Pipeline:

 clustertasks

 Pipeline:

 t0

 ocrmypdf.pipeline.triage

 t1

 ocrmypdf.pipeline.repair_and_parse_pdf

 t0->t1

 t2

 ocrmypdf.pipeline.marker_pages

 t1->t2

 t16

 ocrmypdf.pipeline.weave_layers

 t1->t16

 t17

 ocrmypdf.pipeline.generate_postscript_stub

 t1->t17

 t18

 ocrmypdf.pipeline.metadata_fixup

 t1->t18

 t3

 ocrmypdf.pipeline.ocr_or_skip

 t2->t3

 t4

 ocrmypdf.pipeline.rasterize_preview

 t3->t4

 t5

 ocrmypdf.pipeline.orient_page

 t3->t5

 t4->t5

 t6

 ocrmypdf.pipeline.rasterize_with_ghostscript

 t5->t6

 t13

 ocrmypdf.pipeline.select_image_layer

 t5->t13

 t7

 ocrmypdf.pipeline.preprocess_remove_background

 t6->t7

 t12

 ocrmypdf.pipeline.select_visible_page_image

 t6->t12

 t8

 ocrmypdf.pipeline.preprocess_deskew

 t7->t8

 t7->t12

 t9

 ocrmypdf.pipeline.preprocess_clean

 t8->t9

 t8->t12

 t10

 ocrmypdf.pipeline.select_ocr_image

 t9->t10

 t9->t12

 t11

 ocrmypdf.pipeline.ocr_tesseract_hocr

 t10->t11

 t15

 ocrmypdf.pipeline.ocr_tesseract_textonly_pdf

 t10->t15

 t14

 ocrmypdf.pipeline.render_hocr_page

 t11->t14

 t19

 ocrmypdf.pipeline.merge_sidecars

 t11->t19

 t14->t16

 t15->t16

 t15->t19

 t12->t13

 t13->t16

 t16->t18

 t17->t18

 t20

 ocrmypdf.pipeline.optimize_pdf

 t18->t20

 t21

 ocrmypdf.pipeline.copy_final

 t20->t21

ocrmypdf-10.3.1+dfsg/docs/plugins.rst

=======
Plugins
=======

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
 NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 RFC 2119.

You can use plugins to customize the behavior of OCRmyPDF at certain points of
interest.

Currently, it is possible to:

- add new command line arguments
- override the decision for whether or not to perform OCR on a particular file
- modify the image is about to be sent for OCR
- modify the page image before it is converted to PDF
- replace the Tesseract OCR with another OCR engine that has similar behavior
- replace Ghostscript with another PDF to image converter (rasterizer) or
 PDF/A generator

OCRmyPDF plugins are based on the Python ``pluggy`` package and conform to its
conventions. Note that: plugins installed with as setuptools entrypoints are
not checked currently, because OCRmyPDF assumes you may not want to enable
plugins for all files.

Script plugins
==============

Script plugins may be called from the command line, by specifying the name of a file.
Script plugins may be convenient for informal or "one-off" plugins, when a certain
batch of files needs a special processing step for example.

.. code-block:: bash

 ocrmypdf --plugin ocrmypdf_example_plugin.py input.pdf output.pdf

Multiple plugins may be installed by issuing the ``--plugin`` argument multiple times.

Packaged plugins
================

Installed plugins may be installed into the same virtual environment as OCRmyPDF
is installed into. They may be invoked using Python standard module naming.
If you are intending to distribute a plugin, please package it.

.. code-block:: bash

 ocrmypdf --plugin ocrmypdf_fancypants.pockets.contents input.pdf output.pdf

OCRmyPDF does not automatically import plugins, because the assumption is that
plugins affect different files differently and you may not want them activated
all the time. The command line or ``ocrmypdf.ocr(plugin='...')`` must call
for them.

Third parties that wish to distribute packages for ocrmypdf should package them
as packaged plugins, and these modules should begin with the name ``ocrmypdf_``
similar to ``pytest`` packages such as ``pytest-cov`` (the package) and
``pytest_cov`` (the module).

.. note::

 We strongly recommend plugin authors name their plugins with the prefix
 ``ocrmypdf-`` (for the package name on PyPI) and ``ocrmypdf_`` (for the
 module), just like pytest plugins.

Plugin requirements
===================

OCRmyPDF generally uses multiple worker processes. When a new worker is started,
Python will import all plugins again, including all plugins that were imported earlier.
This means that the global state of a plugin in one worker will not be shared with
other workers. As such, plugin hook implementations should be stateless, relying
only on their inputs. Hook implementations may use their input parameters to
to obtain a reference to shared state prepared by another hook implementation.
Plugins must expect that other instances of the plugin will be running
simultaneously.

The ``context`` object that is passed to many hooks can be used to share information
about a file being worked on. Plugins must write private, plugin-specific data to
a subfolder named ``{options.work_folder}/ocrmypdf-plugin-name``. Plugins MAY
read and write files in ``options.work_folder``, but should be aware that their
semantics are subject to change.

OCRmyPDF will delete ``options.work_folder`` when it has finished OCRing
a file, unless invoked with ``--keep-temporary-files``.

The documentation for some plugin hooks contain a detailed description of the
execution context in which they will be called.

Plugins should be prepared to work whether executed in worker threads or worker
processes. Generally, OCRmyPDF uses processes, but has a semi-hidden threaded
argument that simplifies debugging.

Plugin hooks
============

A plugin may provide the following hooks. Hooks must be decorated with
``ocrmypdf.hookimpl``, for example:

.. code-block:: python

 from ocrmpydf import hookimpl

 @hookimpl
 def add_options(parser):
 pass

The following is a complete list of hooks that are available, and when
they are called.

.. _firstresult:

Note on firstresult hooks

If multiple plugins install implementations for this hook, they will be called in
the reverse of the order in which they are installed (i.e., last plugin wins).
When each hook implementation is called in order, the first implementation that
returns a value other than ``None`` will "win" and prevent execution of all other
hooks. As such, you cannot "chain" a series of plugin filters together in this
way. Instead, a single hook implementation should be responsible for any such
chaining operations.

Custom command line arguments

.. autofunction:: ocrmypdf.pluginspec.add_options

.. autofunction:: ocrmypdf.pluginspec.check_options

Applying special behavior before processing

.. autofunction:: ocrmypdf.pluginspec.validate

PDF page to image

.. autofunction:: ocrmypdf.pluginspec.rasterize_pdf_page

Modifying intermediate images

.. autofunction:: ocrmypdf.pluginspec.filter_ocr_image

.. autofunction:: ocrmypdf.pluginspec.filter_page_image

OCR engine

.. autofunction:: ocrmypdf.pluginspec.get_ocr_engine

.. autoclass:: ocrmypdf.pluginspec.OcrEngine
 :members:

 .. automethod:: __str__

.. autoclass:: ocrmypdf.pluginspec.OrientationConfidence

PDF/A production

.. autofunction:: ocrmypdf.pluginspec.generate_pdfa

ocrmypdf-10.3.1+dfsg/docs/release_notes.rst

=============
Release notes
=============

OCRmyPDF uses `semantic versioning <http://semver.org/>`__ for its
command line interface and its public API.

OCRmyPDF's output messages are not considered part of the stable interface -
that is, output messages may be improved at any release level, so parsing them
may be unreliable. Use the API to depend on precise behavior.

The public API may be useful in scripts that launch OCRmyPDF processes or that
wish to use some of its features for working with PDFs.

Note that it is licensed under GPLv3, so scripts that
``import ocrmypdf`` and are released publicly should probably also be
licensed under GPLv3.

v10.3.1
=======

- Fixed a number of test suite failures with pdfminer.six older than veresion 20200420.
- Enabled support for pdfminer.six 20200720.

v10.3.0
=======

- Fixed an issue where we would consider images that were already JBIG2-encoded
 for optimization, potentially producing a less optimized image than the original.
 We do not believe this issue would ever cause an image to loss fidelity.
- Where available, pikepdf memory mapping is now used. This improves performance.
- When Leptonica 1.79+ is installed, use its new error handling API to avoid
 a "messy" redirection of stderr which was necessary to capture its error
 messages.
- For older versions of Leptonica, added a new thread level lock. This fixes a
 possible race condition in handling error conditions in Leptonica (although
 there is no evidence it ever caused issues in practice).
- Documentation improvements and more type hinting.

v10.2.1
=======

- Disabled calculation of text box order with pdfminer. We never needed this result
 and it is expensive to calculate on files with complex pre-existing text.
- Fixed plugin manager to accept ``Path(plugin)`` as a path to a plugin.
- Fixed some typing errors.
- Documentation improvements.

v10.2.0
=======

- Update Docker image to use Ubuntu 20.04.
- Fixed issue PDF/A acquires title "Untitled" after conversion. (#582)
- Fixed a problem where, when using ``--pdf-renderer hocr``, some text would
 be missing from the output when using a more recent version of Tesseract.
 Tesseract began adding more detailed markup about the semantics of text
 that our HOCR transform did not recognize, so it ignored them. This option is
 not the default. If necessary ``--redo-ocr`` also redoing OCR to fix such issues.
- Fixed an error in Python 3.9 beta, due to removal of deprecated
 ``Element.getchildren()``. (#584)
- Implemented support using the API with ``BytesIO`` and other file stream objects.
 (#545)

v10.1.1
=======

- Fixed ``OMP_THREAD_LIMIT`` set to invalid value error messages on some input
 files. (The error was harmless, apart from less than optimal performance in
 some cases.)

v10.1.0
=======

- Previously, we ``--clean-final`` would cause an unpaper-cleaned page image to
 be produced twice, which was necessary in some cases but not in general. We
 now take this optimization opportunity and reuse the image if possible.
- We now provide PNG files as input to unpaper, since it accepts them, instead
 of generating PPM files which can be very large. This can improve performance
 and temporary disk usage.
- Documentation updated for plugins.

v10.0.1
=======

- Fixed regression when ``-l lang1+lang2`` is used from command line.

v10.0.0
=======

Breaking changes

- Support for pdfminer.six version 20181108 has been dropped, along with a
 monkeypatch that made this version work.
- Output messages are now displayed in color (when supported by the terminal)
 and prefixes describing the severity of the message are removed. As such
 programs that parse OCRmyPDF's log message will need to be revised. (Please
 consider using OCRmyPDF as a library instead.)
- The minimum version for certain dependencies has increased.
- Many API changes; see developer changes.
- The Python libraries pluggy and coloredlogs are now required.

New features and improvements

- PDF page scanning is now parallelized across CPUs, speeding up this phase
 dramatically for files with a high page counts.
- PDF page scanning is optimized, addressing some performance regressions.
- PDF page scanning is no longer run on pages that are not selected when the
 ``--pages`` argument is used.
- PDF page scanning is now independent of Ghostscript, ending our past reliance
 on this occasionally unstable feature in Ghostscript.
- A plugin architecture has been added, currently allowing one to more easily
 use a different OCR engine or PDF renderer from Tesseract and Ghostscript,
 respectively. A plugin can also override some decisions, such changing
 the OCR settings after initial scanning.
- Colored log messages.

Developer changes

- The test spoofing mechanism, used to test correct handling of failures in
 Tesseract and Ghostscript, has been removed in favor of using plugins for
 testing. The spoofing mechanism was fairly complex and required many special
 hacks for Windows.
- Code describing the resolution in DPI of images was refactored into a
 ``ocrmypdf.helpers.Resolution`` class.
- The module ``ocrmypdf._exec`` is now private to OCRmyPDF.
- The ``ocrmypdf.hocrtransform`` module has been updated to follow PEP8 naming
 conventions.
- Ghostscript is no longer used for finding the location of text in PDFs, and
 APIs related to this feature have been removed.
- Lots of internal reorganization to support plugins.

v9.8.2
======

- Fixed an issue where OCRmyPDF would ignore text inside Form XObject when
 making certain decisions about whether a document already had text.
- Fixed file size increase warning to take overhead of small files into account.
- Added instructions for installing on Cygwin.

v9.8.1
======

- Fixed an issue where unexpected files in the ``%PROGRAMFILES%\gs`` directory
 (Windows) caused an exception.
- Mark pdfminer.six 20200517 as supported.
- If jbig2enc is missing and optimization is requested, a warning is issued
 instead of an error, which was the intended behavior.
- Documentation updates.

v9.8.0
======

- Fixed issue where only the first PNG (FlateDecode) image in a file would be
 considered for optimization. File sizes should be improved from here on.
- Fixed a startup crash when the chosen language was Japanese (#543).
- Added options to configure polling and log level to watcher.py.

v9.7.2
======

- Fixed an issue with ``ocrmypdf.ocr(...language=)`` not accepting a list of
 languages as documented.
- Updated setup.py to confirm that pdfminer.six version 20200402 is supported.

v9.7.1
======

- Fixed version check failing when used with qpdf 10.0.0.
- Added some missing type annotations.
- Updated documentation to warn about need for "ifmain" guard and Windows.

v9.7.0
======

- Fixed an error in watcher.py if ``OCR_JSON_SETTINGS`` was not defined.
- Ghostscript 9.51 is now blacklisted, due to numerous problems with this version.
- Added a workaround for a problem with "txtwrite" in Ghostscript 9.52.
- Fixed an issue where the incorrect number of threads used was shown when
 ``OMP_THREAD_LIMIT`` was manipulated.
- Removed a possible performance bottlenecks for files that use hundreds to
 thousands of images on the same page.
- Documentation improvements.
- Optimization will now be applied to some monochrome images that have a color
 profile defined instead of only black and white.
- ICC profiles are consulted when determining the simplified colorspace of an
 image.

v9.6.1
======

- Documentation improvements - thanks to many users for their contributions!

 - Fixed installation instructions for ArchLinux (@pigmonkey)
 - Updated installation instructions for FreeBSD and other OSes (@knobix)
 - Added instructions for using Docker Compose with watchdog (@ianalexander,
 @deisi)
 - Other miscellany (@mb720, @toy, @caiofacchinato)
 - Some scripts provided in the documentation have been migrated out so that
 they can be copied out as whole files, and to ensure syntax checking
 is maintained.

- Fixed an error that caused bash completions to fail on macOS. (#502, #504;
 @AlexanderWillner)
- Fixed a rare case where OCRmyPDF threw an exception while processing a PDF
 with the wrong object type in its ``/Trailer /Info``. The error is now logged
 and incorrect object is ignored. (#497)
- Removed potentially non-free file ``enron1.pdf`` and simplified the test that
 used it.
- Removed potentially non-free file ``misc/media/logo.afdesign``.

v9.6.0
======

- Fixed a regression with transferring metadata from the input PDF to the output
 PDF in certain situations.
- pdfminer.six is now supported up to version 2020-01-24.
- Messages are explaining page rotation decisions are now shown at the standard
 verbosity level again when ``--rotate-pages``. In some previous version they
 were set to debug level messages that only appeared with the parameter ``-v1``.
- Improvements to ``misc/watcher.py``. Thanks to @ianalexander and @svenihoney.
- Documentation improvements.

v9.5.0
======

- Added API functions to measure OCR quality.
- Modest improvements to handling PDFs with difficult/non compliant metadata.

v9.4.0
======

- Updated recommended dependency versions.
- Improvements to test coverage and changes to facilitate better measurement of
 test coverage, such as when tests run in subprocesses.
- Improvements to error messages when Leptonica is not installed correctly.
- Fixed use of pytest "session scope" that may have caused some intermittent
 CI failures.
- When the argument ``--keep-temporary-files`` or verbosity is set to ``-v1``,
 a debug log file is generated in the working temporary folder.

v9.3.0
======

- Improved native Windows support: we now check in the obvious places in
 the "Program Files" folders installations of Tesseract and Ghostscript,
 rather than relying on the user to edit ``PATH`` to specify their location.
 The ``PATH`` environment variable can still be used to differentiate when
 multiple installations are present or the programs are installed to non-
 standard locations.
- Fixed an exception on parsing Ghostscript error messages.
- Added an improved example demonstrating how to set up a watched folder
 for automated OCR processing (thanks to @ianalexander for the contribution).

v9.2.0
======

- Native Windows is now supported.
- Continuous integration moved to Azure Pipelines.
- Improved test coverage and speed of tests.
- Fixed an issue where a page that was originally a JPEG would be saved as a
 PNG, increasing file size. This occurred only when a preprocessing option
 was selected along with ``--output-type=pdf`` and all images on the original
 page were JPEGs. Regression since v7.0.0.
- OCRmyPDF no longer depends on the QPDF executable ``qpdf`` or ``libqpdf``.
 It uses pikepdf (which in turn depends on ``libqpdf``). Package maintainers
 should adjust dependencies so that OCRmyPDF no longer calls for libqpdf on
 its own. For users of Python binary wheels, this change means a separate
 installation of QPDF is no longer necessary. This change is mainly to
 simplify installation on Windows.
- Fixed a rare case where log messages from Tesseract would be discarded.
- Fixed incorrect function signature for pixFindPageForeground, causing
 exceptions on certain platforms/Leptonica versions.

v9.1.1
======

- Expand the range of pdfminer.six versions that are supported.
- Fixed Docker build when using pikepdf 1.7.0.
- Fixed documentation to recommend using pip from get-pip.py.

v9.1.0
======

- Improved diagnostics when file size increases at output. Now warns if JBIG2
 or pngquant were not available.
- pikepdf 1.7.0 is now required, to pick up changes that remove the need for
 a source install on Linux systems running Python 3.8.

v9.0.5
======

- The Alpine Docker image (jbarlow83/ocrmypdf-alpine) has been dropped due to
 the difficulties of supporting Alpine Linux.
- The primary Docker image (jbarlow83/ocrmypdf) has been improved to take on
 the extra features that used to be exclusive to the Alpine image.
- No changes to application code.
- pdfminer.six version 20191020 is now supported.

v9.0.4
======

- Fixed compatibility with Python 3.8 (but requires source install for the moment).
- Fixed Tesseract settings for ``--user-words`` and ``--user-patterns``.
- Changed to pikepdf 1.6.5 (for Python 3.8).
- Changed to Pillow 6.2.0 (to mitigate a security vulnerability in earlier Pillow).
- A debug message now mentions when English is automatically selected if the locale
 is not English.

v9.0.3
======

- Embed an encoded version of the sRGB ICC profile in the intermediate
 Postscript file (used for PDF/A conversion). Previously we included the
 filename, which required Postscript to run with file access enabled. For
 security, Ghostscript 9.28 enables ``-dSAFER`` and as such, no longer
 permits access to any file by default. This fix is necessary for
 compatibility with Ghostscript 9.28.
- Exclude a test that sometimes times out and fails in continuous integration
 from the standard test suite.

v9.0.2
======

- The image optimizer now skips optimizing flate (PNG) encoded images in some
 situations where the optimization effort was likely wasted.
- The image optimizer now ignores images that specify arbitrary decode arrays,
 since these are rare.
- Fixed an issue that caused inversion of black and white in monochrome images.
 We are not certain but the problem seems to be linked to Leptonica 1.76.0 and
 older.
- Fixed some cases where the test suite failed if
 English or German Tesseract language packs were not installed.
- Fixed a runtime error if the Tesseract English language is not installed.
- Improved explicit closing of Pillow images after use.
- Actually fixed of Alpine Docker image build.
- Changed to pikepdf 1.6.3.

v9.0.1
======

- Fixed test suite failing when either of optional dependencies unpaper and
 pngquant were missing.
- Attempted fix of Alpine Docker image build.
- Documented that FreeBSD ports are now available.
- Changed to pikepdf 1.6.1.

v9.0.0
======

Breaking changes

- The ``--mask-barcodes`` experimental feature has been dropped due to poor
 reliability and occasional crashes, both due to the underlying library that
 implements this feature (Leptonica).
- The ``-v`` (verbosity level) parameter now accepts only ``0``, ``1``, and
 ``2``.
- Dropped support for Tesseract 4.00.00-alpha releases. Tesseract 4.0 beta and
 later remain supported.
- Dropped the ``ocrmypdf-polyglot`` and ``ocrmypdf-webservice`` images.

New features

- Added a high level API for applications that want to integrate OCRmyPDF.
 Special thanks to Martin Wind (@mawi1988) whose made significant contributions
 to this effort. OCRmyPDF is GPLv3-licensed.
- Added progress bars for long-running steps. ■■■■■■■□□
- We now create linearized ("fast web view") PDFs by default. The new parameter
 ``--fast-web-view`` provides control over when this feature is applied.
- Added a new ``--pages`` feature to limit OCR to only a specific page range.
 The list may contain commas or single pages, such as ``1, 3, 5-11``.
- When the number of pages is small compared to the number of allowed jobs, we
 run Tesseract in multithreaded (OpenMP) mode when available. This should
 improve performance on files with low page counts.
- Removed dependency on ``ruffus``, and with that, the non-reentrancy
 restrictions that previous made an API impossible.
- Output and logging messages overhauled so that ocrmypdf may be integrated
 into applications that use the logging module.
- pikepdf 1.6.0 is required.
- Added a logo. 😊

Bug fixes

- Pages with vector artwork are treated as full color. Previously, vectors
 were ignored when considering the colorspace needed to cover a page, which
 could cause loss of color under certain settings.
- Test suite now spawns processes less frequently, allowing more accurate
 measurement of code coverage.
- Improved test coverage.
- Fixed a rare division by zero (if optimization produced an invalid file).
- Updated Docker images to use newer versions.
- Fixed images encoded as JBIG2 with a colorspace other than ``/DeviceGray``
 were not interpreted correctly.
- Fixed a OCR text-image registration (i.e. alignment) problem when the page
 when MediaBox had a nonzero corner.

v8.3.2
======

- Dropped workaround for macOS that allowed it work without pdfminer.six,
 now a proper sdist release of pdfminer.six is available.

- pikepdf 1.5.0 is now required.

v8.3.1
======

- Fixed an issue where PDFs with malformed metadata would be rendered as
 blank pages. `#398 <https://github.com/jbarlow83/OCRmyPDF/issues/398>`_.

v8.3.0
======

- Improved the strategy for updating pages when a new image of the page
 was produced. We now attempt to preserve more content from the
 original file, for annotations in particular.
- For PDFs with more than 100 pages and a sequence where one PDF page
 was replaced and one or more subsequent ones were skipped, an
 intermediate file would be corrupted while grafting OCR text, causing
 processing to fail. This is a regression, likely introduced in
 v8.2.4.
- Previously, we resized the images produced by Ghostscript by a small
 number of pixels to ensure the output image size was an exactly what
 we wanted. Having discovered a way to get Ghostscript to produce the
 exact image sizes we require, we eliminated the resizing step.
- Command line completions for ``bash`` are now available, in addition
 to ``fish``, both in ``misc/completion``. Package maintainers, please
 install these so users can take advantage.
- Updated requirements.
- pikepdf 1.3.0 is now required.

v8.2.4
======

- Fixed a false positive while checking for a certain type of PDF that
 only Acrobat can read. We now more accurately detect Acrobat-only
 PDFs.
- OCRmyPDF holds fewer open file handles and is more prompt about
 releasing those it no longer needs.
- Minor optimization: we no longer traverse the table of contents to
 ensure all references in it are resolved, as changes to libqpdf have
 made this unnecessary.
- pikepdf 1.2.0 is now required.

v8.2.3
======

- Fixed that ``--mask-barcodes`` would occasionally leave a unwanted
 temporary file named ``junkpixt`` in the current working folder.
- Fixed (hopefully) handling of Leptonica errors in an environment
 where a non-standard ``sys.stderr`` is present.
- Improved help text for ``--verbose``.

v8.2.2
======

- Fixed a regression from v8.2.0, an exception that occurred while
 attempting to report that ``unpaper`` or another optional dependency
 was unavailable.
- In some cases, ``ocrmypdf [-c|--clean]`` failed to exit with an error
 when ``unpaper`` is not installed.

v8.2.1
======

- This release was canceled.

v8.2.0
======

- A major improvement to our Docker image is now available thanks to
 hard work contributed by @mawi12345. The new Docker image,
 ocrmypdf-alpine, is based on Alpine Linux, and includes most of the
 functionality of three existed images in a smaller package. This
 image will replace the main Docker image eventually but for now all
 are being built. `See documentation for
 details <https://ocrmypdf.readthedocs.io/en/latest/docker.html>`__.
- Documentation reorganized especially around the use of Docker images.
- Fixed a problem with PDF image optimization, where the optimizer
 would unnecessarily decompress and recompress PNG images, in some
 cases losing the benefits of the quantization it just had just
 performed. The optimizer is now capable of embedding PNG images into
 PDFs without transcoding them.
- Fixed a minor regression with lossy JBIG2 image optimization. All
 JBIG2 candidates images were incorrectly placed into a single
 optimization group for the whole file, instead of grouping pages
 together. This usually makes a larger JBIG2Globals dictionary and
 results in inferior compression, so it worked less well than
 designed. However, quality would not be impacted. Lossless JBIG2 was
 entirely unaffected.
- Updated dependencies, including pikepdf to 1.1.0. This fixes
 `#358 <https://github.com/jbarlow83/OCRmyPDF/issues/358>`__.
- The install-time version checks for certain external programs have
 been removed from setup.py. These tests are now performed at
 run-time.
- The non-standard option to override install-time checks
 (``setup.py install --force``) is now deprecated and prints a
 warning. It will be removed in a future release.

v8.1.0
======

- Added a feature, ``--unpaper-args``, which allows passing arbitrary
 arguments to ``unpaper`` when using ``--clean`` or ``--clean-final``.
 The default, very conservative unpaper settings are suppressed.
- The argument ``--clean-final`` now implies ``--clean``. It was
 possible to issue ``--clean-final`` on its before this, but it would
 have no useful effect.
- Fixed an exception on traversing corrupt table of contents entries
 (specifically, those with invalid destination objects)
- Fixed an issue when using ``--tesseract-timeout`` and image
 processing features on a file with more than 100 pages.
 `#347 <https://github.com/jbarlow83/OCRmyPDF/issues/347>`__
- OCRmyPDF now always calls ``os.nice(5)`` to signal to operating
 systems that it is a background process.

v8.0.1
======

- Fixed an exception when parsing PDFs that are missing a required
 field. `#325 <https://github.com/jbarlow83/OCRmyPDF/issues/325>`__
- pikepdf 1.0.5 is now required, to address some other PDF parsing
 issues.

v8.0.0
======

No major features. The intent of this release is to sever support for
older versions of certain dependencies.

Breaking changes

- Dropped support for Tesseract 3.x. Tesseract 4.0 or newer is now
 required.
- Dropped support for Python 3.5.
- Some ``ocrmypdf.pdfa`` APIs that were deprecated in v7.x were
 removed. This functionality has been moved to pikepdf.

Other changes

- Fixed an unhandled exception when attempting to mask barcodes.
 `#322 <https://github.com/jbarlow83/OCRmyPDF/issues/322>`__
- It is now possible to use ocrmypdf without pdfminer.six, to support
 distributions that do not have it or cannot currently use it (e.g.
 Homebrew). Downstream maintainers should include pdfminer.six if
 possible.
- A warning is now issue when PDF/A conversion removes some XMP
 metadata from the input PDF. (Only a "whitelist" of certain XMP
 metadata types are allowed in PDF/A.)
- Fixed several issues that caused PDF/As to be produced with
 nonconforming XMP metadata (would fail validation with veraPDF).
- Fixed some instances where invalid DocumentInfo from a PDF cause XMP
 metadata creation to fail.
- Fixed a few documentation problems.
- pikepdf 1.0.2 is now required.

v7.4.0
======

- ``--force-ocr`` may now be used with the new ``--threshold`` and
 ``--mask-barcodes`` features
- pikepdf >= 0.9.1 is now required.
- Changed metadata handling to pikepdf 0.9.1. As a result, metadata
 handling of non-ASCII characters in Ghostscript 9.25 or later is
 fixed.
- chardet >= 3.0.4 is temporarily listed as required. pdfminer.six
 depends on it, but the most recent release does not specify this
 requirement.
 (`#326 <https://github.com/jbarlow83/OCRmyPDF/issues/326>`__)
- python-xmp-toolkit and libexempi are no longer required.
- A new Docker image is now being provided for users who wish to access
 OCRmyPDF over a simple HTTP interface, instead of the command line.
- Increase tolerance of PDFs that overflow or underflow the PDF
 graphics stack.
 (`#325 <https://github.com/jbarlow83/OCRmyPDF/issues/325>`__)

v7.3.1
======

- Fixed performance regression from v7.3.0; fast page analysis was not
 selected when it should be.
- Fixed a few exceptions related to the new ``--mask-barcodes`` feature
 and improved argument checking
- Added missing detection of TrueType fonts that lack a Unicode mapping

v7.3.0
======

- Added a new feature ``--redo-ocr`` to detect existing OCR in a file,
 remove it, and redo the OCR. This may be particularly helpful for
 anyone who wants to take advantage of OCR quality improvements in
 Tesseract 4.0. Note that OCR added by OCRmyPDF before version 3.0
 cannot be detected since it was not properly marked as invisible text
 in the earliest versions. OCR that constructs a font from visible
 text, such as Adobe Acrobat's ClearScan.
- OCRmyPDF's content detection is generally more sophisticated. It
 learns more about the contents of each PDF and makes better
 recommendations:

 - OCRmyPDF can now detect when a PDF contains text that cannot be
 mapped to Unicode (meaning it is readable to human eyes but
 copy-pastes as gibberish). In these cases it recommends
 ``--force-ocr`` to make the text searchable.
 - PDFs containing vector objects are now rendered at more
 appropriate resolution for OCR.
 - We now exit with an error for PDFs that contain Adobe LiveCycle
 Designer's dynamic XFA forms. Currently the open source community
 does not have tools to work with these files.
 - OCRmyPDF now warns when a PDF that contains Adobe AcroForms, since
 such files probably do not need OCR. It can work with these files.

- Added three new **experimental** features to improve OCR quality in
 certain conditions. The name, syntax and behavior of these arguments
 is subject to change. They may also be incompatible with some other
 features.

 - ``--remove-vectors`` which strips out vector graphics. This can
 improve OCR quality since OCR will not search artwork for readable
 text; however, it currently removes "text as curves" as well.
 - ``--mask-barcodes`` to detect and suppress barcodes in files. We
 have observed that barcodes can interfere with OCR because they
 are "text-like" but not actually textual.
 - ``--threshold`` which uses a more sophisticated thresholding
 algorithm than is currently in use in Tesseract OCR. This works
 around a `known issue in Tesseract
 4.0 <https://github.com/tesseract-ocr/tesseract/issues/1990>`__
 with dark text on bright backgrounds.

- Fixed an issue where an error message was not reported when the
 installed Ghostscript was very old.
- The PDF optimizer now saves files with object streams enabled when
 the optimization level is ``--optimize 1`` or higher (the default).
 This makes files a little bit smaller, but requires PDF 1.5. PDF 1.5
 was first released in 2003 and is broadly supported by PDF viewers,
 but some rudimentary PDF parsers such as PyPDF2 do not understand
 object streams. You can use the command line tool
 ``qpdf --object-streams=disable`` or
 `pikepdf <https://github.com/pikepdf/pikepdf>`__ library to remove
 them.
- New dependency: pdfminer.six 20181108. Note this is a fork of the
 Python 2-only pdfminer.
- Deprecation notice: At the end of 2018, we will be ending support for
 Python 3.5 and Tesseract 3.x. OCRmyPDF v7 will continue to work with
 older versions.

v7.2.1
======

- Fix compatibility with an API change in pikepdf 0.3.5.
- A kludge to support Leptonica versions older than 1.72 in the test
 suite was dropped. Older versions of Leptonica are likely still
 compatible. The only impact is that a portion of the test suite will
 be skipped.

v7.2.0
======

Lossy JBIG2 behavior change

A user reported that ocrmypdf was in fact using JBIG2 in **lossy**
compression mode. This was not the intended behavior. Users should
`review the technical concerns with JBIG2 in lossy
mode <https://abbyy.technology/en:kb:tip:jbig2_compression_and_ocr>`__
and decide if this is a concern for their use case.

JBIG2 lossy mode does achieve higher compression ratios than any other
monochrome compression technology; for large text documents the savings
are considerable. JBIG2 lossless still gives great compression ratios
and is a major improvement over the older CCITT G4 standard.

Only users who have reviewed the concerns with JBIG2 in lossy mode
should opt-in. As such, lossy mode JBIG2 is only turned on when the new
argument ``--jbig2-lossy`` is issued. This is independent of the setting
for ``--optimize``.

Users who did not install an optional JBIG2 encoder are unaffected.

(Thanks to user 'bsdice' for reporting this issue.)

Other issues

- When the image optimizer quantizes an image to 1 bit per pixel, it
 will now attempt to further optimize that image as CCITT or JBIG2,
 instead of keeping it in the "flate" encoding which is not efficient
 for 1 bpp images.
 (`#297 <https://github.com/jbarlow83/OCRmyPDF/issues/297>`__)
- Images in PDFs that are used as soft masks (i.e. transparency masks
 or alpha channels) are now excluded from optimization.
- Fixed handling of Tesseract 4.0-rc1 which now accepts invalid
 Tesseract configuration files, which broke the test suite.

v7.1.0
======

- Improve the performance of initial text extraction, which is done to
 determine if a file contains existing text of some kind or not. On
 large files, this initial processing is now about 20x times faster.
 (`#299 <https://github.com/jbarlow83/OCRmyPDF/issues/299>`__)
- pikepdf 0.3.3 is now required.
- Fixed issue
 `#231 <https://github.com/jbarlow83/OCRmyPDF/issues/231>`__, a
 problem with JPEG2000 images where image metadata was only available
 inside the JPEG2000 file.
- Fixed some additional Ghostscript 9.25 compatibility issues.
- Improved handling of KeyboardInterrupt error messages.
 (`#301 <https://github.com/jbarlow83/OCRmyPDF/issues/301>`__)
- README.md is now served in GitHub markdown instead of
 reStructuredText.

v7.0.6
======

- Blacklist Ghostscript 9.24, now that 9.25 is available and fixes many
 regressions in 9.24.

v7.0.5
======

- Improve capability with Ghostscript 9.24, and enable the JPEG
 passthrough feature when this version in installed.
- Ghostscript 9.24 lost the ability to set PDF title, author, subject
 and keyword metadata to Unicode strings. OCRmyPDF will set ASCII
 strings and warn when Unicode is suppressed. Other software may be
 used to update metadata. This is a short term work around.
- PDFs generated by Kodak Capture Desktop, or generally PDFs that
 contain indirect references to null objects in their table of
 contents, would have an invalid table of contents after processing by
 OCRmyPDF that might interfere with other viewers. This has been
 fixed.
- Detect PDFs generated by Adobe LiveCycle, which can only be displayed
 in Adobe Acrobat and Reader currently. When these are encountered,
 exit with an error instead of performing OCR on the "Please wait"
 error message page.

v7.0.4
======

- Fix exception thrown when trying to optimize a certain type of PNG
 embedded in a PDF with the ``-O2``
- Update to pikepdf 0.3.2, to gain support for optimizing some
 additional image types that were previously excluded from
 optimization (CMYK and grayscale). Fixes
 `#285 <https://github.com/jbarlow83/OCRmyPDF/issues/285>`__.

v7.0.3
======

- Fix issue
 `#284 <https://github.com/jbarlow83/OCRmyPDF/issues/284>`__, an error
 when parsing inline images that have are also image masks, by
 upgrading pikepdf to 0.3.1

v7.0.2
======

- Fix a regression with ``--rotate-pages`` on pages that already had
 rotations applied.
 (`#279 <https://github.com/jbarlow83/OCRmyPDF/issues/279>`__)
- Improve quality of page rotation in some cases by rasterizing a
 higher quality preview image.
 (`#281 <https://github.com/jbarlow83/OCRmyPDF/issues/281>`__)

v7.0.1
======

- Fix compatibility with img2pdf >= 0.3.0 by rejecting input images
 that have an alpha channel
- Add forward compatibility for pikepdf 0.3.0 (unrelated to img2pdf)
- Various documentation updates for v7.0.0 changes

v7.0.0
======

- The core algorithm for combining OCR layers with existing PDF pages
 has been rewritten and improved considerably. PDFs are no longer
 split into single page PDFs for processing; instead, images are
 rendered and the OCR results are grafted onto the input PDF. The new
 algorithm uses less temporary disk space and is much more performant
 especially for large files.
- New dependency: `pikepdf <https://github.com/pikepdf/pikepdf>`__.
 pikepdf is a powerful new Python PDF library driving the latest
 OCRmyPDF features, built on the QPDF C++ library (libqpdf).
- New feature: PDF optimization with ``-O`` or ``--optimize``. After
 OCR, OCRmyPDF will perform image optimizations relevant to OCR PDFs.

 - If a JBIG2 encoder is available, then monochrome images will be
 converted, with the potential for huge savings on large black and
 white images, since JBIG2 is far more efficient than any other
 monochrome (bi-level) compression. (All known US patents related
 to JBIG2 have probably expired, but it remains the responsibility
 of the user to supply a JBIG2 encoder such as
 `jbig2enc <https://github.com/agl/jbig2enc>`__. OCRmyPDF does not
 implement JBIG2 encoding.)
 - If ``pngquant`` is installed, OCRmyPDF will optionally use it to
 perform lossy quantization and compression of PNG images.
 - The quality of JPEGs can also be lowered, on the assumption that a
 lower quality image may be suitable for storage after OCR.
 - This image optimization component will eventually be offered as an
 independent command line utility.
 - Optimization ranges from ``-O0`` through ``-O3``, where ``0``
 disables optimization and ``3`` implements all options. ``1``, the
 default, performs only safe and lossless optimizations. (This is
 similar to GCC's optimization parameter.) The exact type of
 optimizations performed will vary over time.

- Small amounts of text in the margins of a page, such as watermarks,
 page numbers, or digital stamps, will no longer prevent the rest of a
 page from being OCRed when ``--skip-text`` is issued. This behavior
 is based on a heuristic.
- Removed features

 - The deprecated ``--pdf-renderer tesseract`` PDF renderer was
 removed.
 - ``-g``, the option to generate debug text pages, was removed
 because it was a maintenance burden and only worked in isolated
 cases. HOCR pages can still be previewed by running the
 hocrtransform.py with appropriate settings.

- Removed dependencies

 - ``PyPDF2``
 - ``defusedxml``
 - ``PyMuPDF``

- The ``sandwich`` PDF renderer can be used with all supported versions
 of Tesseract, including that those prior to v3.05 which don't support
 ``-c textonly``. (Tesseract v4.0.0 is recommended and more
 efficient.)
- ``--pdf-renderer auto`` option and the diagnostics used to select a
 PDF renderer now work better with old versions, but may make
 different decisions than past versions.
- If everything succeeds but PDF/A conversion fails, a distinct return
 code is now returned (``ExitCode.pdfa_conversion_failed (10)``) where
 this situation previously returned
 ``ExitCode.invalid_output_pdf (4)``. The latter is now returned only
 if there is some indication that the output file is invalid.
- Notes for downstream packagers

 - There is also a new dependency on ``python-xmp-toolkit`` which in
 turn depends on ``libexempi3``.
 - It may be necessary to separately ``pip install pycparser`` to
 avoid `another Python 3.7
 issue <https://github.com/eliben/pycparser/pull/135>`__.

v6.2.5
======

- Disable a failing test due to Tesseract 4.0rc1 behavior change.
 Previously, Tesseract would exit with an error message if its
 configuration was invalid, and OCRmyPDF would intercept this message.
 Now Tesseract issues a warning, which OCRmyPDF v6.2.5 may relay or
 ignore. (In v7.x, OCRmyPDF will respond to the warning.)
- This release branch no longer supports using the optional PyMuPDF
 installation, since it was removed in v7.x.
- This release branch no longer supports macOS. macOS users should
 upgrade to v7.x.

v6.2.4
======

- Backport Ghostscript 9.25 compatibility fixes, which removes support
 for setting Unicode metadata
- Backport blacklisting Ghostscript 9.24
- Older versions of Ghostscript are still supported

v6.2.3
======

- Fix compatibility with img2pdf >= 0.3.0 by rejecting input images
 that have an alpha channel
- This version will be included in Ubuntu 18.10

v6.2.2
======

- Backport compatibility fixes for Python 3.7 and ruffus 2.7.0 from
 v7.0.0
- Backport fix to ignore masks when deciding what colors are on a page
- Backport some minor improvements from v7.0.0: better argument
 validation and warnings about the Tesseract 4.0.0 ``--user-words``
 regression

v6.2.1
======

- Fix recent versions of Tesseract (after 4.0.0-beta1) not being
 detected as supporting the ``sandwich`` renderer
 (`#271 <https://github.com/ppjbarlow83/OCRmyPDF/issues/271>`__).

v6.2.0
======

- **Docker**: The Docker image ``ocrmypdf-tess4`` has been removed. The
 main Docker images, ``ocrmypdf`` and ``ocrmypdf-polyglot`` now use
 Ubuntu 18.04 as a base image, and as such Tesseract 4.0.0-beta1 is
 now the Tesseract version they use. There is no Docker image based on
 Tesseract 3.05 anymore.
- Creation of PDF/A-3 is now supported. However, there is no ability to
 attach files to PDF/A-3.
- Lists more reasons why the file size might grow.
- Fix issue
 `#262 <https://github.com/ppjbarlow83/OCRmyPDF/issues/262>`__,
 ``--remove-background`` error on PDFs contained colormapped
 (paletted) images.
- Fix another XMP metadata validation issue, in cases where the input
 file's creation date has no timezone and the creation date is not
 overridden.

v6.1.5
======

- Fix issue
 `#253 <https://github.com/jbarlow83/OCRmyPDF/issues/253>`__, a
 possible division by zero when using the ``hocr`` renderer.
- Fix incorrectly formatted ``<xmp:ModifyDate>`` field inside XMP
 metadata for PDF/As. veraPDF flags this as a PDF/A validation
 failure. The error is caused the timezone and final digit of the
 seconds of modified time to be omitted, so at worst the modification
 time stamp is rounded to the nearest 10 seconds.

v6.1.4
======

- Fix issue `#248 <https://github.com/jbarlow83/OCRmyPDF/issues/248>`__
 ``--clean`` argument may remove OCR from left column of text on
 certain documents. We now set ``--layout none`` to suppress this.
- The test cache was updated to reflect the change above.
- Change test suite to accommodate Ghostscript 9.23's new ability to
 insert JPEGs into PDFs without transcoding.
- XMP metadata in PDFs is now examined using ``defusedxml`` for safety.
- If an external process exits with a signal when asked to report its
 version, we now print the system error message instead of suppressing
 it. This occurred when the required executable was found but was
 missing a shared library.
- qpdf 7.0.0 or newer is now required as the test suite can no longer
 pass without it.

Notes

- An apparent `regression in Ghostscript
 9.23 <https://bugs.ghostscript.com/show_bug.cgi?id=699216>`__ will
 cause some ocrmypdf output files to become invalid in rare cases; the
 workaround for the moment is to set ``--force-ocr``.

v6.1.3
======

- Fix issue
 `#247 <https://github.com/jbarlow83/OCRmyPDF/issues/247>`__,
 ``/CreationDate`` metadata not copied from input to output.
- A warning is now issued when Python 3.5 is used on files with a large
 page count, as this case is known to regress to single core
 performance. The cause of this problem is unknown.

v6.1.2
======

- Upgrade to PyMuPDF v1.12.5 which includes a more complete fix to
 `#239 <https://github.com/jbarlow83/OCRmyPDF/issues/239>`__.
- Add ``defusedxml`` dependency.

v6.1.1
======

- Fix text being reported as found on all pages if PyMuPDF is not
 installed.

v6.1.0
======

- PyMuPDF is now an optional but recommended dependency, to alleviate
 installation difficulties on platforms that have less access to
 PyMuPDF than the author anticipated. (For version 6.x only) install
 OCRmyPDF with ``pip install ocrmypdf[fitz]`` to use it to its full
 potential.
- Fix ``FileExistsError`` that could occur if OCR timed out while it
 was generating the output file.
 (`#218 <https://github.com/jbarlow83/OCRmyPDF/issues/218>`__)
- Fix table of contents/bookmarks all being redirected to page 1 when
 generating a PDF/A (with PyMuPDF). (Without PyMuPDF the table of
 contents is removed in PDF/A mode.)
- Fix "RuntimeError: invalid key in dict" when table of
 contents/bookmarks titles contained the character ``)``.
 (`#239 <https://github.com/jbarlow83/OCRmyPDF/issues/239>`__)
- Added a new argument ``--skip-repair`` to skip the initial PDF repair
 step if the PDF is already well-formed (because another program
 repaired it).

v6.0.0
======

- The software license has been changed to GPLv3. Test resource files
 and some individual sources may have other licenses.
- OCRmyPDF now depends on
 `PyMuPDF <https://pymupdf.readthedocs.io/en/latest/installation/>`__.
 Including PyMuPDF is the primary reason for the change to GPLv3.
- Other backward incompatible changes

 - The ``OCRMYPDF_TESSERACT``, ``OCRMYPDF_QPDF``, ``OCRMYPDF_GS`` and
 ``OCRMYPDF_UNPAPER`` environment variables are no longer used.
 Change ``PATH`` if you need to override the external programs
 OCRmyPDF uses.
 - The ``ocrmypdf`` package has been moved to ``src/ocrmypdf`` to
 avoid issues with accidental import.
 - The function ``ocrmypdf.exec.get_program`` was removed.
 - The deprecated module ``ocrmypdf.pageinfo`` was removed.
 - The ``--pdf-renderer tess4`` alias for ``sandwich`` was removed.

- Fixed an issue where OCRmyPDF failed to detect existing text on
 pages, depending on how the text and fonts were encoded within the
 PDF. (`#233 <https://github.com/jbarlow83/OCRmyPDF/issues/233>`__,
 `#232 <https://github.com/jbarlow83/OCRmyPDF/issues/232>`__)
- Fixed an issue that caused dramatic inflation of file sizes when
 ``--skip-text --output-type pdf`` was used. OCRmyPDF now removes
 duplicate resources such as fonts, images and other objects that it
 generates.
 (`#237 <https://github.com/jbarlow83/OCRmyPDF/issues/237>`__)
- Improved performance of the initial page splitting step. Originally
 this step was not believed to be expensive and ran in a process.
 Large file testing revealed it to be a bottleneck, so it is now
 parallelized. On a 700 page file with quad core machine, this change
 saves about 2 minutes.
 (`#234 <https://github.com/jbarlow83/OCRmyPDF/issues/234>`__)
- The test suite now includes a cache that can be used to speed up test
 runs across platforms. This also does not require computing
 checksums, so it's faster.
 (`#217 <https://github.com/jbarlow83/OCRmyPDF/issues/217>`__)

v5.7.0
======

- Fixed an issue that caused poor CPU utilization on machines with more
 than 4 cores when running Tesseract 4. (Related to issue
 `#217 <https://github.com/jbarlow83/OCRmyPDF/issues/217>`__.)
- The 'hocr' renderer has been improved. The 'sandwich' and 'tesseract'
 renderers are still better for most use cases, but 'hocr' may be
 useful for people who work with the PDF.js renderer in English/ASCII
 languages.
 (`#225 <https://github.com/jbarlow83/OCRmyPDF/issues/225>`__)

 - It now formats text in a matter that is easier for certain PDF
 viewers to select and extract copy and paste text. This should
 help macOS Preview and PDF.js in particular.
 - The appearance of selected text and behavior of selecting text is
 improved.
 - The PDF content stream now uses relative moves, making it more
 compact and easier for viewers to determine when two words on the
 same line.
 - It can now deal with text on a skewed baseline.
 - Thanks to @cforcey for the pull request, @jbreiden for many
 helpful suggestions, @ctbarbour for another round of improvements,
 and @acaloiaro for an independent review.

v5.6.3
======

- Suppress two debug messages that were too verbose

v5.6.2
======

- Development branch accidentally tagged as release. Do not use.

v5.6.1
======

- Fix issue
 `#219 <https://github.com/jbarlow83/OCRmyPDF/issues/219>`__: change
 how the final output file is created to avoid triggering permission
 errors when the output is a special file such as ``/dev/null``
- Fix test suite failures due to a qpdf 8.0.0 regression and Python
 3.5's handling of symlink
- The "encrypted PDF" error message was different depending on the type
 of PDF encryption. Now a single clear message appears for all types
 of PDF encryption.
- ocrmypdf is now in Homebrew. Homebrew users are advised to the
 version of ocrmypdf in the official homebrew-core formulas rather
 than the private tap.
- Some linting

v5.6.0
======

- Fix issue
 `#216 <https://github.com/jbarlow83/OCRmyPDF/issues/216>`__: preserve
 "text as curves" PDFs without rasterizing file
- Related to the above, messages about rasterizing are more consistent
- For consistency versions minor releases will now get the trailing .0
 they always should have had.

v5.5
====

- Add new argument ``--max-image-mpixels``. Pillow 5.0 now raises an
 exception when images may be decompression bombs. This argument can
 be used to override the limit Pillow sets.
- Fix output page cropped when using the sandwich renderer and OCR is
 skipped on a rotated and image-processed page
- A warning is now issued when old versions of Ghostscript are used in
 cases known to cause issues with non-Latin characters
- Fix a few parameter validation checks for ``-output-type pdfa-1`` and
 ``pdfa-2``

v5.4.4
======

- Fix issue
 `#181 <https://github.com/jbarlow83/OCRmyPDF/issues/181>`__: fix
 final merge failure for PDFs with more pages than the system file
 handle limit (``ulimit -n``)
- Fix issue
 `#200 <https://github.com/jbarlow83/OCRmyPDF/issues/200>`__: an
 uncommon syntax for formatting decimal numbers in a PDF would cause
 qpdf to issue a warning, which ocrmypdf treated as an error. Now this
 the warning is relayed.
- Fix an issue where intermediate PDFs would be created at version 1.3
 instead of the version of the original file. It's possible but
 unlikely this had side effects.
- A warning is now issued when older versions of qpdf are used since
 issues like
 `#200 <https://github.com/jbarlow83/OCRmyPDF/issues/200>`__ cause
 qpdf to infinite-loop
- Address issue
 `#140 <https://github.com/jbarlow83/OCRmyPDF/issues/140>`__: if
 Tesseract outputs invalid UTF-8, escape it and print its message
 instead of aborting with a Unicode error
- Adding previously unlisted setup requirement, pytest-runner
- Update documentation: fix an error in the example script for Synology
 with Docker images, improved security guidance, advised
 ``pip install --user``

v5.4.3
======

- If a subprocess fails to report its version when queried, exit
 cleanly with an error instead of throwing an exception
- Added test to confirm that the system locale is Unicode-aware and
 fail early if it's not
- Clarified some copyright information
- Updated pinned requirements.txt so the homebrew formula captures more
 recent versions

v5.4.2
======

- Fixed a regression from v5.4.1 that caused sidecar files to be
 created as empty files

v5.4.1
======

- Add workaround for Tesseract v4.00alpha crash when trying to obtain
 orientation and the latest language packs are installed

v5.4
====

- Change wording of a deprecation warning to improve clarity
- Added option to generate PDF/A-1b output if desired
 (``--output-type pdfa-1``); default remains PDF/A-2b generation
- Update documentation

v5.3.3
======

- Fixed missing error message that should occur when trying to force
 ``--pdf-renderer sandwich`` on old versions of Tesseract
- Update copyright information in test files
- Set system ``LANG`` to UTF-8 in Dockerfiles to avoid UTF-8 encoding
 errors

v5.3.2
======

- Fixed a broken test case related to language packs

v5.3.1
======

- Fixed wrong return code given for missing Tesseract language packs
- Fixed "brew audit" crashing on Travis when trying to auto-brew

v5.3
====

- Added ``--user-words`` and ``--user-patterns`` arguments which are
 forwarded to Tesseract OCR as words and regular expressions
 respective to use to guide OCR. Supplying a list of subject-domain
 words should assist Tesseract with resolving words.
 (`#165 <https://github.com/jbarlow83/OCRmyPDF/issues/165>`__)
- Using a non Latin-1 language with the "hocr" renderer now warns about
 possible OCR quality and recommends workarounds
 (`#176 <https://github.com/jbarlow83/OCRmyPDF/issues/176>`__)
- Output file path added to error message when that location is not
 writable
 (`#175 <https://github.com/jbarlow83/OCRmyPDF/issues/175>`__)
- Otherwise valid PDFs with leading whitespace at the beginning of the
 file are now accepted

v5.2
====

- When using Tesseract 3.05.01 or newer, OCRmyPDF will select the
 "sandwich" PDF renderer by default, unless another PDF renderer is
 specified with the ``--pdf-renderer`` argument. The previous behavior
 was to select ``--pdf-renderer=hocr``.
- The "tesseract" PDF renderer is now deprecated, since it can cause
 problems with Ghostscript on Tesseract 3.05.00
- The "tess4" PDF renderer has been renamed to "sandwich". "tess4" is
 now a deprecated alias for "sandwich".

v5.1
====

- Files with pages larger than 200" (5080 mm) in either dimension are
 now supported with ``--output-type=pdf`` with the page size preserved
 (in the PDF specification this feature is called UserUnit scaling).
 Due to Ghostscript limitations this is not available in conjunction
 with PDF/A output.

v5.0.1
======

- Fixed issue
 `#169 <https://github.com/jbarlow83/OCRmyPDF/issues/169>`__,
 exception due to failure to create sidecar text files on some
 versions of Tesseract 3.04, including the jbarlow83/ocrmypdf Docker
 image

v5.0
====

- Backward incompatible changes

 - Support for Python 3.4 dropped. Python 3.5 is now required.
 - Support for Tesseract 3.02 and 3.03 dropped. Tesseract 3.04 or
 newer is required. Tesseract 4.00 (alpha) is supported.
 - The OCRmyPDF.sh script was removed.

- Add a new feature, ``--sidecar``, which allows creating "sidecar"
 text files which contain the OCR results in plain text. These OCR
 text is more reliable than extracting text from PDFs. Closes
 `#126 <https://github.com/jbarlow83/OCRmyPDF/issues/126>`__.

- New feature: ``--pdfa-image-compression``, which allows overriding
 Ghostscript's lossy-or-lossless image encoding heuristic and making
 all images JPEG encoded or lossless encoded as desired. Fixes
 `#163 <https://github.com/jbarlow83/OCRmyPDF/issues/163>`__.

- Fixed issue
 `#143 <https://github.com/jbarlow83/OCRmyPDF/issues/143>`__, added
 ``--quiet`` to suppress "INFO" messages

- Fixed issue
 `#164 <https://github.com/jbarlow83/OCRmyPDF/issues/164>`__, a typo

- Removed the command line parameters ``-n`` and ``--just-print`` since
 they have not worked for some time (reported as Ubuntu bug
 `#1687308 <https://bugs.launchpad.net/ubuntu/+source/ocrmypdf/+bug/1687308>`__)

v4.5.6
======

- Fixed issue
 `#156 <https://github.com/jbarlow83/OCRmyPDF/issues/156>`__,
 'NoneType' object has no attribute 'getObject' on pages with no
 optional /Contents record. This should resolve all issues related to
 pages with no /Contents record.
- Fixed issue
 `#158 <https://github.com/jbarlow83/OCRmyPDF/issues/158>`__, ocrmypdf
 now stops and terminates if Ghostscript fails on an intermediate
 step, as it is not possible to proceed.
- Fixed issue
 `#160 <https://github.com/jbarlow83/OCRmyPDF/issues/160>`__,
 exception thrown on certain invalid arguments instead of error
 message

v4.5.5
======

- Automated update of macOS homebrew tap
- Fixed issue
 `#154 <https://github.com/jbarlow83/OCRmyPDF/issues/154>`__, KeyError
 '/Contents' when searching for text on blank pages that have no
 /Contents record. Note: incomplete fix for this issue.

v4.5.4
======

- Fix ``--skip-big`` raising an exception if a page contains no images
 (`#152 <https://github.com/jbarlow83/OCRmyPDF/issues/152>`__) (thanks
 to @TomRaz)
- Fix an issue where pages with no images might trigger "cannot write
 mode P as JPEG"
 (`#151 <https://github.com/jbarlow83/OCRmyPDF/issues/151>`__)

v4.5.3
======

- Added a workaround for Ghostscript 9.21 and probably earlier versions
 would fail with the error message "VMerror -25", due to a Ghostscript
 bug in XMP metadata handling
- High Unicode characters (U+10000 and up) are no longer accepted for
 setting metadata on the command line, as Ghostscript may not handle
 them correctly.
- Fixed an issue where the ``tess4`` renderer would duplicate content
 onto output pages if tesseract failed or timed out
- Fixed ``tess4`` renderer not recognized when lossless reconstruction
 is possible

v4.5.2
======

- Fix issue
 `#147 <https://github.com/jbarlow83/OCRmyPDF/issues/147>`__.
 ``--pdf-renderer tess4 --clean`` will produce an oversized page
 containing the original image in the bottom left corner, due to loss
 DPI information.
- Make "using Tesseract 4.0" warning less ominous
- Set up machinery for homebrew OCRmyPDF tap

v4.5.1
======

- Fix issue
 `#137 <https://github.com/jbarlow83/OCRmyPDF/issues/137>`__,
 proportions of images with a non-square pixel aspect ratio would be
 distorted in output for ``--force-ocr`` and some other combinations
 of flags

v4.5
====

- PDFs containing "Form XObjects" are now supported (issue
 `#134 <https://github.com/jbarlow83/OCRmyPDF/issues/134>`__; PDF
 reference manual 8.10), and images they contain are taken into
 account when determining the resolution for rasterizing
- The Tesseract 4 Docker image no longer includes all languages,
 because it took so long to build something would tend to fail
- OCRmyPDF now warns about using ``--pdf-renderer tesseract`` with
 Tesseract 3.04 or lower due to issues with Ghostscript corrupting the
 OCR text in these cases

v4.4.2
======

- The Docker images (ocrmypdf, ocrmypdf-polyglot, ocrmypdf-tess4) are
 now based on Ubuntu 16.10 instead of Debian stretch

 - This makes supporting the Tesseract 4 image easier
 - This could be a disruptive change for any Docker users who built
 customized these images with their own changes, and made those
 changes in a way that depends on Debian and not Ubuntu

- OCRmyPDF now prevents running the Tesseract 4 renderer with Tesseract
 3.04, which was permitted in v4.4 and v4.4.1 but will not work

v4.4.1
======

- To prevent a `TIFF output
 error <https://github.com/python-pillow/Pillow/issues/2206>`__ caused
 by img2pdf >= 0.2.1 and Pillow <= 3.4.2, dependencies have been
 tightened
- The Tesseract 4.00 simultaneous process limit was increased from 1 to
 2, since it was observed that 1 lowers performance
- Documentation improvements to describe the ``--tesseract-config``
 feature
- Added test cases and fixed error handling for ``--tesseract-config``
- Tweaks to setup.py to deal with issues in the v4.4 release

v4.4
====

- Tesseract 4.00 is now supported on an experimental basis.

 - A new rendering option ``--pdf-renderer tess4`` exploits Tesseract
 4's new text-only output PDF mode. See the documentation on PDF
 Renderers for details.
 - The ``--tesseract-oem`` argument allows control over the Tesseract
 4 OCR engine mode (tesseract's ``--oem``). Use
 ``--tesseract-oem 2`` to enforce the new LSTM mode.
 - Fixed poor performance with Tesseract 4.00 on Linux

- Fixed an issue that caused corruption of output to stdout in some
 cases
- Removed test for Pillow JPEG and PNG support, as the minimum
 supported version of Pillow now enforces this
- OCRmyPDF now tests that the intended destination file is writable
 before proceeding
- The test suite now requires ``pytest-helpers-namespace`` to run (but
 not install)
- Significant code reorganization to make OCRmyPDF re-entrant and
 improve performance. All changes should be backward compatible for
 the v4.x series.

 - However, OCRmyPDF's dependency "ruffus" is not re-entrant, so no
 Python API is available. Scripts should continue to use the
 command line interface.

v4.3.5
======

- Update documentation to confirm Python 3.6.0 compatibility. No code
 changes were needed, so many earlier versions are likely supported.

v4.3.4
======

- Fixed "decimal.InvalidOperation: quantize result has too many digits"
 for high DPI images

v4.3.3
======

- Fixed PDF/A creation with Ghostscript 9.20 properly
- Fixed an exception on inline stencil masks with a missing optional
 parameter

v4.3.2
======

- Fixed a PDF/A creation issue with Ghostscript 9.20 (note: this fix
 did not actually work)

v4.3.1
======

- Fixed an issue where pages produced by the "hocr" renderer after a
 Tesseract timeout would be rotated incorrectly if the input page was
 rotated with a /Rotate marker
- Fixed a file handle leak in LeptonicaErrorTrap that would cause a
 "too many open files" error for files around hundred pages of pages
 long when ``--deskew`` or ``--remove-background`` or other Leptonica
 based image processing features were in use, depending on the system
 value of ``ulimit -n``
- Ability to specify multiple languages for multilingual documents is
 now advertised in documentation
- Reduced the file sizes of some test resources
- Cleaned up debug output
- Tesseract caching in test cases is now more cautious about false
 cache hits and reproducing exact output, not that any problems were
 observed

v4.3
====

- New feature ``--remove-background`` to detect and erase the
 background of color and grayscale images
- Better documentation
- Fixed an issue with PDFs that draw images when the raster stack depth
 is zero
- ocrmypdf can now redirect its output to stdout for use in a shell
 pipeline

 - This does not improve performance since temporary files are still
 used for buffering
 - Some output validation is disabled in this mode

v4.2.5
======

- Fixed an issue
 (`#100 <https://github.com/jbarlow83/OCRmyPDF/issues/100>`__) with
 PDFs that omit the optional /BitsPerComponent parameter on images
- Removed non-free file milk.pdf

v4.2.4
======

- Fixed an error
 (`#90 <https://github.com/jbarlow83/OCRmyPDF/issues/90>`__) caused by
 PDFs that use stencil masks properly
- Fixed handling of PDFs that try to draw images or stencil masks
 without properly setting up the graphics state (such images are now
 ignored for the purposes of calculating DPI)

v4.2.3
======

- Fixed an issue with PDFs that store page rotation (/Rotate) in an
 indirect object
- Integrated a few fixes to simplify downstream packaging (Debian)

 - The test suite no longer assumes it is installed
 - If running Linux, skip a test that passes Unicode on the command
 line

- Added a test case to check explicit masks and stencil masks
- Added a test case for indirect objects and linearized PDFs
- Deprecated the OCRmyPDF.sh shell script

v4.2.2
======

- Improvements to documentation

v4.2.1
======

- Fixed an issue where PDF pages that contained stencil masks would
 report an incorrect DPI and cause Ghostscript to abort
- Implemented stdin streaming

v4.2
====

- ocrmypdf will now try to convert single image files to PDFs if they
 are provided as input
 (`#15 <https://github.com/jbarlow83/OCRmyPDF/issues/15>`__)

 - This is a basic convenience feature. It only supports a single
 image and always makes the image fill the whole page.
 - For better control over image to PDF conversion, use ``img2pdf``
 (one of ocrmypdf's dependencies)

- New argument ``--output-type {pdf|pdfa}`` allows disabling
 Ghostscript PDF/A generation

 - ``pdfa`` is the default, consistent with past behavior
 - ``pdf`` provides a workaround for users concerned about the
 increase in file size from Ghostscript forcing JBIG2 images to
 CCITT and transcoding JPEGs
 - ``pdf`` preserves as much as it can about the original file,
 including problems that PDF/A conversion fixes

- PDFs containing images with "non-square" pixel aspect ratios, such as
 200x100 DPI, are now handled and converted properly (fixing a bug
 that caused to be cropped)
- ``--force-ocr`` rasterizes pages even if they contain no images

 - supports users who want to use OCRmyPDF to reconstruct text
 information in PDFs with damaged Unicode maps (copy and paste text
 does not match displayed text)
 - supports reinterpreting PDFs where text was rendered as curves for
 printing, and text needs to be recovered
 - fixes issue
 `#82 <https://github.com/jbarlow83/OCRmyPDF/issues/82>`__

- Fixes an issue where, with certain settings, monochrome images in
 PDFs would be converted to 8-bit grayscale, increasing file size
 (`#79 <https://github.com/jbarlow83/OCRmyPDF/issues/79>`__)
- Support for Ubuntu 12.04 LTS "precise" has been dropped in favor of
 (roughly) Ubuntu 14.04 LTS "trusty"

 - Some Ubuntu "PPAs" (backports) are needed to make it work

- Support for some older dependencies dropped

 - Ghostscript 9.15 or later is now required (available in Ubuntu
 trusty with backports)
 - Tesseract 3.03 or later is now required (available in Ubuntu
 trusty)

- Ghostscript now runs in "safer" mode where possible

v4.1.4
======

- Bug fix: monochrome images with an ICC profile attached were
 incorrectly converted to full color images if lossless reconstruction
 was not possible due to other settings; consequence was increased
 file size for these images

v4.1.3
======

- More helpful error message for PDFs with version 4 security handler
- Update usage instructions for Windows/Docker users
- Fix order of operations for matrix multiplication (no effect on most
 users)
- Add a few leptonica wrapper functions (no effect on most users)

v4.1.2
======

- Replace IEC sRGB ICC profile with Debian's sRGB (from
 icc-profiles-free) which is more compatible with the MIT license
- More helpful error message for an error related to certain types of
 malformed PDFs

v4.1
====

- ``--rotate-pages`` now only rotates pages when reasonably confidence
 in the orientation. This behavior can be adjusted with the new
 argument ``--rotate-pages-threshold``
- Fixed problems in error checking if ``unpaper`` is uninstalled or
 missing at run-time
- Fixed problems with "RethrownJobError" errors during error handling
 that suppressed the useful error messages

v4.0.7
======

- Minor correction to Ghostscript output settings

v4.0.6
======

- Update install instructions
- Provide a sRGB profile instead of using Ghostscript's

v4.0.5
======

- Remove some verbose debug messages from v4.0.4
- Fixed temporary that wasn't being deleted
- DPI is now calculated correctly for cropped images, along with other
 image transformations
- Inline images are now checked during DPI calculation instead of
 rejecting the image

v4.0.4
======

Released with verbose debug message turned on. Do not use. Skip to
v4.0.5.

v4.0.3
======

New features

- Page orientations detected are now reported in a summary comment

Fixes

- Show stack trace if unexpected errors occur
- Treat "too few characters" error message from Tesseract as a reason
 to skip that page rather than abort the file
- Docker: fix blank JPEG2000 issue by insisting on Ghostscript versions
 that have this fixed

v4.0.2
======

Fixes

- Fixed compatibility with Tesseract 3.04.01 release, particularly its
 different way of outputting orientation information
- Improved handling of Tesseract errors and crashes
- Fixed use of chmod on Docker that broke most test cases

v4.0.1
======

Fixes

- Fixed a KeyError if tesseract fails to find page orientation
 information

v4.0
====

New features

- Automatic page rotation (``-r``) is now available. It uses ignores
 any prior rotation information on PDFs and sets rotation based on the
 dominant orientation of detectable text. This feature is fairly
 reliable but some false positives occur especially if there is not
 much text to work with.
 (`#4 <https://github.com/jbarlow83/OCRmyPDF/issues/4>`__)
- Deskewing is now performed using Leptonica instead of unpaper.
 Leptonica is faster and more reliable at image deskewing than
 unpaper.

Fixes

- Fixed an issue where lossless reconstruction could cause some pages
 to be appear incorrectly if the page was rotated by the user in
 Acrobat after being scanned (specifically if it a /Rotate tag)
- Fixed an issue where lossless reconstruction could misalign the
 graphics layer with respect to text layer if the page had been
 cropped such that its origin is not (0, 0)
 (`#49 <https://github.com/jbarlow83/OCRmyPDF/issues/49>`__)

Changes

- Logging output is now much easier to read
- ``--deskew`` is now performed by Leptonica instead of unpaper
 (`#25 <https://github.com/jbarlow83/OCRmyPDF/issues/25>`__)
- libffi is now required
- Some changes were made to the Docker and Travis build environments to
 support libffi
- ``--pdf-renderer=tesseract`` now displays a warning if the Tesseract
 version is less than 3.04.01, the planned release that will include
 fixes to an important OCR text rendering bug in Tesseract 3.04.00.
 You can also manually install ./share/sharp2.ttf on top of pdf.ttf in
 your Tesseract tessdata folder to correct the problem.

v3.2.1
======

Changes

- Fixed issue `#47 <https://github.com/jbarlow83/OCRmyPDF/issues/47>`__
 "convert() got and unexpected keyword argument 'dpi'" by upgrading to
 img2pdf 0.2
- Tweaked the Dockerfiles

v3.2
====

New features

- Lossless reconstruction: when possible, OCRmyPDF will inject text
 layers without otherwise manipulating the content and layout of a PDF
 page. For example, a PDF containing a mix of vector and raster
 content would see the vector content preserved. Images may still be
 transcoded during PDF/A conversion. (``--deskew`` and
 ``--clean-final`` disable this mode, necessarily.)
- New argument ``--tesseract-pagesegmode`` allows you to pass page
 segmentation arguments to Tesseract OCR. This helps for two column
 text and other situations that confuse Tesseract.
- Added a new "polyglot" version of the Docker image, that generates
 Tesseract with all languages packs installed, for the polyglots among
 us. It is much larger.

Changes

- JPEG transcoding quality is now 95 instead of the default 75. Bigger
 file sizes for less degradation.

v3.1.1
======

Changes

- Fixed bug that caused incorrect page size and DPI calculations on
 documents with mixed page sizes

v3.1
====

Changes

- Default output format is now PDF/A-2b instead of PDF/A-1b
- Python 3.5 and macOS El Capitan are now supported platforms - no
 changes were needed to implement support
- Improved some error messages related to missing input files
- Fixed issue `#20 <https://github.com/jbarlow83/OCRmyPDF/issues/20>`__
 - uppercase .PDF extension not accepted
- Fixed an issue where OCRmyPDF failed to text that certain pages
 contained previously OCR'ed text, such as OCR text produced by
 Tesseract 3.04
- Inserts /Creator tag into PDFs so that errors can be traced back to
 this project
- Added new option ``--pdf-renderer=auto``, to let OCRmyPDF pick the
 best PDF renderer. Currently it always chooses the 'hocrtransform'
 renderer but that behavior may change.
- Set up Travis CI automatic integration testing

v3.0
====

New features

- Easier installation with a Docker container or Python's ``pip``
 package manager
- Eliminated many external dependencies, so it's easier to setup
- Now installs ``ocrmypdf`` to ``/usr/local/bin`` or equivalent for
 system-wide access and easier typing
- Improved command line syntax and usage help (``--help``)
- Tesseract 3.03+ PDF page rendering can be used instead for better
 positioning of recognized text (``--pdf-renderer tesseract``)
- PDF metadata (title, author, keywords) are now transferred to the
 output PDF
- PDF metadata can also be set from the command line (``--title``,
 etc.)
- Automatic repairs malformed input PDFs if possible
- Added test cases to confirm everything is working
- Added option to skip extremely large pages that take too long to OCR
 and are often not OCRable (e.g. large scanned maps or diagrams);
 other pages are still processed (``--skip-big``)
- Added option to kill Tesseract OCR process if it seems to be taking
 too long on a page, while still processing other pages
 (``--tesseract-timeout``)
- Less common colorspaces (CMYK, palette) are now supported by
 conversion to RGB
- Multiple images on the same PDF page are now supported

Changes

- New, robust rewrite in Python 3.4+ with
 `ruffus <http://www.ruffus.org.uk/index.html>`__ pipelines
- Now uses Ghostscript 9.14's improved color conversion model to
 preserve PDF colors
- OCR text is now rendered in the PDF as invisible text. Previous
 versions of OCRmyPDF incorrectly rendered visible text with an image
 on top.
- All "tasks" in the pipeline can be executed in parallel on any
 available CPUs, increasing performance
- The ``-o DPI`` argument has been phased out, in favor of
 ``--oversample DPI``, in case we need ``-o OUTPUTFILE`` in the future
- Removed several dependencies, so it's easier to install. We no longer
 use:

 - GNU `parallel <https://www.gnu.org/software/parallel/>`__
 - `ImageMagick <http://www.imagemagick.org/script/index.php>`__
 - Python 2.7
 - Poppler
 - `MuPDF <http://mupdf.com/docs/>`__ tools
 - shell scripts
 - Java and `JHOVE <http://jhove.sourceforge.net/>`__
 - libxml2

- Some new external dependencies are required or optional, compared to
 v2.x:

 - Ghostscript 9.14+
 - `qpdf <http://qpdf.sourceforge.net/>`__ 5.0.0+
 - `Unpaper <https://github.com/Flameeyes/unpaper>`__ 6.1 (optional)
 - some automatically managed Python packages

Release candidates^

- rc9:

 - fix issue
 `#118 <https://github.com/jbarlow83/OCRmyPDF/issues/118>`__:
 report error if ghostscript iccprofiles are missing
 - fixed another issue related to
 `#111 <https://github.com/jbarlow83/OCRmyPDF/issues/111>`__: PDF
 rasterized to palette file
 - add support image files with a palette
 - don't try to validate PDF file after an exception occurs

- rc8:

 - fix issue
 `#111 <https://github.com/jbarlow83/OCRmyPDF/issues/111>`__:
 exception thrown if PDF is missing DocumentInfo dictionary

- rc7:

 - fix error when installing direct from pip, "no such file
 'requirements.txt'"

- rc6:

 - dropped libxml2 (Python lxml) since Python 3's internal XML parser
 is sufficient
 - set up Docker container
 - fix Unicode errors if recognized text contains Unicode characters
 and system locale is not UTF-8

- rc5:

 - dropped Java and JHOVE in favour of qpdf
 - improved command line error output
 - additional tests and bug fixes
 - tested on Ubuntu 14.04 LTS

- rc4:

 - dropped MuPDF in favour of qpdf
 - fixed some installer issues and errors in installation
 instructions
 - improve performance: run Ghostscript with multithreaded rendering
 - improve performance: use multiple cores by default
 - bug fix: checking for wrong exception on process timeout

- rc3: skipping version number intentionally to avoid confusion with
 Tesseract
- rc2: first release for public testing to test-PyPI, Github
- rc1: testing release process

Compatibility notes
===================

- ``./OCRmyPDF.sh`` script is still available for now
- Stacking the verbosity option like ``-vvv`` is no longer supported
- The configuration file ``config.sh`` has been removed. Instead, you
 can feed a file to the arguments for common settings:

::

 ocrmypdf input.pdf output.pdf @settings.txt

where ``settings.txt`` contains *one argument per line*, for example:

::

 -l
 deu
 --author
 A. Merkel
 --pdf-renderer
 tesseract

Fixes

- Handling of filenames containing spaces: fixed

Notes and known issues

- Some dependencies may work with lower versions than tested, so try
 overriding dependencies if they are "in the way" to see if they work.
- ``--pdf-renderer tesseract`` will output files with an incorrect page
 size in Tesseract 3.03, due to a bug in Tesseract.
- PDF files containing "inline images" are not supported and won't be
 for the 3.0 release. Scanned images almost never contain inline
 images.

v2.2-stable (2014-09-29)
========================

OCRmyPDF versions 1 and 2 were implemented as shell scripts. OCRmyPDF
3.0+ is a fork that gradually replaced all shell scripts with Python
while maintaining the existing command line arguments. No one is
maintaining old versions.

For details on older versions, see the `final version of its release
notes <https://github.com/fritz-hh/OCRmyPDF/blob/7fd3dbdf42ca53a619412ce8add7532c5e81a9d1/RELEASE_NOTES.md>`__.

ocrmypdf-10.3.1+dfsg/misc/batch.py

#!/usr/bin/env python3
Original version by DeliciousPickle@github; modified

This script must be edited to meet your needs.

import logging
import os
import sys

import ocrmypdf

pylint: disable=logging-format-interpolation
pylint: disable=logging-not-lazy

script_dir = os.path.dirname(os.path.realpath(__file__))
print(script_dir + '/batch.py: Start')

if len(sys.argv) > 1:
 start_dir = sys.argv[1]
else:
 start_dir = '.'

if len(sys.argv) > 2:
 log_file = sys.argv[2]
else:
 log_file = script_dir + '/ocr-tree.log'

logging.basicConfig(
 level=logging.INFO,
 format='%(asctime)s %(message)s',
 filename=log_file,
 filemode='w',
)

ocrmypdf.configure_logging(ocrmypdf.Verbosity.default)

for dir_name, subdirs, file_list in os.walk(start_dir):
 logging.info(dir_name + '\n')
 os.chdir(dir_name)
 for filename in file_list:
 file_ext = os.path.splitext(filename)[1]
 if file_ext == '.pdf':
 full_path = dir_name + '/' + filename
 print(full_path)
 result = ocrmypdf.ocr(filename, filename, deskew=True)
 if result == ocrmypdf.ExitCode.already_done_ocr:
 print("Skipped document because it already contained text")
 elif result == ocrmypdf.ExitCode.ok:
 print("OCR complete")
 logging.info(result)

ocrmypdf-10.3.1+dfsg/misc/completion/ocrmypdf.bash

ocrmypdf completion -*- shell-script -*-

set -o errexit

_ocrmypdf()
{
 local cur prev cword words split

 # Homebrew on Macs have version 1.3 of bash-completion which doesn't include - see #502
 if declare -F _init_completions >/dev/null 2>&1; then
 _init_completion -s || return
 else
 COMPREPLY=()
 _get_comp_words_by_ref cur prev words cword
 fi

 if [[$cur == -*]]; then
 COMPREPLY=($(compgen -W '--language --image-dpi --output-type
 --sidecar --version --jobs --quiet --verbose --title --author
 --subject --keywords --rotate-pages --remove-background --deskew
 --clean --clean-final --unpaper-args --oversample --remove-vectors
 --threshold --force-ocr --skip-text --redo-ocr
 --skip-big --jpeg-quality --png-quality --jbig2-lossy
 --max-image-mpixels --tesseract-config --tesseract-pagesegmode
 --help --tesseract-oem --pdf-renderer --tesseract-timeout
 --rotate-pages-threshold --pdfa-image-compression --user-words
 --user-patterns --keep-temporary-files --output-type
 --no-progress-bar --pages --fast-web-view' \
 -- "$cur"))
 return
 else
 _filedir
 return
 fi

 case $prev in
 --version|-h|--help)
 return
 ;;
 --user-words|--user-patterns|--tesseract-config)
 _filedir
 return
 ;;
 --output-type)
 COMPREPLY=($(compgen -W 'pdfa pdf pdfa-1 pdfa-2 pdfa-3' -- \
 "$cur"))
 return
 ;;
 --pdf-renderer)
 COMPREPLY=($(compgen -W 'auto hocr sandwich' -- "$cur"))
 return
 ;;
 --pdfa-image-compression)
 COMPREPLY=($(compgen -W 'auto jpeg lossless' -- "$cur"))
 return
 ;;
 -O|--optimize|--tesseract-oem)
 COMPREPLY=($(compgen -W '{0..3}' -- "$cur"))
 return
 ;;
 --jpeg-quality|--png-quality)
 COMPREPLY=($(compgen -W '{0..100}' -- "$cur"))
 return
 ;;
 -l|--language)
 COMPREPLY=$(command tesseract --list-langs 2>/dev/null)
 COMPREPLY=($(compgen -W '${COMPREPLY[@]##*:}' -- "$cur"))
 return
 ;;
 --image-dpi|--oversample|--skip-big|--max-image-mpixels|\
 --tesseract-timeout|--rotate-pages-threshold)
 COMPREPLY=($(compgen -P "$cur" -W '{0..9}'))
 return
 ;;
 -j|--jobs)
 COMPREPLY=($(compgen -W '{1..'$(_ncpus)'}' -- "$cur"))
 return
 ;;
 -v|--verbose)
 COMPREPLY=($(compgen -W '{0..2}' -- "$cur")) # max level ?
 return
 ;;
 --tesseract-pagesegmode)
 COMPREPLY=($(compgen -W '{1..13}' -- "$cur"))
 return
 ;;
 --sidecar|--title|--author|--subject|--keywords|--unpaper-args|--pages|--fast-web-view)
 # argument required but no completions available
 return
 ;;
 esac

 $split && return
} &&
complete -F _ocrmypdf ocrmypdf

set +o errexit

ex: filetype=sh

ocrmypdf-10.3.1+dfsg/misc/completion/ocrmypdf.fish

complete -c ocrmypdf -x -n '__fish_is_first_arg' -l version
complete -c ocrmypdf -x -n '__fish_is_first_arg' -s h -s "?" -l help

complete -c ocrmypdf -r -l sidecar -d "write OCR to text file"
complete -c ocrmypdf -x -s q -l quiet

complete -c ocrmypdf -s r -l rotate-pages -d "rotate pages to correct orientation"
complete -c ocrmypdf -s d -l deskew -d "fix small horizontal alignment skew"
complete -c ocrmypdf -s c -l clean -d "clean document images before OCR"
complete -c ocrmypdf -s i -l clean-final -d "clean document images and keep result"
complete -c ocrmypdf -l remove-vectors -d "don't send vector objects to OCR"
complete -c ocrmypdf -l threshold -d "threshold images before OCR"

complete -c ocrmypdf -s f -l force-ocr -d "OCR documents that already have printable text"
complete -c ocrmypdf -s s -l skip-ocr -d "skip OCR on pages that text, otherwise try OCR"
complete -c ocrmypdf -l redo-ocr -d "redo OCR on any pages that seem to have OCR already"

complete -c ocrmypdf -s k -l keep-temporary-files -d "keep temporary files (debug)"

function __fish_ocrmypdf_languages
 set langs (tesseract --list-langs ^/dev/null)
 set arr (string split '\n' $langs)
 for lang in $arr[2..-1]
 echo $lang
 end
end
complete -c ocrmypdf -x -s l -l language -a '(__fish_ocrmypdf_languages)' -d "language"

complete -c ocrmypdf -x -l image-dpi -d "assume this DPI if input image DPI is unknown"

function __fish_ocrmypdf_output_type
 echo -e "pdfa\t"(_ "output a PDF/A (default)")
 echo -e "pdf\t"(_ "output a standard PDF")
 echo -e "pdfa-1\t"(_ "output a PDF/A-1b")
 echo -e "pdfa-2\t"(_ "output a PDF/A-2b")
 echo -e "pdfa-3\t"(_ "output a PDF/A-3b")
end
complete -c ocrmypdf -x -l output-type -a '(__fish_ocrmypdf_output_type)' -d "select PDF output options"

function __fish_ocrmypdf_pdf_renderer
 echo -e "auto\t"(_ "auto select PDF renderer")
 echo -e "hocr\t"(_ "use hocr renderer")
 echo -e "sandwich\t"(_ "use sandwich renderer")
end
complete -c ocrmypdf -x -l pdf-renderer -a '(__fish_ocrmypdf_pdf_renderer)' -d "select PDF renderer options"

function __fish_ocrmypdf_optimize
 echo -e "0\t"(_ "do not optimize")
 echo -e "1\t"(_ "do safe, lossless optimizations (default)")
 echo -e "2\t"(_ "do some lossy optimizations")
 echo -e "3\t"(_ "do aggressive lossy optimizations (including lossy JBIG2)")
end
complete -c ocrmypdf -x -s O -l optimize -a '(__fish_ocrmypdf_optimize)' -d "select optimization level"

function __fish_ocrmypdf_verbose
 echo -e "0\t"(_ "standard output messages")
 echo -e "1\t"(_ "troubleshooting output messages")
 echo -e "2\t"(_ "debugging output messages")
end
complete -c ocrmypdf -x -s v -l verbose -a '(__fish_ocrmypdf_verbose)' -d "set verbosity level"

complete -c ocrmypdf -x -l no-progress-bar -d "disable the progress bar"

function __fish_ocrmypdf_pdfa_compression
 echo -e "auto\t"(_ "let Ghostscript decide how to compress images")
 echo -e "jpeg\t"(_ "convert color and grayscale images to JPEG")
 echo -e "lossless\t"(_ "convert color and grayscale images to lossless (PNG)")
end
complete -c ocrmypdf -x -l pdfa-image-compression -a '(__fish_ocrmypdf_pdfa_compression)' -d "set PDF/A image compression options"

complete -c ocrmypdf -x -s j -l jobs -d "how many worker processes to use"
complete -c ocrmypdf -x -l title -d "set metadata"
complete -c ocrmypdf -x -l author -d "set metadata"
complete -c ocrmypdf -x -l subject -d "set metadata"
complete -c ocrmypdf -x -l keywords -d "set metadata"
complete -c ocrmypdf -x -l oversample -d "oversample images to this DPI"
complete -c ocrmypdf -x -l skip-big -d "skip OCR on pages larger than this many MPixels"

complete -c ocrmypdf -x -l jpeg-quality -d "JPEG quality [0..100]"
complete -c ocrmypdf -x -l png-quality -d "PNG quality [0..100]"
complete -c ocrmypdf -x -l jbig2-lossy -d "enable lossy JBIG2 (see docs)"
complete -c ocrmypdf -x -l max-image-mpixels -d "image decompression bomb threshold"
complete -c ocrmypdf -x -l pages -d "apply OCR to only the specified pages"
complete -c ocrmypdf -x -l tesseract-config -d "set custom tesseract config file"

function __fish_ocrmypdf_tesseract_pagesegmode
 echo -e "0\t"(_ "orientation and script detection (OSD) only")
 echo -e "1\t"(_ "automatic page segmentation with OSD")
 echo -e "2\t"(_ "automatic page segmentation, but no OSD, or OCR")
 echo -e "3\t"(_ "fully automatic page segmentation, but no OSD (default)")
 echo -e "4\t"(_ "assume a single column of text of variable sizes")
 echo -e "5\t"(_ "assume a single uniform block of vertically aligned text")
 echo -e "6\t"(_ "assume a single uniform block of text")
 echo -e "7\t"(_ "treat the image as a single text line")
 echo -e "8\t"(_ "treat the image as a single word")
 echo -e "9\t"(_ "treat the image as a single word in a circle")
 echo -e "10\t"(_ "treat the image as a single character")
 echo -e "11\t"(_ "sparse text - find as much text as possible in no particular order")
 echo -e "12\t"(_ "sparse text with OSD")
 echo -e "13\t"(_ "raw line - treat the image as a single text line")
end
complete -c ocrmypdf -x -l tesseract-pagesegmode -a '(__fish_ocrmypdf_tesseract_pagesegmode)' -d "set tesseract --psm"

function __fish_ocrmypdf_tesseract_oem
 echo -e "0\t"(_ "legacy engine only")
 echo -e "1\t"(_ "neural nets LSTM engine only")
 echo -e "2\t"(_ "legacy + LSTM engines")
 echo -e "3\t"(_ "default, based on what is available")
end
complete -c ocrmypdf -x -l tesseract-oem -a '(__fish_ocrmypdf_tesseract_oem)' -d "set tesseract --oem"
complete -c ocrmypdf -x -l tesseract-timeout -d "maximum number of seconds to wait for OCR"
complete -c ocrmypdf -x -l rotate-pages-threshold -d "page rotation confidence"

complete -c ocrmypdf -r -l user-words -d "specify location of user words file"
complete -c ocrmypdf -r -l user-patterns -d "specify location of user patterns file"
complete -c ocrmypdf -x -l fast-web-view -d "if file size if above this amount in MB, linearize PDF"

complete -c ocrmypdf -x -a "(__fish_complete_suffix .pdf)"

ocrmypdf-10.3.1+dfsg/misc/docker-compose.example.yml

version: "3.3"
services:
 ocrmypdf:
 restart: always
 container_name: ocrmypdf
 image: jbarlow83/ocrmypdf
 volumes:
 - "/media/scan:/input"
 - "/mnt/scan:/output"
 environment:
 - OCR_OUTPUT_DIRECTORY_YEAR_MONT=0
 user: "<SET TO YOUR USER ID>:<SET TO YOUR GROUP ID>"
 entrypoint: python3
 command: watcher.py

ocrmypdf-10.3.1+dfsg/misc/example_plugin.py

© 2020 James R Barlow: https://github.com/jbarlow83
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

import logging

from PIL import Image

from ocrmypdf import hookimpl

log = logging.getLogger(__name__)

@hookimpl
def add_options(parser):
 parser.add_argument('--grayscale-ocr', action='store_true')

@hookimpl
def prepare(options):
 pass

@hookimpl
def validate(pdfinfo, options):
 pass

@hookimpl
def filter_ocr_image(page, image):
 if page.options.grayscale_ocr:
 log.info("graying")
 return image.convert('L')
 return image

@hookimpl
def filter_page_image(page, image_filename):
 output = image_filename.with_suffix('.jpg')
 with Image.open(image_filename) as im:
 im.save(output)
 return output

ocrmypdf-10.3.1+dfsg/misc/synology.py

#!/bin/env python3
Contributed by github.com/Enantiomerie

This script must be edited to meet your needs.

import logging
import os
import shutil
import subprocess
import sys
import time

pylint: disable=logging-format-interpolation
pylint: disable=logging-not-lazy

script_dir = os.path.dirname(os.path.realpath(__file__))
timestamp = time.strftime("%Y-%m-%d-%H%M_")
log_file = script_dir + '/' + timestamp + 'ocrmypdf.log'
logging.basicConfig(
 level=logging.INFO,
 format='%(asctime)s %(message)s',
 filename=log_file,
 filemode='w',
)

if len(sys.argv) > 1:
 start_dir = sys.argv[1]
else:
 start_dir = '.'

for dir_name, subdirs, file_list in os.walk(start_dir):
 logging.info(dir_name)
 os.chdir(dir_name)
 for filename in file_list:
 file_stem, file_ext = os.path.splitext(filename)
 if file_ext != '.pdf':
 continue
 full_path = os.path.join(dir_name, filename)
 timestamp_ocr = time.strftime("%Y-%m-%d-%H%M_OCR_")
 filename_ocr = timestamp_ocr + file_stem + '.pdf'
 # create string for pdf processing
 # the script is processed as root user via chron
 cmd = [
 'docker',
 'run',
 '--rm',
 '-i',
 'jbarlow83/ocrmypdf',
 '--deskew',
 '-',
 '-',
]
 logging.info(cmd)
 full_path_ocr = os.path.join(dir_name, filename_ocr)
 with open(filename, 'rb') as input_file, open(
 full_path_ocr, 'wb'
) as output_file:
 proc = subprocess.run(
 cmd,
 stdin=input_file,
 stdout=output_file,
 stderr=subprocess.PIPE,
 check=False,
)
 logging.info(proc.stderr.read())
 os.chmod(full_path_ocr, 0o664)
 os.chmod(full_path, 0o664)
 full_path_ocr_archive = sys.argv[2]
 full_path_archive = sys.argv[2] + '/no_ocr'
 shutil.move(full_path_ocr, full_path_ocr_archive)
 shutil.move(full_path, full_path_archive)
logging.info('Finished.\n')

ocrmypdf-10.3.1+dfsg/misc/watcher.py

Copyright (C) 2019 Ian Alexander: https://github.com/ianalexander
Copyright (C) 2020 James R Barlow: https://github.com/jbarlow83
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

import json
import logging
import os
import sys
import time
from datetime import datetime
from pathlib import Path

import pikepdf
from watchdog.events import PatternMatchingEventHandler
from watchdog.observers import Observer
from watchdog.observers.polling import PollingObserver

import ocrmypdf

pylint: disable=logging-format-interpolation

INPUT_DIRECTORY = os.getenv('OCR_INPUT_DIRECTORY', '/input')
OUTPUT_DIRECTORY = os.getenv('OCR_OUTPUT_DIRECTORY', '/output')
OUTPUT_DIRECTORY_YEAR_MONTH = bool(os.getenv('OCR_OUTPUT_DIRECTORY_YEAR_MONTH', ''))
ON_SUCCESS_DELETE = bool(os.getenv('OCR_ON_SUCCESS_DELETE', ''))
DESKEW = bool(os.getenv('OCR_DESKEW', ''))
OCR_JSON_SETTINGS = json.loads(os.getenv('OCR_JSON_SETTINGS', '{}'))
POLL_NEW_FILE_SECONDS = int(os.getenv('OCR_POLL_NEW_FILE_SECONDS', '1'))
USE_POLLING = bool(os.getenv('OCR_USE_POLLING', ''))
LOGLEVEL = os.getenv('OCR_LOGLEVEL', 'INFO').upper()
PATTERNS = ['*.pdf']

log = logging.getLogger('ocrmypdf-watcher')

def get_output_dir(root, basename):
 if OUTPUT_DIRECTORY_YEAR_MONTH:
 today = datetime.today()
 output_directory_year_month = (
 Path(root) / str(today.year) / f'{today.month:02d}'
)
 if not output_directory_year_month.exists():
 output_directory_year_month.mkdir(parents=True, exist_ok=True)
 output_path = Path(output_directory_year_month) / basename
 else:
 output_path = Path(OUTPUT_DIRECTORY) / basename
 return output_path

def wait_for_file_ready(file_path):
 # This loop waits to make sure that the file is completely loaded on
 # disk before attempting to read. Docker sometimes will publish the
 # watchdog event before the file is actually fully on disk, causing
 # pikepdf to fail.

 retries = 5
 while retries:
 try:
 pdf = pikepdf.open(file_path)
 except (FileNotFoundError, pikepdf.PdfError) as e:
 log.info(f"File {file_path} is not ready yet")
 log.debug("Exception was", exc_info=e)
 time.sleep(POLL_NEW_FILE_SECONDS)
 retries -= 1
 else:
 pdf.close()
 return True

 return False

def execute_ocrmypdf(file_path):
 file_path = Path(file_path)
 output_path = get_output_dir(OUTPUT_DIRECTORY, file_path.name)

 log.info("-" * 20)
 log.info(f'New file: {file_path}. Waiting until fully loaded...')
 if not wait_for_file_ready(file_path):
 log.info(f"Gave up waiting for {file_path} to become ready")
 return
 log.info(f'Attempting to OCRmyPDF to: {output_path}')
 exit_code = ocrmypdf.ocr(
 input_file=file_path,
 output_file=output_path,
 deskew=DESKEW,
 **OCR_JSON_SETTINGS,
)
 if exit_code == 0 and ON_SUCCESS_DELETE:
 log.info(f'OCR is done. Deleting: {file_path}')
 file_path.unlink()
 else:
 log.info('OCR is done')

class HandleObserverEvent(PatternMatchingEventHandler):
 def on_any_event(self, event):
 if event.event_type in ['created']:
 execute_ocrmypdf(event.src_path)

def main():
 ocrmypdf.configure_logging(
 verbosity=ocrmypdf.Verbosity.default, manage_root_logger=True
)
 log.setLevel(LOGLEVEL)
 log.info(
 f"Starting OCRmyPDF watcher with config:\n"
 f"Input Directory: {INPUT_DIRECTORY}\n"
 f"Output Directory: {OUTPUT_DIRECTORY}\n"
 f"Output Directory Year & Month: {OUTPUT_DIRECTORY_YEAR_MONTH}"
)
 log.debug(
 f"INPUT_DIRECTORY: {INPUT_DIRECTORY}\n"
 f"OUTPUT_DIRECTORY: {OUTPUT_DIRECTORY}\n"
 f"OUTPUT_DIRECTORY_YEAR_MONTH: {OUTPUT_DIRECTORY_YEAR_MONTH}\n"
 f"ON_SUCCESS_DELETE: {ON_SUCCESS_DELETE}\n"
 f"DESKEW: {DESKEW}\n"
 f"ARGS: {OCR_JSON_SETTINGS}\n"
 f"POLL_NEW_FILE_SECONDS: {POLL_NEW_FILE_SECONDS}\n"
 f"USE_POLLING: {USE_POLLING}\n"
 f"LOGLEVEL: {LOGLEVEL}\n"
)

 if 'input_file' in OCR_JSON_SETTINGS or 'output_file' in OCR_JSON_SETTINGS:
 log.error('OCR_JSON_SETTINGS should not specify input file or output file')
 sys.exit(1)

 handler = HandleObserverEvent(patterns=PATTERNS)
 if USE_POLLING:
 observer = PollingObserver()
 else:
 observer = Observer()
 observer.schedule(handler, INPUT_DIRECTORY, recursive=True)
 observer.start()
 try:
 while True:
 time.sleep(1)
 except KeyboardInterrupt:
 observer.stop()
 observer.join()

if __name__ == "__main__":
 main()

ocrmypdf-10.3.1+dfsg/misc/webservice.py

webservice.py wrapper for OCRmyPDF
Copyright (C) 2019 James R. Barlow: github.com/jbarlow83
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.

"""This is a simple web service/HTTP wrapper for OCRmyPDF

This may be more convenient than the command line tool for some Docker users.
Note that OCRmyPDF uses Ghostscript, which is licensed under AGPLv3+. While
OCRmyPDF is under GPLv3, this file is distributed under the Affero GPLv3+ license,
to emphasize that SaaS deployments should make sure they comply with
Ghostscript's license as well as OCRmyPDF's.
"""

import os
import shlex
from subprocess import PIPE, run
from tempfile import TemporaryDirectory

from flask import (
 Flask,
 Response,
 abort,
 flash,
 redirect,
 request,
 send_from_directory,
 url_for,
)
from werkzeug.utils import secure_filename

app = Flask(__name__)
app.secret_key = "secret"
app.config['MAX_CONTENT_LENGTH'] = 50_000_000
app.config.from_envvar("OCRMYPDF_WEBSERVICE_SETTINGS", silent=True)

ALLOWED_EXTENSIONS = set(["pdf"])

def allowed_file(filename):
 return "." in filename and filename.rsplit(".", 1)[1].lower() in ALLOWED_EXTENSIONS

def do_ocrmypdf(file):
 uploaddir = TemporaryDirectory(prefix="ocrmypdf-upload")
 downloaddir = TemporaryDirectory(prefix="ocrmypdf-download")

 filename = secure_filename(file.filename)
 up_file = os.path.join(uploaddir.name, filename)
 file.save(up_file)

 down_file = os.path.join(downloaddir.name, filename)

 cmd_args = [arg for arg in shlex.split(request.form["params"])]
 if "--sidecar" in cmd_args:
 return Response("--sidecar not supported", 501, mimetype='text/plain')

 ocrmypdf_args = ["ocrmypdf", *cmd_args, up_file, down_file]
 proc = run(ocrmypdf_args, stdout=PIPE, stderr=PIPE, encoding="utf-8")
 if proc.returncode != 0:
 stderr = proc.stderr
 return Response(stderr, 400, mimetype='text/plain')

 return send_from_directory(downloaddir.name, filename)

@app.route("/", methods=["GET", "POST"])
def upload_file():
 if request.method == "POST":
 if "file" not in request.files:
 return Response("No file in POST", 400, mimetype='text/plain')
 file = request.files["file"]
 if file.filename == "":
 return Response("Empty filename", 400, mimetype='text/plain')
 if not allowed_file(file.filename):
 return Response("Invalid filename", 400, mimetype='text/plain')
 if file and allowed_file(file.filename):
 return do_ocrmypdf(file)
 return Response("Some other problem", 400, mimetype='text/plain')

 return """
 <!doctype html>
 <title>OCRmyPDF webservice</title>
 <h1>Upload a PDF (debug UI)</h1>
 <form method=post enctype=multipart/form-data>
 <label for="args">Command line parameters</label>
 <input type=textbox name=params>
 <label for="file">File to upload</label>
 <input type=file name=file>
 <input type=submit value=Upload>
 </form>
 <h4>Notice</h2>
 <div style="font-size: 70%; max-width: 34em;">
 <p>This is a webservice wrapper for OCRmyPDF.</p>
 <p>Copyright 2019 James R. Barlow</p>
 <p>This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU Affero General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.
 </p>
 <p>This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.
 </p>
 <p>
 You should have received a copy of the GNU Affero General Public License
 along with this program. If not, see <http://www.gnu.org/licenses/>.
 </p>
 </div>
 """

if __name__ == "__main__":
 app.run(host='0.0.0.0', port=5000)

ocrmypdf-10.3.1+dfsg/pyproject.toml

[build-system]
requires = [
 "setuptools >= 30.3.0",
 "wheel",
 "cffi",
 "setuptools_scm",
 "setuptools_scm_git_archive"
]
build-backend = "setuptools.build_meta"

[tool.black]
line-length = 88
target-version = ["py36", "py37", "py38"]
skip-string-normalization = true
include = '\.pyi?$'
exclude = '''
/(
 \.eggs
 | \.git
 | \.hg
 | \.mypy_cache
 | \.tox
 | \.venv
 | _build
 | buck-out
 | build
 | dist
 | docs
 | misc
 | \.egg-info
 | src/ocrmypdf/lib/_leptonica.py
)/
'''

ocrmypdf-10.3.1+dfsg/requirements/main.txt

requirements.txt can be used to replicate the developer's build environment
setup.py lists a separate set of requirements that are looser to simplify
installation
cffi == 1.14.0
coloredlogs == 14.0 # technically optional
img2pdf == 0.3.6
pdfminer.six == 20200517
pikepdf == 1.16.1
pluggy == 0.13.1
Pillow == 7.1.2
reportlab == 3.5.42
tqdm == 4.46.1

ocrmypdf-10.3.1+dfsg/requirements/test.txt

pytest >= 5.0.0
pytest-helpers-namespace >= 2019.1.8
pytest-xdist >= 1.31.0
pytest-cov >= 2.10.0
python-xmp-toolkit == 2.0.1 # requires apt-get install libexempi3
 # or brew install exempi
#PyMuPDF == 1.13.4 # optional

ocrmypdf-10.3.1+dfsg/requirements/watcher.txt

watchdog == 0.10.2

ocrmypdf-10.3.1+dfsg/requirements/webservice.txt

Flask >= 1, < 2

ocrmypdf-10.3.1+dfsg/setup.cfg

[bdist_wheel]
python-tag = py35

[aliases]
test=pytest

[check-manifest]
ignore =
	.github

[tool:pytest]
norecursedirs = lib .pc .git output cache resources
testpaths = tests
filterwarnings =
	ignore:.*XMLParser.*:DeprecationWarning
markers =
	slow

[isort]
multi_line_output=3
include_trailing_comma=True
force_grid_wrap=0
use_parentheses=True
line_length=88
known_first_party = ocrmypdf
known_third_party = PIL,_cffi_backend,cffi,flask,img2pdf,pdfminer,pikepdf,pkg_resources,pluggy,pytest,reportlab,setuptools,sphinx_rtd_theme,tqdm,watchdog,werkzeug

[metadata]
license_file = LICENSE

ocrmypdf-10.3.1+dfsg/setup.py

#!/usr/bin/env python3
-*- coding: utf-8 -*-
© 2015 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

from __future__ import print_function, unicode_literals

import sys

from setuptools import find_packages, setup

if sys.version_info < (3, 6):
 print("Python 3.6 or newer is required", file=sys.stderr)
 sys.exit(1)

if 'upload' in sys.argv[1:]:
 print('Use twine to upload the package - setup.py upload is insecure')
 sys.exit(1)

tests_require = open('requirements/test.txt', encoding='utf-8').read().splitlines()

def readme():
 with open('README.md', encoding='utf-8') as f:
 return f.read()

setup(
 name='ocrmypdf',
 description='OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched',
 long_description=readme(),
 long_description_content_type='text/markdown',
 url='https://github.com/jbarlow83/OCRmyPDF',
 author='James R. Barlow',
 author_email='james@purplerock.ca',
 packages=find_packages('src', exclude=["tests", "tests.*"]),
 package_dir={'': 'src'},
 keywords=['PDF', 'OCR', 'optical character recognition', 'PDF/A', 'scanning'],
 classifiers=[
 "Programming Language :: Python :: 3.6",
 "Programming Language :: Python :: 3.7",
 "Programming Language :: Python :: 3.8",
 "Programming Language :: Python :: 3.9",
 "Development Status :: 5 - Production/Stable",
 "Environment :: Console",
 "Intended Audience :: End Users/Desktop",
 "Intended Audience :: Science/Research",
 "Intended Audience :: System Administrators",
 "License :: OSI Approved :: GNU General Public License v3 (GPLv3)",
 "Operating System :: MacOS :: MacOS X",
 "Operating System :: Microsoft :: Windows :: Windows 10",
 "Operating System :: POSIX",
 "Operating System :: POSIX :: BSD",
 "Operating System :: POSIX :: Linux",
 "Topic :: Scientific/Engineering :: Image Recognition",
 "Topic :: Text Processing :: Indexing",
 "Topic :: Text Processing :: Linguistic",
],
 python_requires=' >= 3.6',
 setup_requires=[# can be removed whenever we can drop pip 9 support
 'cffi >= 1.9.1', # to build the leptonica module
 'pytest-runner', # to enable python setup.py test
 'setuptools_scm', # so that version will work
 'setuptools_scm_git_archive', # enable version from github tarballs
],
 use_scm_version={'version_scheme': 'post-release'},
 cffi_modules=['src/ocrmypdf/lib/compile_leptonica.py:ffibuilder'],
 install_requires=[
 'cffi >= 1.9.1', # must be a setup and install requirement
 'coloredlogs >= 14.0', # strictly optional
 'img2pdf >= 0.3.0, < 0.4', # pure Python, so track HEAD closely
 'pdfminer.six >= 20191110, <= 20200720',
 'pikepdf >= 1.14.0, < 2',
 'Pillow >= 7.0.0',
 'pluggy >= 0.13.0',
 'reportlab >= 3.3.0', # oldest released version with sane image handling
 'tqdm >= 4',
],
 tests_require=tests_require,
 entry_points={'console_scripts': ['ocrmypdf = ocrmypdf.__main__:run']},
 package_data={'ocrmypdf': ['data/sRGB.icc']},
 include_package_data=True,
 zip_safe=False,
 project_urls={
 'Documentation': 'https://ocrmypdf.readthedocs.io/',
 'Source': 'https://github.com/jbarlow83/ocrmypdf',
 'Tracker': 'https://github.com/jbarlow83/ocrmypdf/issues',
 },
)

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/__init__.py

© 2017 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

from pluggy import HookimplMarker as _HookimplMarker

from ocrmypdf import helpers, hocrtransform, leptonica, pdfa, pdfinfo
from ocrmypdf._version import PROGRAM_NAME, __version__
from ocrmypdf.api import Verbosity, configure_logging, ocr
from ocrmypdf.exceptions import (
 BadArgsError,
 DpiError,
 EncryptedPdfError,
 ExitCode,
 ExitCodeException,
 InputFileError,
 MissingDependencyError,
 OutputFileAccessError,
 PdfMergeFailedError,
 PriorOcrFoundError,
 SubprocessOutputError,
 TesseractConfigError,
 UnsupportedImageFormatError,
)
from ocrmypdf.pluginspec import OcrEngine, OrientationConfidence

hookimpl = _HookimplMarker('ocrmypdf')

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/__main__.py

#!/usr/bin/env python3
© 2015-19 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import logging
import os
import signal
import sys
from multiprocessing import set_start_method

from ocrmypdf import __version__
from ocrmypdf._plugin_manager import get_parser_options_plugins
from ocrmypdf._sync import run_pipeline
from ocrmypdf._validation import check_closed_streams, check_options
from ocrmypdf.api import Verbosity, configure_logging
from ocrmypdf.exceptions import (
 BadArgsError,
 ExitCode,
 InputFileError,
 MissingDependencyError,
)

log = logging.getLogger('ocrmypdf')

def sigbus(*args):
 raise InputFileError("Lost access to the input file")

def run(args=None):
 _parser, options, plugin_manager = get_parser_options_plugins(args=args)

 if not check_closed_streams(options):
 return ExitCode.bad_args

 if hasattr(os, 'nice'):
 os.nice(5)

 verbosity = options.verbose
 if not os.isatty(sys.stderr.fileno()):
 options.progress_bar = False
 if options.quiet:
 verbosity = Verbosity.quiet
 options.progress_bar = False
 configure_logging(
 verbosity, progress_bar_friendly=options.progress_bar, manage_root_logger=True
)
 log.debug('ocrmypdf %s', __version__)
 try:
 check_options(options, plugin_manager)
 except ValueError as e:
 log.error(e)
 return ExitCode.bad_args
 except BadArgsError as e:
 log.error(e)
 return e.exit_code
 except MissingDependencyError as e:
 log.error(e)
 return ExitCode.missing_dependency

 if hasattr(signal, 'SIGBUS'):
 signal.signal(signal.SIGBUS, sigbus)

 result = run_pipeline(options=options, plugin_manager=plugin_manager)
 return result

if __name__ == '__main__':
 if sys.platform == 'darwin' and sys.version_info < (3, 8):
 set_start_method('spawn') # see python bpo-33725
 sys.exit(run())

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/_concurrent.py

© 2020 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import logging
import logging.handlers
import multiprocessing
import os
import signal
import sys
import threading
from multiprocessing import Pool as ProcessPool
from multiprocessing.dummy import Pool as ThreadPool
from typing import Callable, Iterable, Optional

from tqdm import tqdm

from ocrmypdf.exceptions import InputFileError

def log_listener(queue):
 """Listen to the worker processes and forward the messages to logging

 For simplicity this is a thread rather than a process. Only one process
 should actually write to sys.stderr or whatever we're using, so if this is
 made into a process the main application needs to be directed to it.

 See https://docs.python.org/3/howto/logging-cookbook.html#logging-to-a-single-file-from-multiple-processes
 """

 while True:
 try:
 record = queue.get()
 if record is None:
 break
 logger = logging.getLogger(record.name)
 logger.handle(record)
 except Exception: # pylint: disable=broad-except
 import traceback # pylint: disable=import-outside-toplevel

 print("Logging problem", file=sys.stderr)
 traceback.print_exc(file=sys.stderr)

def process_sigbus(*args):
 raise InputFileError("A worker process lost access to an input file")

def process_init(queue, user_init):
 """Initialize a process pool worker"""

 # Ignore SIGINT (our parent process will kill us gracefully)
 signal.signal(signal.SIGINT, signal.SIG_IGN)

 # Install SIGBUS handler (so our parent process can abort somewhat gracefully)
 if hasattr(signal, 'SIGBUS'):
 signal.signal(signal.SIGBUS, process_sigbus)

 # Reconfigure the root logger for this process to send all messages to a queue
 h = logging.handlers.QueueHandler(queue)
 root = logging.getLogger()
 root.handlers = []
 root.addHandler(h)

 if user_init:
 user_init()

def thread_init(_queue, user_init):
 # As a thread, block SIGBUS so the main thread deals with it...
 if hasattr(signal, 'SIGBUS'):
 signal.pthread_sigmask(signal.SIG_BLOCK, {signal.SIGBUS})
 if user_init:
 user_init()

def exec_progress_pool(
 *,
 use_threads: bool,
 max_workers: int,
 tqdm_kwargs: dict,
 task_initializer: Optional[Callable] = None,
 task: Optional[Callable] = None,
 task_arguments: Optional[Iterable] = None,
 task_finished: Optional[Callable] = None,
):
 log_queue: multiprocessing.Queue = multiprocessing.Queue(-1)
 listener = threading.Thread(target=log_listener, args=(log_queue,))

 if use_threads:
 pool_class = ThreadPool
 initializer = thread_init
 else:
 pool_class = ProcessPool
 initializer = process_init
 listener.start()

 with tqdm(**tqdm_kwargs) as pbar:
 pool = pool_class(
 processes=max_workers,
 initializer=initializer,
 initargs=(log_queue, task_initializer),
)
 try:
 results = pool.imap_unordered(task, task_arguments)
 while True:
 try:
 result = results.next()
 if task_finished:
 task_finished(result, pbar)
 else:
 pbar.update()
 except StopIteration:
 break
 except KeyboardInterrupt:
 # Terminate pool so we exit instantly
 pool.terminate()
 # Don't try listener.join() here, will deadlock
 raise
 except Exception:
 if not os.environ.get("PYTEST_CURRENT_TEST", ""):
 # Unless inside pytest, exit immediately because no one wants
 # to wait for child processes to finalize results that will be
 # thrown away. Inside pytest, we want child processes to exit
 # cleanly so that they output an error messages or coverage data
 # we need from them.
 pool.terminate()
 raise
 finally:
 # Terminate log listener
 log_queue.put_nowait(None)
 pool.close()
 pool.join()

 listener.join()

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/_exec/__init__.py

© 2020 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

"""Manage third party executables"""

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/_exec/ghostscript.py

© 2017 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

"""Interface to Ghostscript executable"""

import logging
import os
import re
from io import BytesIO
from os import fspath
from pathlib import Path
from shutil import which
from subprocess import PIPE, CalledProcessError
from typing import Optional, cast

from PIL import Image

from ocrmypdf.exceptions import MissingDependencyError, SubprocessOutputError
from ocrmypdf.helpers import Resolution
from ocrmypdf.subprocess import get_version, run

log = logging.getLogger(__name__)

_gswin = None
if os.name == 'nt':
 _gswin = which('gswin64c')
 if not _gswin:
 _gswin = which('gswin32c')
 if not _gswin:
 raise MissingDependencyError(
 """

 This error normally occurs when ocrmypdf can't Ghostscript. Please
 ensure Ghostscript is installed and its location is added to the
 system PATH environment variable.

 For details see:
 https://ocrmypdf.readthedocs.io/en/latest/installation.html

 """
)
 _gswin = Path(_gswin).stem

GS = _gswin if _gswin else 'gs'
del _gswin

def version():
 return get_version(GS)

def jpeg_passthrough_available() -> bool:
 """Returns True if the installed version of Ghostscript supports JPEG passthru

 Prior to 9.23, Ghostscript decode and re-encoded JPEGs internally. In 9.23
 it gained the ability to keep JPEGs unmodified. However, the 9.23
 implementation was buggy and would deletes the last two bytes of images in
 some cases, as reported here.
 https://bugs.ghostscript.com/show_bug.cgi?id=699216

 The issue was fixed for 9.24, hence that is the first version we consider
 the feature available. (However, we don't use 9.24 at all, so the first
 version that allows JPEG passthrough is 9.25.

 """
 return version() >= '9.24'

def _gs_error_reported(stream) -> bool:
 return True if re.search(r'error', stream, flags=re.IGNORECASE) else False

def rasterize_pdf(
 input_file: os.PathLike,
 output_file: os.PathLike,
 *,
 raster_device: str,
 raster_dpi: Resolution,
 pageno: int = 1,
 page_dpi: Resolution = None,
 rotation: int = None,
 filter_vector: bool = False,
):
 """Rasterize one page of a PDF at resolution raster_dpi in canvas units."""
 raster_dpi = raster_dpi.round(6)
 if not page_dpi:
 page_dpi = raster_dpi

 args_gs = (
 [
 GS,
 '-dQUIET',
 '-dSAFER',
 '-dBATCH',
 '-dNOPAUSE',
 f'-sDEVICE={raster_device}',
 f'-dFirstPage={pageno}',
 f'-dLastPage={pageno}',
 f'-r{raster_dpi.x:f}x{raster_dpi.y:f}',
]
 + (['-dFILTERVECTOR'] if filter_vector else [])
 + [
 '-o',
 '-',
 '-sstdout=%stderr',
 '-dAutoRotatePages=/None', # Probably has no effect on raster
 '-f',
 fspath(input_file),
]
)

 try:
 p = run(args_gs, stdout=PIPE, stderr=PIPE, check=True)
 except CalledProcessError as e:
 log.error(e.stderr.decode(errors='replace'))
 raise SubprocessOutputError('Ghostscript rasterizing failed')
 else:
 stderr = p.stderr.decode(errors='replace')
 if _gs_error_reported(stderr):
 log.error(stderr)
 elif stderr:
 log.debug(stderr)

 with Image.open(BytesIO(p.stdout)) as im:
 if rotation is not None:
 log.debug("Rotating output by %i", rotation)
 # rotation is a clockwise angle and Image.ROTATE_* is
 # counterclockwise so this cancels out the rotation
 if rotation == 90:
 im = im.transpose(Image.ROTATE_90)
 elif rotation == 180:
 im = im.transpose(Image.ROTATE_180)
 elif rotation == 270:
 im = im.transpose(Image.ROTATE_270)
 if rotation % 180 == 90:
 page_dpi = page_dpi.flip_axis()
 im.save(fspath(output_file), dpi=page_dpi)

def generate_pdfa(
 pdf_pages,
 output_file: os.PathLike,
 compression: str,
 pdf_version: str = '1.5',
 pdfa_part: str = '2',
):
 compression_args = []
 if compression == 'jpeg':
 compression_args = [
 "-dAutoFilterColorImages=false",
 "-dColorImageFilter=/DCTEncode",
 "-dAutoFilterGrayImages=false",
 "-dGrayImageFilter=/DCTEncode",
]
 elif compression == 'lossless':
 compression_args = [
 "-dAutoFilterColorImages=false",
 "-dColorImageFilter=/FlateEncode",
 "-dAutoFilterGrayImages=false",
 "-dGrayImageFilter=/FlateEncode",
]
 else:
 compression_args = [
 "-dAutoFilterColorImages=true",
 "-dAutoFilterGrayImages=true",
]

 # Older versions of Ghostscript expect a leading slash in
 # sColorConversionStrategy, newer ones should not have it. See Ghostscript
 # git commit fe1c025d.
 strategy = 'RGB' if version() >= '9.19' else '/RGB'

 if version() == '9.23':
 # 9.23: new feature JPEG passthrough is broken in some cases, best to
 # disable it always
 # https://bugs.ghostscript.com/show_bug.cgi?id=699216
 compression_args.append('-dPassThroughJPEGImages=false')

 # nb no need to specify ProcessColorModel when ColorConversionStrategy
 # is set; see:
 # https://bugs.ghostscript.com/show_bug.cgi?id=699392
 args_gs = (
 [
 GS,
 "-dQUIET",
 "-dBATCH",
 "-dNOPAUSE",
 "-dSAFER",
 "-dCompatibilityLevel=" + str(pdf_version),
 "-sDEVICE=pdfwrite",
 "-dAutoRotatePages=/None",
 "-sColorConversionStrategy=" + strategy,
]
 + compression_args
 + [
 "-dJPEGQ=95",
 "-dPDFA=" + pdfa_part,
 "-dPDFACompatibilityPolicy=1",
 "-o",
 "-",
 "-sstdout=%stderr",
]
)
 args_gs.extend(fspath(s) for s in pdf_pages) # Stringify Path objs
 try:
 with Path(output_file).open('wb') as output:
 p = run(args_gs, stdout=output, stderr=PIPE, check=True)
 except CalledProcessError as e:
 # Ghostscript does not change return code when it fails to create
 # PDF/A - check PDF/A status elsewhere
 log.error(e.stderr.decode(errors='replace'))
 raise SubprocessOutputError('Ghostscript PDF/A rendering failed')
 else:
 stderr = p.stderr.decode('utf-8', errors='replace')
 if _gs_error_reported(stderr):
 last_part = None
 repcount = 0
 for part in stderr.split('****'):
 if part != last_part:
 if repcount > 1:
 log.error(f"(previous error message repeated {repcount} times)")
 repcount = 0
 log.error(part)
 else:
 repcount += 1
 last_part = part
 elif 'overprint mode not set' in stderr:
 # Unless someone is going to print PDF/A documents on a
 # magical sRGB printer I can't see the removal of overprinting
 # being a problem....
 log.debug(
 "Ghostscript had to remove PDF 'overprinting' from the "
 "input file to complete PDF/A conversion. "
)

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/_exec/jbig2enc.py

© 2018 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

"""Interface to jbig2 executable"""

from subprocess import PIPE

from ocrmypdf.exceptions import MissingDependencyError
from ocrmypdf.subprocess import get_version, run

def version():
 return get_version('jbig2', regex=r'jbig2enc (\d+(\.\d+)*).*')

def available():
 try:
 version()
 except MissingDependencyError:
 return False
 return True

def convert_group(*, cwd, infiles, out_prefix):
 args = [
 'jbig2',
 '-b',
 out_prefix,
 '-s', # symbol mode (lossy)
 # '-r', # refinement mode (lossless symbol mode, currently disabled in
 # jbig2)
 '-p',
]
 args.extend(infiles)
 proc = run(args, cwd=cwd, stdout=PIPE, stderr=PIPE)
 proc.check_returncode()
 return proc

def convert_single(*, cwd, infile, outfile):
 args = ['jbig2', '-p', infile]
 with open(outfile, 'wb') as fstdout:
 proc = run(args, cwd=cwd, stdout=fstdout, stderr=PIPE)
 proc.check_returncode()
 return proc

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/_exec/pngquant.py

© 2018 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

"""Interface to pngquant executable"""

from os import fspath
from tempfile import NamedTemporaryFile

from PIL import Image

from ocrmypdf.exceptions import MissingDependencyError
from ocrmypdf.subprocess import get_version, run

def version():
 return get_version('pngquant', regex=r'(\d+(\.\d+)*).*')

def available():
 try:
 version()
 except MissingDependencyError:
 return False
 return True

def quantize(input_file, output_file, quality_min, quality_max):
 input_file = fspath(input_file)
 output_file = fspath(output_file)
 if input_file.endswith('.jpg'):
 with Image.open(input_file) as im, NamedTemporaryFile(suffix='.png') as tmp:
 im.save(tmp)
 args = [
 'pngquant',
 '--force',
 '--skip-if-larger',
 '--output',
 output_file,
 '--quality',
 f'{quality_min}-{quality_max}',
 '--',
 tmp.name,
]
 run(args)
 else:
 args = [
 'pngquant',
 '--force',
 '--skip-if-larger',
 '--output',
 output_file,
 '--quality',
 f'{quality_min}-{quality_max}',
 '--',
 input_file,
]
 run(args)

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/_exec/tesseract.py

© 2017 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see .

"""Interface to Tesseract executable"""

import logging
import os
import shutil
from collections import namedtuple
from os import fspath
from pathlib import Path
from subprocess import PIPE, STDOUT, CalledProcessError, TimeoutExpired
from typing import List

from PIL import Image

from ocrmypdf.exceptions import (
 MissingDependencyError,
 SubprocessOutputError,
 TesseractConfigError,
)
from ocrmypdf.subprocess import get_version, run

log = logging.getLogger(__name__)

OrientationConfidence = namedtuple('OrientationConfidence', ('angle', 'confidence'))

HOCR_TEMPLATE = """

"""

class TesseractLoggerAdapter(logging.LoggerAdapter):
 def process(self, msg, kwargs):
 kwargs['extra'] = self.extra
 return '[tesseract] %s' % (msg), kwargs

def version():
 return get_version('tesseract', regex=r'tesseract\s(.+)')

def has_textonly_pdf(langs=None):
 """Does Tesseract have textonly_pdf capability?

 Available in v4.00.00alpha since January 2017. Best to
 parse the parameter list.
 """
 args_tess = tess_base_args(langs, engine_mode=None) + ['--print-parameters', 'pdf']
 params = ''
 try:
 proc = run(args_tess, check=True, stdout=PIPE, stderr=STDOUT)
 params = proc.stdout
 except CalledProcessError as e:
 raise MissingDependencyError(
 "Could not --print-parameters from tesseract. This can happen if the "
 "TESSDATA_PREFIX environment is not set to a valid tessdata folder. "
) from e
 if b'textonly_pdf' in params:
 return True
 return False

def has_user_words():
 """Does Tesseract have --user-words capability?

 Not available in 4.0, but available in 4.1. Also available in 3.x, but
 we no longer support 3.x.
 """
 return version() >= '4.1'

def get_languages():
 def lang_error(output):
 msg = (
 "Tesseract failed to report available languages.\n"
 "Output from Tesseract:\n"
 "-----------\n"
)
 msg += output
 return msg

 args_tess = ['tesseract', '--list-langs']
 try:
 proc = run(
 args_tess, universal_newlines=True, stdout=PIPE, stderr=STDOUT, check=True
)
 output = proc.stdout
 except CalledProcessError as e:
 raise MissingDependencyError(lang_error(e.output)) from e

 for line in output.splitlines():
 if line.startswith('Error'):
 raise MissingDependencyError(lang_error(output))
 _header, *rest = output.splitlines()
 return set(lang.strip() for lang in rest)

def tess_base_args(langs: List[str], engine_mode: int) -> List[str]:
 args = ['tesseract']
 if langs:
 args.extend(['-l', '+'.join(langs)])
 if engine_mode is not None:
 args.extend(['--oem', str(engine_mode)])
 return args

def get_orientation(input_file: Path, engine_mode: int, timeout: float):
 args_tesseract = tess_base_args(['osd'], engine_mode) + [
 '--psm',
 '0',
 fspath(input_file),
 'stdout',
]

 try:
 p = run(args_tesseract, stdout=PIPE, stderr=STDOUT, timeout=timeout, check=True)
 stdout = p.stdout
 except TimeoutExpired:
 return OrientationConfidence(angle=0, confidence=0.0)
 except CalledProcessError as e:
 tesseract_log_output(e.stdout)
 tesseract_log_output(e.stderr)
 if (
 b'Too few characters. Skipping this page' in e.output
 or b'Image too large' in e.output
):
 return OrientationConfidence(0, 0)
 raise SubprocessOutputError() from e
 else:
 osd = {}
 for line in stdout.decode().splitlines():
 line = line.strip()
 parts = line.split(':', maxsplit=2)
 if len(parts) == 2:
 osd[parts[0].strip()] = parts[1].strip()

 angle = int(osd.get('Orientation in degrees', 0))
 oc = OrientationConfidence(
 angle=angle, confidence=float(osd.get('Orientation confidence', 0))
)
 return oc

def tesseract_log_output(stream):
 tlog = TesseractLoggerAdapter(
 log, extra=log.extra if hasattr(log, 'extra') else None
)

 if not stream:
 return
 try:
 text = stream.decode()
 except UnicodeDecodeError:
 text = stream.decode('utf-8', 'ignore')

 lines = text.splitlines()
 for line in lines:
 if line.startswith("Tesseract Open Source"):
 continue
 elif line.startswith("Warning in pixReadMem"):
 continue
 elif 'diacritics' in line:
 tlog.warning("lots of diacritics - possibly poor OCR")
 elif line.startswith('OSD: Weak margin'):
 tlog.warning("unsure about page orientation")
 elif 'Error in pixScanForForeground' in line:
 pass # Appears to be spurious/problem with nonwhite borders
 elif 'Error in boxClipToRectangle' in line:
 pass # Always appears with pixScanForForeground message
 elif 'parameter not found: ' in line.lower():
 tlog.error(line.strip())
 problem = line.split('found: ')[1]
 raise TesseractConfigError(problem)
 elif 'error' in line.lower() or 'exception' in line.lower():
 tlog.error(line.strip())
 elif 'warning' in line.lower():
 tlog.warning(line.strip())
 elif 'read_params_file' in line.lower():
 tlog.error(line.strip())
 else:
 tlog.info(line.strip())

def page_timedout(timeout):
 if timeout == 0:
 return
 log.warning("[tesseract] took too long to OCR - skipping")

def _generate_null_hocr(output_hocr, output_text, image):
 """Produce a .hocr file that reports no text detected on a page that is
 the same size as the input image."""
 with Image.open(image) as im:
 w, h = im.size

 output_hocr.write_text(HOCR_TEMPLATE.format(w, h), encoding='utf-8')
 output_text.write_text('[skipped page]', encoding='utf-8')

def generate_hocr(
 input_file: Path,
 output_hocr: Path,
 output_text: Path,
 languages: List[str],
 engine_mode: int,
 tessconfig: List[str],
 timeout: float,
 pagesegmode: int,
 user_words,
 user_patterns,
):
 prefix = output_hocr.with_suffix('')

 args_tesseract = tess_base_args(languages, engine_mode)

 if pagesegmode is not None:
 args_tesseract.extend(['--psm', str(pagesegmode)])

 if user_words:
 args_tesseract.extend(['--user-words', user_words])

 if user_patterns:
 args_tesseract.extend(['--user-patterns', user_patterns])

 # Reminder: test suite tesseract test plugins will break after any changes
 # to the number of order parameters here
 args_tesseract.extend([input_file, prefix, 'hocr', 'txt'] + tessconfig)
 try:
 p = run(args_tesseract, stdout=PIPE, stderr=STDOUT, timeout=timeout, check=True)
 stdout = p.stdout
 except TimeoutExpired:
 # Generate a HOCR file with no recognized text if tesseract times out
 # Temporary workaround to hocrTransform not being able to function if
 # it does not have a valid hOCR file.
 page_timedout(timeout)
 _generate_null_hocr(output_hocr, output_text, input_file)
 except CalledProcessError as e:
 tesseract_log_output(e.output)
 if b'Image too large' in e.output:
 _generate_null_hocr(output_hocr, output_text, input_file)
 return

 raise SubprocessOutputError() from e
 else:
 tesseract_log_output(stdout)
 # The sidecar text file will get the suffix .txt; rename it to
 # whatever caller wants it named
 if prefix.with_suffix('.txt').exists():
 shutil.move(prefix.with_suffix('.txt'), output_text)

def use_skip_page(output_pdf, output_text):
 output_text.write_text('[skipped page]', encoding='utf-8')

 # A 0 byte file to the output to indicate a skip
 output_pdf.write_bytes(b'')

def generate_pdf(
 *,
 input_file: Path,
 output_pdf: Path,
 output_text: Path,
 languages: List[str],
 engine_mode: int,
 tessconfig: List[str],
 timeout: float,
 pagesegmode: int,
 user_words,
 user_patterns,
):
 """Use Tesseract to render a PDF.

 input_file -- image to analyze
 output_pdf -- file to generate
 output_text -- OCR text file
 languages -- list of languages to consider
 engine_mode -- engine mode argument for tess v4
 tessconfig -- tesseract configuration
 timeout -- timeout (seconds)
 """

 args_tesseract = tess_base_args(languages, engine_mode)

 if pagesegmode is not None:
 args_tesseract.extend(['--psm', str(pagesegmode)])

 args_tesseract.extend(['-c', 'textonly_pdf=1'])

 if user_words:
 args_tesseract.extend(['--user-words', user_words])

 if user_patterns:
 args_tesseract.extend(['--user-patterns', user_patterns])

 prefix = os.path.splitext(output_pdf)[0] # Tesseract appends suffixes

 # Reminder: test suite tesseract test plugins might break after any changes
 # to the number of order parameters here

 args_tesseract.extend([input_file, prefix, 'pdf', 'txt'] + tessconfig)
 try:
 p = run(args_tesseract, stdout=PIPE, stderr=STDOUT, timeout=timeout, check=True)
 stdout = p.stdout
 if os.path.exists(prefix + '.txt'):
 shutil.move(prefix + '.txt', output_text)
 except TimeoutExpired:
 page_timedout(timeout)
 use_skip_page(output_pdf, output_text)
 except CalledProcessError as e:
 tesseract_log_output(e.output)
 if b'Image too large' in e.output:
 use_skip_page(output_pdf, output_text)
 return
 raise SubprocessOutputError() from e
 else:
 tesseract_log_output(stdout)

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/_exec/unpaper.py

© 2015 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

unpaper documentation:
https://github.com/Flameeyes/unpaper/blob/master/doc/basic-concepts.md

"""Interface to unpaper executable"""

import logging
import os
import shlex
from pathlib import Path
from subprocess import PIPE, STDOUT, CalledProcessError
from tempfile import TemporaryDirectory
from typing import Tuple

from PIL import Image

from ocrmypdf.exceptions import MissingDependencyError, SubprocessOutputError
from ocrmypdf.subprocess import get_version
from ocrmypdf.subprocess import run as external_run

log = logging.getLogger(__name__)

def version():
 return get_version('unpaper')

def _setup_unpaper_io(tmpdir: Path, input_file: Path) -> Tuple[Path, Path]:
 SUFFIXES = {'1': '.pbm', 'L': '.pgm', 'RGB': '.ppm'}
 with Image.open(input_file) as im:
 im_modified = False
 if im.mode not in SUFFIXES:
 log.info("Converting image to other colorspace")
 try:
 if im.mode == 'P' and len(im.getcolors()) == 2:
 im = im.convert(mode='1')
 else:
 im = im.convert(mode='RGB')
 except IOError as e:
 raise MissingDependencyError(
 "Could not convert image with type " + im.mode
) from e
 else:
 im_modified = True
 try:
 suffix = SUFFIXES[im.mode]
 except KeyError:
 raise MissingDependencyError(
 "Failed to convert image to a supported format."
) from e

 if im_modified or input_file.suffix != '.png':
 input_png = tmpdir / 'input.png'
 im.save(input_png, format='PNG', compress_level=1)
 else:
 # No changes, PNG input, just use the file we already have
 input_png = input_file
 output_pnm = tmpdir / f'output{suffix}'
 return input_png, output_pnm

def run(input_file, output_file, dpi, mode_args):
 args_unpaper = ['unpaper', '-v', '--dpi', str(dpi)] + mode_args

 with TemporaryDirectory() as tmpdir:
 input_png, output_pnm = _setup_unpaper_io(Path(tmpdir), input_file)

 # To prevent any shenanigans from accepting arbitrary parameters in
 # --unpaper-args, we:
 # 1) run with cwd set to a tmpdir with only unpaper's files
 # 2) forbid the use of '/' in arguments, to prevent changing paths
 # 3) append absolute paths for the input and output file
 # This should ensure that a user cannot clobber some other file with
 # their unpaper arguments (whether intentionally or otherwise)
 args_unpaper.extend([os.fspath(input_png), os.fspath(output_pnm)])
 try:
 proc = external_run(
 args_unpaper,
 check=True,
 close_fds=True,
 universal_newlines=True,
 stderr=STDOUT, # unpaper writes logging output to stdout and stderr
 cwd=tmpdir, # and cannot send file output to stdout
 stdout=PIPE,
)
 except CalledProcessError as e:
 log.debug(e.stderr)
 raise e from e
 else:
 log.debug(proc.stderr)
 try:
 with Image.open(output_pnm) as imout:
 imout.save(output_file, dpi=(dpi, dpi))
 except (FileNotFoundError, OSError):
 raise SubprocessOutputError(
 "unpaper: failed to produce the expected output file. "
 + " Called with: "
 + str(args_unpaper)
) from None

def validate_custom_args(args: str):
 unpaper_args = shlex.split(args)
 if any('/' in arg for arg in unpaper_args):
 raise ValueError('No filenames allowed in --unpaper-args')
 return unpaper_args

def clean(input_file, output_file, dpi, unpaper_args=None):
 default_args = [
 '--layout',
 'none',
 '--mask-scan-size',
 '100', # don't blank out narrow columns
 '--no-border-align', # don't align visible content to borders
 '--no-mask-center', # don't center visible content within page
 '--no-grayfilter', # don't remove light gray areas
 '--no-blackfilter', # don't remove solid black areas
 '--no-deskew', # don't deskew
]
 if not unpaper_args:
 unpaper_args = default_args
 run(input_file, output_file, dpi, unpaper_args)

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/_graft.py

© 2018 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import logging
from contextlib import suppress
from pathlib import Path
from typing import Optional

import pikepdf

log = logging.getLogger(__name__)
MAX_REPLACE_PAGES = 100

def _update_page_resources(*, page, font, font_key, procset):
 """Update this page's fonts with a reference to the Glyphless font"""

 if '/Resources' not in page:
 page['/Resources'] = pikepdf.Dictionary({})
 resources = page['/Resources']
 try:
 fonts = resources['/Font']
 except KeyError:
 fonts = pikepdf.Dictionary({})
 if font_key is not None and font_key not in fonts:
 fonts[font_key] = font
 resources['/Font'] = fonts

 # Reassign /ProcSet to one that just lists everything - ProcSet is
 # obsolete and doesn't matter but recommended for old viewer support
 resources['/ProcSet'] = procset

def strip_invisible_text(pdf, page):
 stream = []
 in_text_obj = False
 render_mode = 0
 text_objects = []

 page.page_contents_coalesce()
 for operands, operator in pikepdf.parse_content_stream(page, ''):
 if not in_text_obj:
 if operator == pikepdf.Operator('BT'):
 in_text_obj = True
 render_mode = 0
 text_objects.append((operands, operator))
 else:
 stream.append((operands, operator))
 else:
 if operator == pikepdf.Operator('Tr'):
 render_mode = operands[0]
 text_objects.append((operands, operator))
 if operator == pikepdf.Operator('ET'):
 in_text_obj = False
 if render_mode != 3:
 stream.extend(text_objects)
 text_objects.clear()

 def convert(op):
 try:
 return op.unparse()
 except AttributeError:
 return str(op).encode('ascii')

 lines = []

 for operands, operator in stream:
 if operator == pikepdf.Operator('INLINE IMAGE'):
 iim = operands[0]
 line = iim.unparse()
 else:
 line = b' '.join(convert(op) for op in operands) + b' ' + operator.unparse()
 lines.append(line)

 content_stream = b'\n'.join(lines)
 page.Contents = pikepdf.Stream(pdf, content_stream)

class OcrGrafter:
 def __init__(self, context):
 self.context = context
 self.path_base = context.origin

 self.pdf_base = pikepdf.open(self.path_base)
 self.font, self.font_key = None, None

 self.pdfinfo = context.pdfinfo
 self.output_file = context.get_path('graft_layers.pdf')

 self.procset = self.pdf_base.make_indirect(
 pikepdf.Object.parse(b'[/PDF /Text /ImageB /ImageC /ImageI]')
)

 self.emplacements = 1
 self.interim_count = 0

 def graft_page(
 self,
 *,
 pageno: int,
 image: Optional[Path],
 textpdf: Optional[Path],
 autorotate_correction: int,
):
 if textpdf and not self.font:
 self.font, self.font_key = self._find_font(textpdf)

 emplaced_page = False
 content_rotation = self.pdfinfo[pageno].rotation
 path_image = Path(image).resolve() if image else None
 if path_image is not None and path_image != self.path_base:
 # We are updating the old page with a rasterized PDF of the new
 # page (without changing objgen, to preserve references)
 log.debug("Emplacement update")
 with pikepdf.open(image) as pdf_image:
 self.emplacements += 1
 foreign_image_page = pdf_image.pages[0]
 self.pdf_base.pages.append(foreign_image_page)
 local_image_page = self.pdf_base.pages[-1]
 self.pdf_base.pages[pageno].emplace(local_image_page)
 del self.pdf_base.pages[-1]
 emplaced_page = True

 if emplaced_page:
 content_rotation = autorotate_correction
 text_rotation = autorotate_correction
 text_misaligned = (text_rotation - content_rotation) % 360
 log.debug(
 f"Rotations for page {pageno}: [text, auto, misalign, content] = "
 f"{text_rotation}, {autorotate_correction}, "
 f"{text_misaligned}, {content_rotation}"
)

 if textpdf and self.font:
 # Graft the text layer onto this page, whether new or old
 strip_old = self.context.options.redo_ocr
 self._graft_text_layer(
 page_num=pageno + 1,
 textpdf=textpdf,
 font=self.font,
 font_key=self.font_key,
 rotation=text_misaligned,
 procset=self.procset,
 strip_old_text=strip_old,
)

 # Correct the rotation if applicable
 self.pdf_base.pages[pageno].Rotate = (
 content_rotation - autorotate_correction
) % 360

 if self.emplacements % MAX_REPLACE_PAGES == 0:
 self.save_and_reload()

 def save_and_reload(self):
 """Save and reload the Pdf.

 This will keep a lid on our memory usage for very large files. Attach
 the font to page 1 even if page 1 doesn't use it, so we have a way to get it
 back.
 """

 page0 = self.pdf_base.pages[0]
 _update_page_resources(
 page=page0, font=self.font, font_key=self.font_key, procset=self.procset
)

 # We cannot read and write the same file, that will corrupt it
 # but we don't to keep more copies than we need to. Delete intermediates.
 # {interim_count} is the opened file we were updateing
 # {interim_count - 1} can be deleted
 # {interim_count + 1} is the new file will produce and open
 old_file = self.output_file.with_suffix(f'.working{self.interim_count - 1}.pdf')
 if not self.context.options.keep_temporary_files:
 with suppress(FileNotFoundError):
 old_file.unlink()

 next_file = self.output_file.with_suffix(
 f'.working{self.interim_count + 1}.pdf'
)
 self.pdf_base.save(next_file)
 self.pdf_base.close()

 self.pdf_base = pikepdf.open(next_file)
 self.procset = self.pdf_base.pages[0].Resources.ProcSet
 self.font, self.font_key = None, None # Ensure we reacquire this information
 self.interim_count += 1

 def finalize(self):
 self.pdf_base.save(self.output_file)
 self.pdf_base.close()
 return self.output_file

 def _find_font(self, text):
 """Copy a font from the filename text into pdf_base"""

 font, font_key = None, None
 possible_font_names = ('/f-0-0', '/F1')
 try:
 with pikepdf.open(text) as pdf_text:
 try:
 pdf_text_fonts = pdf_text.pages[0].Resources.get('/Font', {})
 except (AttributeError, IndexError, KeyError):
 return None, None
 for f in possible_font_names:
 pdf_text_font = pdf_text_fonts.get(f, None)
 if pdf_text_font is not None:
 font_key = f
 break
 if pdf_text_font:
 font = self.pdf_base.copy_foreign(pdf_text_font)
 return font, font_key
 except (FileNotFoundError, pikepdf.PdfError):
 # PdfError occurs if a 0-length file is written e.g. due to OCR timeout
 return None, None

 def _graft_text_layer(
 self,
 *,
 page_num: int,
 textpdf: Path,
 font: pikepdf.Object,
 font_key: pikepdf.Object,
 procset: pikepdf.Object,
 rotation: int,
 strip_old_text: bool,
):
 """Insert the text layer from text page 0 on to pdf_base at page_num"""

 log.debug("Grafting")
 if Path(textpdf).stat().st_size == 0:
 return

 # This is a pointer indicating a specific page in the base file
 with pikepdf.open(textpdf) as pdf_text:
 pdf_text_contents = pdf_text.pages[0].Contents.read_bytes()

 base_page = self.pdf_base.pages.p(page_num)

 # The text page always will be oriented up by this stage but the original
 # content may have a rotation applied. Wrap the text stream with a rotation
 # so it will be oriented the same way as the rest of the page content.
 # (Previous versions OCRmyPDF rotated the content layer to match the text.)
 mediabox = [float(pdf_text.pages[0].MediaBox[v]) for v in range(4)]
 wt, ht = mediabox[2] - mediabox[0], mediabox[3] - mediabox[1]

 mediabox = [float(base_page.MediaBox[v]) for v in range(4)]
 wp, hp = mediabox[2] - mediabox[0], mediabox[3] - mediabox[1]

 translate = pikepdf.PdfMatrix().translated(-wt / 2, -ht / 2)
 untranslate = pikepdf.PdfMatrix().translated(wp / 2, hp / 2)
 corner = pikepdf.PdfMatrix().translated(mediabox[0], mediabox[1])
 # -rotation because the input is a clockwise angle and this formula
 # uses CCW
 rotation = -rotation % 360
 rotate = pikepdf.PdfMatrix().rotated(rotation)

 # Because of rounding of DPI, we might get a text layer that is not
 # identically sized to the target page. Scale to adjust. Normally this
 # is within 0.998.
 if rotation in (90, 270):
 wt, ht = ht, wt
 scale_x = wp / wt
 scale_y = hp / ht

 # log.debug('%r', scale_x, scale_y)
 scale = pikepdf.PdfMatrix().scaled(scale_x, scale_y)

 # Translate the text so it is centered at (0, 0), rotate it there, adjust
 # for a size different between initial and text PDF, then untranslate, and
 # finally move the lower left corner to match the mediabox
 ctm = translate @ rotate @ scale @ untranslate @ corner

 pdf_text_contents = (
 b'q %s cm\n' % ctm.encode() + pdf_text_contents + b'\nQ\n'
)

 new_text_layer = pikepdf.Stream(self.pdf_base, pdf_text_contents)

 if strip_old_text:
 strip_invisible_text(self.pdf_base, base_page)

 base_page.page_contents_add(new_text_layer, prepend=True)

 _update_page_resources(
 page=base_page, font=font, font_key=font_key, procset=procset
)

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/_jobcontext.py

© 2018 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import os
import shutil
import sys
from argparse import Namespace
from copy import copy
from io import IOBase
from pathlib import Path
from typing import Iterator

from ocrmypdf.pdfinfo import PdfInfo

class PdfContext:
 """Holds our context for a particular run of the pipeline"""

 def __init__(
 self,
 options: Namespace,
 work_folder: Path,
 origin: Path,
 pdfinfo: PdfInfo,
 plugin_manager,
):
 self.options = options
 self.work_folder = work_folder
 self.origin = origin
 self.pdfinfo = pdfinfo
 self.plugin_manager = plugin_manager

 def get_path(self, name: str) -> Path:
 return self.work_folder / name

 def get_page_contexts(self) -> Iterator['PageContext']:
 npages = len(self.pdfinfo)
 for n in range(npages):
 yield PageContext(self, n)

class PageContext:
 """Holds our context for a page

 Must be pickable, so stores only intrinsic/simple data elements or those
 capable of their serializing themselves via __getstate__.
 """

 def __init__(self, pdf_context: PdfContext, pageno):
 self.work_folder = pdf_context.work_folder
 self.origin = pdf_context.origin
 self.options = pdf_context.options
 self.pageno = pageno
 self.pageinfo = pdf_context.pdfinfo[pageno]
 self.plugin_manager = pdf_context.plugin_manager

 def get_path(self, name: str) -> Path:
 return self.work_folder / ("%06d_%s" % (self.pageno + 1, name))

 def __getstate__(self):
 state = self.__dict__.copy()

 state['options'] = copy(self.options)
 if not isinstance(state['options'].input_file, (str, bytes, os.PathLike)):
 state['options'].input_file = 'stream'
 if not isinstance(state['options'].output_file, (str, bytes, os.PathLike)):
 state['options'].output_file = 'stream'
 return state

def cleanup_working_files(work_folder: Path, options: Namespace):
 if options.keep_temporary_files:
 print(f"Temporary working files retained at:\n{work_folder}", file=sys.stderr)
 else:
 shutil.rmtree(work_folder, ignore_errors=True)

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/_logging.py

© 2020 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import logging
import sys
from contextlib import suppress

from tqdm import tqdm

class PageNumberFilter(logging.Filter):
 def filter(self, record):
 pageno = getattr(record, 'pageno', None)
 if isinstance(pageno, int):
 record.pageno = f'{pageno:5d} '
 elif pageno is None:
 record.pageno = ''
 return True

class TqdmConsole:
 """Wrapper to log messages in a way that is compatible with tqdm progress bar

 This routes log messages through tqdm so that it can print them above the
 progress bar, and then refresh the progress bar, rather than overwriting
 it which looks messy.

 For some reason Python 3.6 prints extra empty messages from time to time,
 so we suppress those.
 """

 def __init__(self, file):
 self.file = file
 self.py36 = sys.version_info[0:2] == (3, 6)

 def write(self, msg):
 # When no progress bar is active, tqdm.write() routes to print()
 if self.py36:
 if msg.strip() != '':
 tqdm.write(msg.rstrip(), end='\n', file=self.file)
 else:
 tqdm.write(msg.rstrip(), end='\n', file=self.file)

 def flush(self):
 with suppress(AttributeError):
 self.file.flush()

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/_pipeline.py

© 2016 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import logging
import os
import re
import sys
from contextlib import suppress
from datetime import datetime, timezone
from pathlib import Path
from shutil import copyfileobj
from typing import BinaryIO, Dict, Iterable, Optional, Union, cast

import img2pdf
import pikepdf
from pikepdf.models.metadata import encode_pdf_date
from PIL import Image, ImageColor, ImageDraw

from ocrmypdf import leptonica
from ocrmypdf._exec import unpaper
from ocrmypdf._jobcontext import PageContext, PdfContext
from ocrmypdf._version import PROGRAM_NAME
from ocrmypdf._version import __version__ as VERSION
from ocrmypdf.exceptions import (
 DpiError,
 EncryptedPdfError,
 InputFileError,
 PriorOcrFoundError,
 UnsupportedImageFormatError,
)
from ocrmypdf.helpers import Resolution, safe_symlink
from ocrmypdf.hocrtransform import HocrTransform
from ocrmypdf.optimize import optimize
from ocrmypdf.pdfa import generate_pdfa_ps
from ocrmypdf.pdfinfo import Colorspace, Encoding, PdfInfo

log = logging.getLogger(__name__)

VECTOR_PAGE_DPI = 400

def triage_image_file(input_file, output_file, options):
 log.info("Input file is not a PDF, checking if it is an image...")
 try:
 im = Image.open(input_file)
 except EnvironmentError as e:
 # Recover the original filename
 log.error(str(e).replace(str(input_file), str(options.input_file)))
 raise UnsupportedImageFormatError() from e

 with im:
 log.info("Input file is an image")
 if 'dpi' in im.info:
 if im.info['dpi'] <= (96, 96) and not options.image_dpi:
 log.info("Image size: (%d, %d)", *im.size)
 log.info("Image resolution: (%d, %d)", *im.info['dpi'])
 log.error(
 "Input file is an image, but the resolution (DPI) is "
 "not credible. Estimate the resolution at which the "
 "image was scanned and specify it using --image-dpi."
)
 raise DpiError()
 elif not options.image_dpi:
 log.info("Image size: (%d, %d)", *im.size)
 log.error(
 "Input file is an image, but has no resolution (DPI) "
 "in its metadata. Estimate the resolution at which "
 "image was scanned and specify it using --image-dpi."
)
 raise DpiError()

 if im.mode in ('RGBA', 'LA'):
 log.error(
 "The input image has an alpha channel. Remove the alpha "
 "channel first."
)
 raise UnsupportedImageFormatError()

 if 'iccprofile' not in im.info:
 if im.mode == 'RGB':
 log.info("Input image has no ICC profile, assuming sRGB")
 elif im.mode == 'CMYK':
 log.error("Input CMYK image has no ICC profile, not usable")
 raise UnsupportedImageFormatError()

 try:
 log.info("Image seems valid. Try converting to PDF...")
 layout_fun = img2pdf.default_layout_fun
 if options.image_dpi:
 layout_fun = img2pdf.get_fixed_dpi_layout_fun(
 Resolution(options.image_dpi, options.image_dpi)
)
 with open(output_file, 'wb') as outf:
 img2pdf.convert(
 os.fspath(input_file),
 layout_fun=layout_fun,
 with_pdfrw=False,
 outputstream=outf,
)
 log.info("Successfully converted to PDF, processing...")
 except img2pdf.ImageOpenError as e:
 log.error(e)
 raise UnsupportedImageFormatError() from e

def _pdf_guess_version(input_file, search_window=1024):
 """Try to find version signature at start of file.

 Not robust enough to deal with appended files.

 Returns empty string if not found, indicating file is probably not PDF.
 """

 with open(input_file, 'rb') as f:
 signature = f.read(search_window)
 m = re.search(br'%PDF-(\d\.\d)', signature)
 if m:
 return m.group(1)
 return ''

def triage(original_filename, input_file, output_file, options):
 try:
 if _pdf_guess_version(input_file):
 if options.image_dpi:
 log.warning(
 "Argument --image-dpi is being ignored because the "
 "input file is a PDF, not an image."
)
 # Origin file is a pdf create a symlink with pdf extension
 safe_symlink(input_file, output_file)
 return output_file
 except EnvironmentError as e:
 log.debug(f"Temporary file was at: {input_file}")
 msg = str(e).replace(str(input_file), original_filename)
 raise InputFileError(msg) from e

 triage_image_file(input_file, output_file, options)
 return output_file

def get_pdfinfo(
 input_file,
 detailed_analysis=False,
 progbar=False,
 max_workers=None,
 check_pages=None,
):
 try:
 return PdfInfo(
 input_file,
 detailed_analysis=detailed_analysis,
 progbar=progbar,
 max_workers=max_workers,
 check_pages=check_pages,
)
 except pikepdf.PasswordError:
 raise EncryptedPdfError()
 except pikepdf.PdfError:
 raise InputFileError()

def validate_pdfinfo_options(context: PdfContext):
 pdfinfo = context.pdfinfo
 options = context.options

 if pdfinfo.needs_rendering:
 log.error(
 "This PDF contains dynamic XFA forms created by Adobe LiveCycle "
 "Designer and can only be read by Adobe Acrobat or Adobe Reader."
)
 raise InputFileError()
 if pdfinfo.has_userunit and options.output_type.startswith('pdfa'):
 log.error(
 "This input file uses a PDF feature that is not supported "
 "by Ghostscript, so you cannot use --output-type=pdfa for this "
 "file. (Specifically, it uses the PDF-1.6 /UserUnit feature to "
 "support very large or small page sizes, and Ghostscript cannot "
 "output these files.) Use --output-type=pdf instead."
)
 raise InputFileError()
 if pdfinfo.has_acroform:
 if options.redo_ocr:
 log.error(
 "This PDF has a user fillable form. --redo-ocr is not "
 "currently possible on such files."
)
 raise InputFileError()
 else:
 log.warning(
 "This PDF has a fillable form. "
 "Chances are it is a pure digital "
 "document that does not need OCR."
)
 if not options.force_ocr:
 log.info(
 "Use the option --force-ocr to produce an image of the "
 "form and all filled form fields. The output PDF will be "
 "'flattened' and will no longer be fillable."
)
 context.plugin_manager.hook.validate(pdfinfo=pdfinfo, options=options)

def get_page_dpi(pageinfo, options):
 "Get the DPI when nonsquare DPI is tolerable"
 xres = max(
 pageinfo.dpi.x or VECTOR_PAGE_DPI,
 options.oversample or 0.0,
 VECTOR_PAGE_DPI if pageinfo.has_vector else 0.0,
)
 yres = max(
 pageinfo.dpi.y or VECTOR_PAGE_DPI,
 options.oversample or 0,
 VECTOR_PAGE_DPI if pageinfo.has_vector else 0.0,
)
 return Resolution(float(xres), float(yres))

def get_page_square_dpi(pageinfo, options) -> Resolution:
 "Get the DPI when we require xres == yres, scaled to physical units"
 xres = pageinfo.dpi.x or 0.0
 yres = pageinfo.dpi.y or 0.0
 userunit = float(pageinfo.userunit) or 1.0
 units = float(
 max(
 (xres * userunit) or VECTOR_PAGE_DPI,
 (yres * userunit) or VECTOR_PAGE_DPI,
 VECTOR_PAGE_DPI if pageinfo.has_vector else 0.0,
 options.oversample or 0.0,
)
)
 return Resolution(units, units)

def get_canvas_square_dpi(pageinfo, options) -> Resolution:
 """Get the DPI when we require xres == yres, in Postscript units"""
 units = float(
 max(
 (pageinfo.dpi.x) or VECTOR_PAGE_DPI,
 (pageinfo.dpi.y) or VECTOR_PAGE_DPI,
 VECTOR_PAGE_DPI if pageinfo.has_vector else 0.0,
 options.oversample or 0.0,
)
)
 return Resolution(units, units)

def is_ocr_required(page_context: PageContext):
 pageinfo = page_context.pageinfo
 options = page_context.options

 ocr_required = True

 if options.pages and pageinfo.pageno not in options.pages:
 log.debug(f"skipped {pageinfo.pageno} as requested by --pages {options.pages}")
 ocr_required = False
 elif pageinfo.has_text:
 if not options.force_ocr and not (options.skip_text or options.redo_ocr):
 raise PriorOcrFoundError(
 "page already has text! - aborting (use --force-ocr to force OCR; "
 " see also help for the arguments --skip-text and --redo-ocr"
)
 elif options.force_ocr:
 log.info("page already has text! - rasterizing text and running OCR anyway")
 ocr_required = True
 elif options.redo_ocr:
 if pageinfo.has_corrupt_text:
 log.warning(
 "some text on this page cannot be mapped to characters: "
 "consider using --force-ocr instead"
)
 else:
 log.info("redoing OCR")
 ocr_required = True
 elif options.skip_text:
 log.info("skipping all processing on this page")
 ocr_required = False
 elif not pageinfo.images and not options.lossless_reconstruction:
 # We found a page with no images and no text. That means it may
 # have vector art that the user wants to OCR. If we determined
 # lossless reconstruction is not possible then we have to rasterize
 # the image. So if OCR is being forced, take that to mean YES, go
 # ahead and rasterize. If not forced, then pretend there's no text
 # on the page at all so we don't lose anything.
 # This could be made smarter by explicitly searching for vector art.
 if options.force_ocr and options.oversample:
 # The user really wants to reprocess this file
 log.info(
 "page has no images - "
 f"rasterizing at {options.oversample} DPI because "
 "--force-ocr --oversample was specified"
)
 elif options.force_ocr:
 # Warn the user they might not want to do this
 log.warning(
 "page has no images - "
 "all vector content will be "
 f"rasterized at {VECTOR_PAGE_DPI} DPI, losing some resolution and likely "
 "increasing file size. Use --oversample to adjust the "
 "DPI."
)
 else:
 log.info(
 "page has no images - "
 "skipping all processing on this page to avoid losing detail. "
 "Use --force-ocr if you wish to perform OCR on pages that "
 "have vector content."
)
 ocr_required = False

 if ocr_required and options.skip_big and pageinfo.images:
 pixel_count = pageinfo.width_pixels * pageinfo.height_pixels
 if pixel_count > (options.skip_big * 1_000_000):
 ocr_required = False
 log.warning(
 "page too big, skipping OCR "
 f"({(pixel_count / 1_000_000):.1f} MPixels > {options.skip_big:.1f} MPixels --skip-big)"
)
 return ocr_required

def rasterize_preview(input_file: Path, page_context: PageContext):
 output_file = page_context.get_path('rasterize_preview.jpg')
 canvas_dpi = get_canvas_square_dpi(page_context.pageinfo, page_context.options)
 page_dpi = get_page_square_dpi(page_context.pageinfo, page_context.options)
 page_context.plugin_manager.hook.rasterize_pdf_page(
 input_file=input_file,
 output_file=output_file,
 raster_device='jpeggray',
 raster_dpi=canvas_dpi,
 page_dpi=page_dpi,
 pageno=page_context.pageinfo.pageno + 1,
)
 return output_file

def describe_rotation(page_context: PageContext, orient_conf, correction: int):
 """
 Describe the page rotation we are going to perform.
 """
 direction = {0: '⇧', 90: '⇨', 180: '⇩', 270: '⇦'}
 turns = {0: ' ', 90: '⬏', 180: '↻', 270: '⬑'}

 existing_rotation = page_context.pageinfo.rotation
 action = ''
 if orient_conf.confidence >= page_context.options.rotate_pages_threshold:
 if correction != 0:
 action = 'will rotate ' + turns[correction]
 else:
 action = 'rotation appears correct'
 else:
 if correction != 0:
 action = 'confidence too low to rotate'
 else:
 action = 'no change'

 facing = ''

 if existing_rotation != 0:
 facing = f"with existing rotation {direction.get(existing_rotation, '?')}, "
 facing += f"page is facing {direction.get(orient_conf.angle, '?')}"

 return f"{facing}, confidence {orient_conf.confidence:.2f} - {action}"

def get_orientation_correction(preview: Path, page_context: PageContext):
 """Work out orientation correct for each page.

 We ask Ghostscript to draw a preview page, which will rasterize with the
 current /Rotate applied, and then ask OCR which way the page is
 oriented. If the value of /Rotate is correct (e.g., a user already
 manually fixed rotation), then OCR will say the page is pointing
 up and the correction is zero. Otherwise, the orientation found by
 OCR represents the clockwise rotation, or the counterclockwise
 correction to rotation.

 When we draw the real page for OCR, we rotate it by the CCW correction,
 which points it (hopefully) upright. _graft.py takes care of the orienting
 the image and text layers.
 """

 orient_conf = page_context.plugin_manager.hook.get_ocr_engine().get_orientation(
 preview, page_context.options
)

 correction = orient_conf.angle % 360
 log.info(describe_rotation(page_context, orient_conf, correction))
 if (
 orient_conf.confidence >= page_context.options.rotate_pages_threshold
 and correction != 0
):
 return correction

 return 0

def rasterize(
 input_file: Path,
 page_context: PageContext,
 correction: int = 0,
 output_tag: str = '',
 remove_vectors=None,
):
 colorspaces = ['pngmono', 'pnggray', 'png256', 'png16m']
 device_idx = 0

 if remove_vectors is None:
 remove_vectors = page_context.options.remove_vectors

 output_file = page_context.get_path(f'rasterize{output_tag}.png')
 pageinfo = page_context.pageinfo

 def at_least(cs):
 return max(device_idx, colorspaces.index(cs))

 for image in pageinfo.images:
 if image.type_ != 'image':
 continue # ignore masks
 if image.bpc > 1:
 if image.color == Colorspace.index:
 device_idx = at_least('png256')
 elif image.color == Colorspace.gray:
 device_idx = at_least('pnggray')
 else:
 device_idx = at_least('png16m')

 if pageinfo.has_vector:
 device_idx = at_least('png16m')

 device = colorspaces[device_idx]

 log.debug(f"Rasterize with {device}")

 # Produce the page image with square resolution or else deskew and OCR
 # will not work properly.
 canvas_dpi = get_canvas_square_dpi(pageinfo, page_context.options)
 page_dpi = get_page_square_dpi(pageinfo, page_context.options)

 page_context.plugin_manager.hook.rasterize_pdf_page(
 input_file=input_file,
 output_file=output_file,
 raster_device=device,
 raster_dpi=canvas_dpi,
 page_dpi=page_dpi,
 pageno=pageinfo.pageno + 1,
 rotation=correction,
 filter_vector=remove_vectors,
)
 return output_file

def preprocess_remove_background(input_file: Path, page_context: PageContext):
 if any(image.bpc > 1 for image in page_context.pageinfo.images):
 output_file = page_context.get_path('pp_rm_bg.png')
 leptonica.remove_background(input_file, output_file)
 return output_file
 else:
 log.info("background removal skipped on mono page")
 return input_file

def preprocess_deskew(input_file: Path, page_context: PageContext):
 output_file = page_context.get_path('pp_deskew.png')
 dpi = get_page_square_dpi(page_context.pageinfo, page_context.options)
 leptonica.deskew(input_file, output_file, dpi.x)
 return output_file

def preprocess_clean(input_file: Path, page_context: PageContext):
 output_file = page_context.get_path('pp_clean.png')
 dpi = get_page_square_dpi(page_context.pageinfo, page_context.options)
 unpaper.clean(input_file, output_file, dpi.x, page_context.options.unpaper_args)
 return output_file

def create_ocr_image(image: Path, page_context: PageContext):
 """Create the image we send for OCR. May not be the same as the display
 image depending on preprocessing. This image will never be shown to the
 user."""

 output_file = page_context.get_path('ocr.png')
 options = page_context.options
 with Image.open(image) as im:
 white = ImageColor.getcolor('#ffffff', im.mode)
 # pink = ImageColor.getcolor('#ff0080', im.mode)
 draw = ImageDraw.ImageDraw(im)

 log.debug('resolution %r', im.info['dpi'])

 if not options.force_ocr:
 # Do not mask text areas when forcing OCR, because we need to OCR
 # all text areas
 mask = None # Exclude both visible and invisible text from OCR
 if options.redo_ocr:
 mask = True # Mask visible text, but not invisible text

 for textarea in page_context.pageinfo.get_textareas(
 visible=mask, corrupt=None
):
 # Calculate resolution based on the image size and page dimensions
 # without regard whatever resolution is in pageinfo (may differ or
 # be None)
 bbox = [float(v) for v in textarea]
 xyscale = tuple(float(coord) / 72.0 for coord in im.info['dpi'])
 pixcoords = [
 bbox[0] * xyscale[0],
 im.height - bbox[3] * xyscale[1],
 bbox[2] * xyscale[0],
 im.height - bbox[1] * xyscale[1],
]
 pixcoords = [int(round(c)) for c in pixcoords]
 log.debug('blanking %r', pixcoords)
 draw.rectangle(pixcoords, fill=white)
 # draw.rectangle(pixcoords, outline=pink)

 if options.threshold:
 pix = leptonica.Pix.frompil(im)
 pix = pix.masked_threshold_on_background_norm()
 im = pix.topil()

 del draw

 filter_im = page_context.plugin_manager.hook.filter_ocr_image(
 page=page_context, image=im
)
 if filter_im is not None:
 im = filter_im

 # Pillow requires integer DPI
 dpi = tuple(round(coord) for coord in im.info['dpi'])
 im.save(output_file, dpi=dpi)
 return output_file

def ocr_engine_hocr(input_file: Path, page_context: PageContext):
 hocr_out = page_context.get_path('ocr_hocr.hocr')
 hocr_text_out = page_context.get_path('ocr_hocr.txt')
 options = page_context.options

 ocr_engine = page_context.plugin_manager.hook.get_ocr_engine()
 ocr_engine.generate_hocr(
 input_file=input_file,
 output_hocr=hocr_out,
 output_text=hocr_text_out,
 options=options,
)
 return (hocr_out, hocr_text_out)

def should_visible_page_image_use_jpg(pageinfo):
 # If all images were JPEGs originally, produce a JPEG as output
 return pageinfo.images and all(im.enc == Encoding.jpeg for im in pageinfo.images)

def create_visible_page_jpg(image: Path, page_context: PageContext) -> Path:
 output_file = page_context.get_path('visible.jpg')
 with Image.open(image) as im:
 # At this point the image should be a .png, but deskew, unpaper
 # might have removed the DPI information. In this case, fall back to
 # square DPI used to rasterize. When the preview image was
 # rasterized, it was also converted to square resolution, which is
 # what we want to give to the OCR engine, so keep it square.
 if 'dpi' in im.info:
 dpi = Resolution(*im.info['dpi'])
 else:
 # Fallback to page-implied DPI
 dpi = get_page_square_dpi(page_context.pageinfo, page_context.options)

 # Pillow requires integer DPI
 im.save(output_file, format='JPEG', dpi=dpi.to_int())
 return output_file

def create_pdf_page_from_image(image: Path, page_context: PageContext):
 # We rasterize a square DPI version of each page because most image
 # processing tools don't support rectangular DPI. Use the square DPI as it
 # accurately describes the image. It would be possible to resample the image
 # at this stage back to non-square DPI to more closely resemble the input,
 # except that the hocr renderer does not understand non-square DPI. The
 # sandwich renderer would be fine.
 output_file = page_context.get_path('visible.pdf')
 dpi = get_page_square_dpi(page_context.pageinfo, page_context.options)
 layout_fun = img2pdf.get_fixed_dpi_layout_fun(dpi)

 # This create a single page PDF
 with open(image, 'rb') as imfile, open(output_file, 'wb') as pdf:
 log.debug('convert')
 img2pdf.convert(
 imfile, with_pdfrw=False, layout_fun=layout_fun, outputstream=pdf
)
 log.debug('convert done')
 return output_file

def render_hocr_page(hocr: Path, page_context: PageContext):
 output_file = page_context.get_path('ocr_hocr.pdf')
 dpi = get_page_square_dpi(page_context.pageinfo, page_context.options)
 hocrtransform = HocrTransform(hocr, dpi.x) # square
 hocrtransform.to_pdf(
 output_file,
 image_filename=None,
 show_bounding_boxes=False,
 invisible_text=True,
 interword_spaces=True,
)
 return output_file

def ocr_engine_textonly_pdf(input_image: Path, page_context: PageContext):
 output_pdf = page_context.get_path('ocr_tess.pdf')
 output_text = page_context.get_path('ocr_tess.txt')
 options = page_context.options

 ocr_engine = page_context.plugin_manager.hook.get_ocr_engine()
 ocr_engine.generate_pdf(
 input_file=input_image,
 output_pdf=output_pdf,
 output_text=output_text,
 options=options,
)
 return (output_pdf, output_text)

def get_docinfo(base_pdf: pikepdf.Pdf, context: PdfContext) -> Dict[str, str]:
 options = context.options

 def from_document_info(key):
 try:
 s = base_pdf.docinfo[key]
 return str(s)
 except (KeyError, TypeError):
 return ''

 pdfmark = {
 k: from_document_info(k)
 for k in ('/Title', '/Author', '/Keywords', '/Subject', '/CreationDate')
 }
 if options is not None:
 if options.title:
 pdfmark['/Title'] = options.title
 if options.author:
 pdfmark['/Author'] = options.author
 if options.keywords:
 pdfmark['/Keywords'] = options.keywords
 if options.subject:
 pdfmark['/Subject'] = options.subject

 creator_tag = context.plugin_manager.hook.get_ocr_engine().creator_tag(options)

 pdfmark['/Creator'] = f'{PROGRAM_NAME} {VERSION} / {creator_tag}'
 pdfmark['/Producer'] = f'pikepdf {pikepdf.__version__}'
 if 'OCRMYPDF_CREATOR' in os.environ:
 pdfmark['/Creator'] = os.environ['OCRMYPDF_CREATOR']
 if 'OCRMYPDF_PRODUCER' in os.environ:
 pdfmark['/Producer'] = os.environ['OCRMYPDF_PRODUCER']

 pdfmark['/ModDate'] = encode_pdf_date(datetime.now(timezone.utc))
 return pdfmark

def generate_postscript_stub(context: PdfContext):
 output_file = context.get_path('pdfa.ps')
 generate_pdfa_ps(output_file)
 return output_file

def convert_to_pdfa(input_pdf: Path, input_ps_stub: Path, context: PdfContext):
 options = context.options
 input_pdfinfo = context.pdfinfo
 fix_docinfo_file = context.get_path('fix_docinfo.pdf')
 output_file = context.get_path('pdfa.pdf')

 # If the DocumentInfo record contains NUL characters, Ghostscript will
 # produce XMP metadata which contains invalid XML entities (�).
 # NULs in DocumentInfo seem to be common since older Acrobats included them.
 # pikepdf can deal with this, but we make the world a better place by
 # stamping them out as soon as possible.
 modified = False
 with pikepdf.open(input_pdf) as pdf_file:
 try:
 len(pdf_file.docinfo)
 except TypeError:
 log.error(
 "File contains a malformed DocumentInfo block - continuing anyway"
)
 else:
 if pdf_file.docinfo:
 for k, v in pdf_file.docinfo.items():
 if b'\x00' in bytes(v):
 pdf_file.docinfo[k] = bytes(v).replace(b'\x00', b'')
 modified = True
 if modified:
 pdf_file.save(fix_docinfo_file)
 else:
 safe_symlink(input_pdf, fix_docinfo_file)

 context.plugin_manager.hook.generate_pdfa(
 pdf_version=input_pdfinfo.min_version,
 pdf_pages=[fix_docinfo_file],
 pdfmark=input_ps_stub,
 output_file=output_file,
 compression=options.pdfa_image_compression,
 pdfa_part=options.output_type[-1], # is pdfa-1, pdfa-2, or pdfa-3
)

 return output_file

def should_linearize(working_file: Path, context: PdfContext):
 filesize = os.stat(working_file).st_size
 if filesize > (context.options.fast_web_view * 1_000_000):
 return True
 return False

def metadata_fixup(working_file: Path, context: PdfContext):
 output_file = context.get_path('metafix.pdf')
 options = context.options

 def report_on_metadata(missing):
 if not missing:
 return
 if options.output_type.startswith('pdfa'):
 log.warning(
 "Some input metadata could not be copied because it is not "
 "permitted in PDF/A. You may wish to examine the output "
 "PDF's XMP metadata."
)
 log.debug("The following metadata fields were not copied: %r", missing)
 else:
 log.error(
 "Some input metadata could not be copied."
 "You may wish to examine the output PDF's XMP metadata."
)
 log.info("The following metadata fields were not copied: %r", missing)

 with pikepdf.open(context.origin) as original, pikepdf.open(working_file) as pdf:
 docinfo = get_docinfo(original, context)
 with pdf.open_metadata() as meta:
 meta.load_from_docinfo(docinfo, delete_missing=False, raise_failure=False)
 # If xmp:CreateDate is missing, set it to the modify date to
 # match Ghostscript, for consistency
 if 'xmp:CreateDate' not in meta:
 meta['xmp:CreateDate'] = meta.get('xmp:ModifyDate', '')

 # Ghostscript likes to set title to Untitled if omitted from input.
 # Reverse this, because PDF/A TechNote 0003:Metadata in PDF/A-1
 # and the XMP Spec do not make this recommendation.
 if meta.get('dc:title') == 'Untitled':
 with original.open_metadata() as original_meta:
 if 'dc:title' not in original_meta:
 del meta['dc:title']

 meta_original = original.open_metadata()
 missing = set(meta_original.keys()) - set(meta.keys())
 report_on_metadata(missing)

 pdf.save(
 output_file,
 compress_streams=True,
 preserve_pdfa=True,
 object_stream_mode=pikepdf.ObjectStreamMode.generate,
 linearize=(# Don't linearize if optimize() will be linearizing too
 should_linearize(working_file, context)
 if options.optimize == 0
 else False
),
)

 return output_file

def optimize_pdf(input_file: Path, context: PdfContext):
 output_file = context.get_path('optimize.pdf')
 save_settings = dict(
 compress_streams=True,
 preserve_pdfa=True,
 object_stream_mode=pikepdf.ObjectStreamMode.generate,
 linearize=should_linearize(input_file, context),
)
 optimize(input_file, output_file, context, save_settings)
 return output_file

def merge_sidecars(txt_files: Iterable[Optional[Path]], context: PdfContext):
 output_file = context.get_path('sidecar.txt')
 with open(output_file, 'w', encoding="utf-8") as stream:
 for page_num, txt_file in enumerate(txt_files):
 if page_num != 0:
 stream.write('\f') # Form feed between pages
 if txt_file:
 with open(txt_file, 'r', encoding="utf-8") as in_:
 txt = in_.read()
 # Some OCR engines (e.g. Tesseract v4 alpha) add form feeds
 # between pages, and some do not. For consistency, we ignore
 # any added by the OCR engine and them on our own.
 if txt.endswith('\f'):
 stream.write(txt[:-1])
 else:
 stream.write(txt)
 else:
 stream.write(f'[OCR skipped on page {(page_num + 1)}]')
 return output_file

def copy_final(input_file, output_file, _context: PdfContext):
 log.debug('%s -> %s', input_file, output_file)
 with open(input_file, 'rb') as input_stream:
 if output_file == '-':
 copyfileobj(input_stream, sys.stdout.buffer)
 sys.stdout.flush()
 elif hasattr(output_file, 'writable'):
 output_stream = output_file
 copyfileobj(input_stream, output_stream)
 with suppress(AttributeError):
 output_stream.flush()
 else:
 # At this point we overwrite the output_file specified by the user
 # use copyfileobj because then we use open() to create the file and
 # get the appropriate umask, ownership, etc.
 with open(output_file, 'wb') as output_stream:
 copyfileobj(input_stream, output_stream)

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/_plugin_manager.py

© 2020 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import argparse
import importlib
import importlib.util
import sys
from functools import partial
from pathlib import Path
from typing import Callable, List, Tuple, Union

import pluggy

from ocrmypdf import pluginspec
from ocrmypdf.cli import get_parser, plugins_only_parser

class OcrmypdfPluginManager(pluggy.PluginManager):
 """pluggy.PluginManager that can fork.

 Capable of reconstructing itself in child workers.

 Arguments:
 setup_func: callback that initializes the plugin manager with all
 standard plugins
 """

 def __init__(
 self, *args, setup_func: Callable[[pluggy.PluginManager], None], **kwargs
):
 self._init_args = args
 self._setup_func = setup_func
 self._init_kwargs = kwargs
 super().__init__(*args, **kwargs)
 setup_func(self)

 def __getstate__(self):
 state = dict(
 _init_args=self._init_args,
 _setup_func=self._setup_func,
 _init_kwargs=self._init_kwargs,
)
 return state

 def __setstate__(self, state):
 self.__init__(
 *state['_init_args'],
 setup_func=state['_setup_func'],
 **state['_init_kwargs'],
)

def _setup_plugins(
 pm: pluggy.PluginManager, plugins: List[Union[str, Path]], builtins: bool = True
):
 pm.add_hookspecs(pluginspec)

 all_plugins: List[Union[str, Path]] = []
 if builtins:
 all_plugins.extend(
 [
 'ocrmypdf.builtin_plugins.ghostscript',
 'ocrmypdf.builtin_plugins.tesseract_ocr',
]
)
 all_plugins.extend(plugins)
 for name in all_plugins:
 if isinstance(name, Path) or name.endswith('.py'):
 # Import by filename
 module_name = Path(name).stem
 spec = importlib.util.spec_from_file_location(module_name, name)
 module = importlib.util.module_from_spec(spec)
 sys.modules[module_name] = module
 spec.loader.exec_module(module)
 else:
 # Import by dotted module name
 module = importlib.import_module(name)
 pm.register(module)

def get_plugin_manager(plugins: List[str], builtins=True):
 pm = OcrmypdfPluginManager(
 project_name='ocrmypdf',
 setup_func=partial(_setup_plugins, plugins=plugins, builtins=builtins),
)
 return pm

def get_parser_options_plugins(
 args,
) -> Tuple[argparse.ArgumentParser, argparse.Namespace, pluggy.PluginManager]:
 pre_options, _unused = plugins_only_parser.parse_known_args(args=args)
 plugin_manager = get_plugin_manager(pre_options.plugins)

 parser = get_parser()
 plugin_manager.hook.add_options(parser=parser) # pylint: disable=no-member

 options = parser.parse_args(args=args)
 return parser, options, plugin_manager

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/_sync.py

© 2016 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import logging
import logging.handlers
import os
import sys
import threading
from functools import partial
from pathlib import Path
from tempfile import mkdtemp
from typing import List, NamedTuple, Optional, Tuple

import pikepdf
import PIL

from ocrmypdf._concurrent import exec_progress_pool
from ocrmypdf._graft import OcrGrafter
from ocrmypdf._jobcontext import PageContext, PdfContext, cleanup_working_files
from ocrmypdf._logging import PageNumberFilter
from ocrmypdf._pipeline import (
 convert_to_pdfa,
 copy_final,
 create_ocr_image,
 create_pdf_page_from_image,
 create_visible_page_jpg,
 generate_postscript_stub,
 get_orientation_correction,
 get_pdfinfo,
 is_ocr_required,
 merge_sidecars,
 metadata_fixup,
 ocr_engine_hocr,
 ocr_engine_textonly_pdf,
 optimize_pdf,
 preprocess_clean,
 preprocess_deskew,
 preprocess_remove_background,
 rasterize,
 rasterize_preview,
 render_hocr_page,
 should_visible_page_image_use_jpg,
 triage,
 validate_pdfinfo_options,
)
from ocrmypdf._plugin_manager import get_plugin_manager
from ocrmypdf._validation import (
 check_requested_output_file,
 create_input_file,
 report_output_file_size,
)
from ocrmypdf.exceptions import ExitCode, ExitCodeException
from ocrmypdf.helpers import (
 available_cpu_count,
 check_pdf,
 pikepdf_enable_mmap,
 samefile,
)
from ocrmypdf.pdfa import file_claims_pdfa

log = logging.getLogger(__name__)

class PageResult(NamedTuple):
 pageno: int
 pdf_page_from_image: Optional[Path]
 ocr: Optional[Path]
 text: Optional[Path]
 orientation_correction: int

tls = threading.local()
tls.pageno = None

old_factory = logging.getLogRecordFactory()

def record_factory(*args, **kwargs):
 record = old_factory(*args, **kwargs)
 if hasattr(tls, 'pageno'):
 record.pageno = tls.pageno
 return record

logging.setLogRecordFactory(record_factory)

def preprocess(
 page_context: PageContext,
 image: Path,
 remove_background: bool,
 deskew: bool,
 clean: bool,
) -> Path:
 if remove_background:
 image = preprocess_remove_background(image, page_context)
 if deskew:
 image = preprocess_deskew(image, page_context)
 if clean:
 image = preprocess_clean(image, page_context)
 return image

def make_intermediate_images(
 page_context: PageContext, orientation_correction: int
) -> Tuple[Path, Optional[Path]]:
 options = page_context.options

 ocr_image = preprocess_out = None
 rasterize_out = rasterize(
 page_context.origin,
 page_context,
 correction=orientation_correction,
 remove_vectors=False,
)

 if not any([options.clean, options.clean_final, options.remove_vectors]):
 ocr_image = preprocess_out = preprocess(
 page_context,
 rasterize_out,
 options.remove_background,
 options.deskew,
 clean=False,
)
 else:
 if not options.lossless_reconstruction:
 preprocess_out = preprocess(
 page_context,
 rasterize_out,
 options.remove_background,
 options.deskew,
 clean=options.clean_final,
)
 if options.remove_vectors:
 rasterize_ocr_out = rasterize(
 page_context.origin,
 page_context,
 correction=orientation_correction,
 remove_vectors=True,
 output_tag='_ocr',
)
 else:
 rasterize_ocr_out = rasterize_out

 if (
 preprocess_out
 and rasterize_ocr_out == rasterize_out
 and options.clean == options.clean_final
):
 # Optimization: image for OCR is identical to presentation image
 ocr_image = preprocess_out
 else:
 ocr_image = preprocess(
 page_context,
 rasterize_ocr_out,
 options.remove_background,
 options.deskew,
 clean=options.clean,
)
 return ocr_image, preprocess_out

def exec_page_sync(page_context: PageContext):
 options = page_context.options
 tls.pageno = page_context.pageno + 1

 if not is_ocr_required(page_context):
 return PageResult(
 pageno=page_context.pageno,
 pdf_page_from_image=None,
 ocr=None,
 text=None,
 orientation_correction=0,
)

 orientation_correction = 0
 if options.rotate_pages:
 # Rasterize
 rasterize_preview_out = rasterize_preview(page_context.origin, page_context)
 orientation_correction = get_orientation_correction(
 rasterize_preview_out, page_context
)

 ocr_image, preprocess_out = make_intermediate_images(
 page_context, orientation_correction
)
 ocr_image_out = create_ocr_image(ocr_image, page_context)

 pdf_page_from_image_out = None
 if not options.lossless_reconstruction:
 assert preprocess_out
 visible_image_out = preprocess_out
 if should_visible_page_image_use_jpg(page_context.pageinfo):
 visible_image_out = create_visible_page_jpg(visible_image_out, page_context)
 filtered_image = page_context.plugin_manager.hook.filter_page_image(
 page=page_context, image_filename=visible_image_out
)
 if filtered_image:
 visible_image_out = filtered_image
 pdf_page_from_image_out = create_pdf_page_from_image(
 visible_image_out, page_context
)

 if options.pdf_renderer == 'hocr':
 (hocr_out, text_out) = ocr_engine_hocr(ocr_image_out, page_context)
 ocr_out = render_hocr_page(hocr_out, page_context)

 if options.pdf_renderer == 'sandwich':
 (ocr_out, text_out) = ocr_engine_textonly_pdf(ocr_image_out, page_context)

 return PageResult(
 pageno=page_context.pageno,
 pdf_page_from_image=pdf_page_from_image_out,
 ocr=ocr_out,
 text=text_out,
 orientation_correction=orientation_correction,
)

def post_process(pdf_file, context: PdfContext):
 pdf_out = pdf_file
 if context.options.output_type.startswith('pdfa'):
 ps_stub_out = generate_postscript_stub(context)
 pdf_out = convert_to_pdfa(pdf_out, ps_stub_out, context)

 pdf_out = metadata_fixup(pdf_out, context)
 return optimize_pdf(pdf_out, context)

def worker_init(max_pixels: int):
 # In Windows, child process will not inherit our change to this value in
 # the parent process, so ensure workers get it set. Not needed when running
 # threaded, but harmless to set again.
 PIL.Image.MAX_IMAGE_PIXELS = max_pixels
 pikepdf_enable_mmap()

def exec_concurrent(context: PdfContext):
 """Execute the pipeline concurrently"""

 # Run exec_page_sync on every page context
 max_workers = min(len(context.pdfinfo), context.options.jobs)
 if max_workers > 1:
 log.info("Start processing %d pages concurrently", max_workers)

 sidecars: List[Optional[Path]] = [None] * len(context.pdfinfo)
 ocrgraft = OcrGrafter(context)

 def update_page(result: PageResult, pbar):
 sidecars[result.pageno] = result.text
 pbar.update()
 ocrgraft.graft_page(
 pageno=result.pageno,
 image=result.pdf_page_from_image,
 textpdf=result.ocr,
 autorotate_correction=result.orientation_correction,
)
 pbar.update()

 exec_progress_pool(
 use_threads=context.options.use_threads,
 max_workers=max_workers,
 tqdm_kwargs=dict(
 total=(2 * len(context.pdfinfo)),
 desc='OCR',
 unit='page',
 unit_scale=0.5,
 disable=not context.options.progress_bar,
),
 task_initializer=partial(worker_init, PIL.Image.MAX_IMAGE_PIXELS),
 task=exec_page_sync,
 task_arguments=context.get_page_contexts(),
 task_finished=update_page,
)

 # Output sidecar text
 if context.options.sidecar:
 text = merge_sidecars(sidecars, context)
 # Copy text file to destination
 copy_final(text, context.options.sidecar, context)

 # Merge layers to one single pdf
 pdf = ocrgraft.finalize()

 # PDF/A and metadata
 pdf = post_process(pdf, context)

 # Copy PDF file to destination
 copy_final(pdf, context.options.output_file, context)

class NeverRaise(Exception):
 """An exception that is never raised"""

 pass # pylint: disable=unnecessary-pass

def configure_debug_logging(log_filename, prefix=''):
 log_file_handler = logging.FileHandler(log_filename, delay=True)
 log_file_handler.setLevel(logging.DEBUG)
 formatter = logging.Formatter(
 '[%(asctime)s] - %(name)s - %(levelname)7s -%(pageno)s %(message)s'
)
 log_file_handler.setFormatter(formatter)
 log_file_handler.addFilter(PageNumberFilter())
 logging.getLogger(prefix).addHandler(log_file_handler)
 return log_file_handler

def run_pipeline(options, *, plugin_manager, api=False):
 # Any changes to options will not take effect for options that are already
 # bound to function parameters in the pipeline. (For example
 # options.input_file, options.pdf_renderer are already bound.)
 if not options.jobs:
 options.jobs = available_cpu_count()
 if not plugin_manager:
 plugin_manager = get_plugin_manager(options.plugins)

 work_folder = Path(mkdtemp(prefix="com.github.ocrmypdf."))
 debug_log_handler = None
 if (options.keep_temporary_files or options.verbose >= 1) and not os.environ.get(
 'PYTEST_CURRENT_TEST', ''
):
 debug_log_handler = configure_debug_logging(Path(work_folder) / "debug.log")

 pikepdf_enable_mmap()

 try:
 check_requested_output_file(options)
 start_input_file, original_filename = create_input_file(options, work_folder)

 # Triage image or pdf
 origin_pdf = triage(
 original_filename, start_input_file, work_folder / 'origin.pdf', options
)

 # Gather pdfinfo and create context
 pdfinfo = get_pdfinfo(
 origin_pdf,
 detailed_analysis=options.redo_ocr,
 progbar=options.progress_bar,
 max_workers=options.jobs if not options.use_threads else 1, # To help debug
 check_pages=options.pages,
)

 context = PdfContext(options, work_folder, origin_pdf, pdfinfo, plugin_manager)

 # Validate options are okay for this pdf
 validate_pdfinfo_options(context)

 # Execute the pipeline
 exec_concurrent(context)

 if options.output_file == '-':
 log.info("Output sent to stdout")
 elif (
 hasattr(options.output_file, 'writable') and options.output_file.writable()
):
 log.info("Output written to stream")
 elif samefile(options.output_file, os.devnull):
 pass # Say nothing when sending to dev null
 else:
 if options.output_type.startswith('pdfa'):
 pdfa_info = file_claims_pdfa(options.output_file)
 if pdfa_info['pass']:
 log.info(
 "Output file is a %s (as expected)", pdfa_info['conformance']
)
 else:
 log.warning(
 "Output file is okay but is not PDF/A (seems to be %s)",
 pdfa_info['conformance'],
)
 return ExitCode.pdfa_conversion_failed
 if not check_pdf(options.output_file):
 log.warning('Output file: The generated PDF is INVALID')
 return ExitCode.invalid_output_pdf
 report_output_file_size(options, start_input_file, options.output_file)

 except (KeyboardInterrupt if not api else NeverRaise) as e:
 if options.verbose >= 1:
 log.exception("KeyboardInterrupt")
 else:
 log.error("KeyboardInterrupt")
 return ExitCode.ctrl_c
 except (ExitCodeException if not api else NeverRaise) as e:
 if str(e):
 log.error("%s: %s", type(e).__name__, str(e))
 else:
 log.error(type(e).__name__)
 return e.exit_code
 except (Exception if not api else NeverRaise) as e: # pylint: disable=broad-except
 log.exception("An exception occurred while executing the pipeline")
 return ExitCode.other_error
 finally:
 if debug_log_handler:
 try:
 debug_log_handler.close()
 log.removeHandler(debug_log_handler)
 except EnvironmentError as e:
 print(e, file=sys.stderr)
 cleanup_working_files(work_folder, options)

 return ExitCode.ok

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/_unicodefun.py

Copyright (c) 2014, Armin Ronacher
#
Copyright (c) 2017, James R Barlow
#
Some rights reserved.
#
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
#
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
#
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.
#
* The names of the contributors may not be used to endorse or
promote products derived from this software without specific
prior written permission.
#
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

import codecs
import os
import sys

def verify_python3_env(): # pragma: no cover
 """Ensures that the environment is good for unicode on Python 3."""

 # PEP 538 changes in Python 3.7 should make this wrangling unnecessary
 if sys.version_info[0:3] >= (3, 7, 0):
 return

 try:
 import locale

 fs_enc = codecs.lookup(locale.getpreferredencoding()).name
 except Exception:
 fs_enc = 'ascii'
 if fs_enc != 'ascii':
 return

 extra = ''
 if os.name == 'posix':
 import subprocess

 rv = subprocess.run(
 ['locale', '-a'], stdout=subprocess.PIPE, stderr=subprocess.PIPE
).stdout
 good_locales = set()
 has_c_utf8 = False

 # Make sure we're operating on text here.
 if isinstance(rv, bytes):
 rv = rv.decode('ascii', 'replace')

 for line in rv.splitlines():
 locale = line.strip()
 if locale.lower().endswith(('.utf-8', '.utf8')):
 good_locales.add(locale)
 if locale.lower() in ('c.utf8', 'c.utf-8'):
 has_c_utf8 = True

 extra += '\n\n'
 if not good_locales:
 extra += (
 'Additional information: on this system no suitable UTF-8\n'
 'locales were discovered. This most likely requires resolving\n'
 'by reconfiguring the locale system.'
)
 elif has_c_utf8:
 extra += (
 'This system supports the C.UTF-8 locale which is recommended.\n'
 'You might be able to resolve your issue by exporting the\n'
 'following environment variables:\n\n'
 ' export LC_ALL=C.UTF-8\n'
 ' export LANG=C.UTF-8'
)
 else:
 extra += (
 'This system lists a couple of UTF-8 supporting locales that\n'
 'you can pick from. The following suitable locales were\n'
 'discovered: %s'
) % ', '.join(sorted(good_locales))

 bad_locale = None
 for locale in os.environ.get('LC_ALL'), os.environ.get('LANG'):
 if locale and locale.lower().endswith(('.utf-8', '.utf8')):
 bad_locale = locale
 if locale is not None:
 break
 if bad_locale is not None:
 extra += (
 '\nocrmypdf discovered that you exported a UTF-8 locale\n'
 'but the locale system could not pick up from it because\n'
 'it does not exist. The exported locale is "%s" but it\n'
 'is not supported'
) % bad_locale

 raise RuntimeError(
 'ocrmypdf will abort further execution because Python 3 '
 'was configured to use ASCII as encoding for the '
 'environment.' + extra
)

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/_validation.py

#!/usr/bin/env python3
© 2015-17 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import locale
import logging
import os
import sys
import unicodedata
from pathlib import Path
from shutil import copyfileobj
from typing import Tuple

import pikepdf
import PIL

from ocrmypdf._exec import jbig2enc, pngquant, unpaper
from ocrmypdf._unicodefun import verify_python3_env
from ocrmypdf.exceptions import (
 BadArgsError,
 InputFileError,
 MissingDependencyError,
 OutputFileAccessError,
)
from ocrmypdf.helpers import (
 is_file_writable,
 is_iterable_notstr,
 monotonic,
 safe_symlink,
)
from ocrmypdf.subprocess import check_external_program

External dependencies

HOCR_OK_LANGS = frozenset(['eng', 'deu', 'spa', 'ita', 'por'])
DEFAULT_LANGUAGE = 'eng' # Enforce English hegemony

log = logging.getLogger(__name__)

Critical environment tests
verify_python3_env()

def check_platform():
 if os.name == 'nt' and sys.maxsize <= 2 ** 32: # pragma: no cover
 # 32-bit interpreter on Windows
 log.error(
 "You are running OCRmyPDF in a 32-bit (x86) Python interpreter."
 "Please use a 64-bit (x86-64) version of Python."
)

def check_options_languages(options, ocr_engine_languages):
 if not options.languages:
 options.languages = {DEFAULT_LANGUAGE}
 system_lang = locale.getlocale()[0]
 if system_lang and not system_lang.startswith('en'):
 log.debug("No language specified; assuming --language %s", DEFAULT_LANGUAGE)
 if not ocr_engine_languages:
 return
 if not options.languages.issubset(ocr_engine_languages):
 msg = (
 f"OCR engine does not have language data for the following "
 "requested languages: \n"
)
 for lang in options.languages - ocr_engine_languages:
 msg += lang + '\n'
 raise MissingDependencyError(msg)

def check_options_output(options):
 is_latin = options.languages.issubset(HOCR_OK_LANGS)

 if options.pdf_renderer == 'hocr' and not is_latin:
 msg = (
 "The 'hocr' PDF renderer is known to cause problems with one "
 "or more of the languages in your document. Use "
 "--pdf-renderer auto (the default) to avoid this issue."
)
 log.warning(msg)

 lossless_reconstruction = False
 if not any(
 (
 options.deskew,
 options.clean_final,
 options.force_ocr,
 options.remove_background,
)
):
 lossless_reconstruction = True
 options.lossless_reconstruction = lossless_reconstruction

 if not options.lossless_reconstruction and options.redo_ocr:
 raise BadArgsError(
 "--redo-ocr is not currently compatible with --deskew, "
 "--clean-final, and --remove-background"
)

def check_options_sidecar(options):
 if options.sidecar == '\0':
 if options.output_file == '-':
 raise BadArgsError(
 "--sidecar filename must be specified when output file is stdout."
)
 options.sidecar = options.output_file + '.txt'

def check_options_preprocessing(options):
 if options.clean_final:
 options.clean = True
 if options.unpaper_args and not options.clean:
 raise BadArgsError("--clean is required for --unpaper-args")
 if options.clean:
 check_external_program(
 program='unpaper',
 package='unpaper',
 version_checker=unpaper.version,
 need_version='6.1',
 required_for=['--clean, --clean-final'],
)
 try:
 if options.unpaper_args:
 options.unpaper_args = unpaper.validate_custom_args(
 options.unpaper_args
)
 except Exception as e:
 raise BadArgsError(str(e))

def _pages_from_ranges(ranges):
 if is_iterable_notstr(ranges):
 return set(ranges)
 pages = []
 page_groups = ranges.replace(' ', '').split(',')
 for g in page_groups:
 if not g:
 continue
 try:
 start, end = g.split('-')
 except ValueError:
 pages.append(int(g) - 1)
 else:
 try:
 pages.extend(range(int(start) - 1, int(end)))
 except ValueError:
 raise BadArgsError("invalid page range")

 if not monotonic(pages):
 log.warning(
 "List of pages to process contains duplicate pages, or pages that are "
 "out of order"
)
 if any(page < 0 for page in pages):
 raise BadArgsError("pages refers to a page number less than 1")

 log.debug("OCRing only these pages: %s", pages)
 return set(pages)

def check_options_ocr_behavior(options):
 exclusive_options = sum(
 [
 (1 if opt else 0)
 for opt in (options.force_ocr, options.skip_text, options.redo_ocr)
]
)
 if exclusive_options >= 2:
 raise BadArgsError("Choose only one of --force-ocr, --skip-text, --redo-ocr.")
 if options.pages and options.sidecar:
 raise BadArgsError("--pages and --sidecar are mutually exclusive")
 if options.pages:
 options.pages = _pages_from_ranges(options.pages)

def check_options_optimizing(options):
 if options.optimize >= 2:
 check_external_program(
 program='pngquant',
 package='pngquant',
 version_checker=pngquant.version,
 need_version='2.0.1',
 required_for='--optimize {2,3}',
)

 if options.optimize >= 2:
 # Although we use JBIG2 for optimize=1, don't nag about it unless the
 # user is asking for more optimization
 check_external_program(
 program='jbig2',
 package='jbig2enc',
 version_checker=jbig2enc.version,
 need_version='0.28',
 required_for='--optimize {2,3} | --jbig2-lossy',
 recommended=True if not options.jbig2_lossy else False,
)

 if options.optimize == 0 and any(
 [options.jbig2_lossy, options.png_quality, options.jpeg_quality]
):
 log.warning(
 "The arguments --jbig2-lossy, --png-quality, and --jpeg-quality "
 "will be ignored because --optimize=0."
)

def check_options_advanced(options):
 if options.pdfa_image_compression != 'auto' and options.output_type.startswith(
 'pdfa'
):
 log.warning(
 "--pdfa-image-compression argument has no effect when "
 "--output-type is not 'pdfa', 'pdfa-1', or 'pdfa-2'"
)

def check_options_metadata(options):
 docinfo = [options.title, options.author, options.keywords, options.subject]
 for s in (m for m in docinfo if m):
 for c in s:
 if unicodedata.category(c) == 'Co' or ord(c) >= 0x10000:
 raise ValueError(
 "One of the metadata strings contains "
 "an unsupported Unicode character: '{}' (U+{})".format(
 c, hex(ord(c))[2:].upper()
)
)

def check_options_pillow(options):
 PIL.Image.MAX_IMAGE_PIXELS = int(options.max_image_mpixels * 1_000_000)
 if PIL.Image.MAX_IMAGE_PIXELS == 0:
 PIL.Image.MAX_IMAGE_PIXELS = None

def _check_options(options, plugin_manager, ocr_engine_languages):
 check_platform()
 check_options_languages(options, ocr_engine_languages)
 check_options_metadata(options)
 check_options_output(options)
 check_options_sidecar(options)
 check_options_preprocessing(options)
 check_options_ocr_behavior(options)
 check_options_optimizing(options)
 check_options_advanced(options)
 check_options_pillow(options)
 plugin_manager.hook.check_options(options=options)

def check_options(options, plugin_manager):
 ocr_engine_languages = plugin_manager.hook.get_ocr_engine().languages(options)
 _check_options(options, plugin_manager, ocr_engine_languages)

def check_closed_streams(options): # pragma: no cover
 """Work around Python issue with multiprocessing forking on closed streams

 https://bugs.python.org/issue28326

 Attempting to a fork/exec a new Python process when any of std{in,out,err}
 are closed or not flushable for some reason may raise an exception.
 Fix this by opening devnull if the handle seems to be closed. Do this
 globally to avoid tracking places all places that fork.

 Seems to be specific to multiprocessing.Process not all Python process
 forkers.

 The error actually occurs when the stream object is not flushable,
 but replacing an open stream object that is not flushable with
 /dev/null is a bad idea since it will create a silent failure. Replacing
 a closed handle with /dev/null seems safe.

 """

 if sys.version_info[0:3] >= (3, 6, 4):
 return True # Issued fixed in Python 3.6.4+

 if sys.stderr is None:
 sys.stderr = open(os.devnull, 'w')

 if sys.stdin is None:
 if options.input_file == '-':
 log.error("Trying to read from stdin but stdin seems closed")
 return False
 sys.stdin = open(os.devnull, 'r')

 if sys.stdout is None:
 if options.output_file == '-':
 # Can't replace stdout if the user is piping
 # If this case can even happen, it must be some kind of weird
 # stream.
 log.error(
 "Output was set to stdout '-' but the stream attached to "
 "stdout does not support the flush() system call. This "
 "will fail."
)
 return False
 sys.stdout = open(os.devnull, 'w')

 return True

def log_page_orientations(pdfinfo):
 direction = {0: 'n', 90: 'e', 180: 's', 270: 'w'}
 orientations = []
 for n, page in enumerate(pdfinfo):
 angle = page.rotation or 0
 if angle != 0:
 orientations.append('{0}{1}'.format(n + 1, direction.get(angle, '')))
 if orientations:
 log.info('Page orientations detected: %s', ' '.join(orientations))

def create_input_file(options, work_folder: Path) -> Tuple[Path, str]:
 if options.input_file == '-':
 # stdin
 log.info('reading file from standard input')
 target = work_folder / 'stdin'
 with open(target, 'wb') as stream_buffer:
 copyfileobj(sys.stdin.buffer, stream_buffer)
 return target, "stdin"
 elif hasattr(options.input_file, 'readable'):
 if not options.input_file.readable():
 raise InputFileError("Input file stream is not readable")
 log.info('reading file from input stream')
 target = work_folder / 'stream'
 with open(target, 'wb') as stream_buffer:
 copyfileobj(options.input_file, stream_buffer)
 return target, "stream"
 else:
 try:
 target = work_folder / 'origin'
 safe_symlink(options.input_file, target)
 return target, os.fspath(options.input_file)
 except FileNotFoundError:
 raise InputFileError(f"File not found - {options.input_file}")

def check_requested_output_file(options):
 if options.output_file == '-':
 if sys.stdout.isatty():
 raise BadArgsError(
 "Output was set to stdout '-' but it looks like stdout "
 "is connected to a terminal. Please redirect stdout to a "
 "file."
)
 elif hasattr(options.output_file, 'writable'):
 if not options.output_file.writable():
 raise OutputFileAccessError("Output stream is not writable")
 elif not is_file_writable(options.output_file):
 raise OutputFileAccessError(
 f"Output file location ({options.output_file}) is not a writable file."
)

def report_output_file_size(options, input_file, output_file):
 try:
 output_size = Path(output_file).stat().st_size
 input_size = Path(input_file).stat().st_size
 except FileNotFoundError:
 return # Outputting to stream or something
 with pikepdf.open(output_file) as p:
 # Overhead constants obtained by estimating amount of data added by OCR
 # PDF/A conversion, and possible XMP metadata addition, with compression
 FILE_OVERHEAD = 4000
 OCR_PER_PAGE_OVERHEAD = 3000
 reasonable_overhead = FILE_OVERHEAD + OCR_PER_PAGE_OVERHEAD * len(p.pages)
 ratio = output_size / input_size
 reasonable_ratio = output_size / (input_size + reasonable_overhead)
 if reasonable_ratio < 1.35 or input_size < 25000:
 return # Seems fine

 reasons = []
 image_preproc = {
 'deskew',
 'clean_final',
 'remove_background',
 'oversample',
 'force_ocr',
 }
 for arg in image_preproc:
 if getattr(options, arg, False):
 reasons.append(
 f"The argument --{arg.replace('_', '-')} was issued, causing transcoding."
)

 if options.optimize == 0:
 reasons.append("Optimization was disabled.")
 else:
 image_optimizers = {
 'jbig2': jbig2enc.available(),
 'pngquant': pngquant.available(),
 }
 for name, available in image_optimizers.items():
 if not available:
 reasons.append(
 f"The optional dependency '{name}' was not found, so some image "
 f"optimizations could not be attempted."
)

 if reasons:
 explanation = "Possible reasons for this include:\n" + '\n'.join(reasons) + "\n"
 else:
 explanation = "No reason for this increase is known. Please report this issue."

 log.warning(
 f"The output file size is {ratio:.2f}× larger than the input file.\n"
 f"{explanation}"
)

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/_version.py

© 2017 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import pkg_resources

PROGRAM_NAME = 'ocrmypdf'

Official PEP 396
__version__ = pkg_resources.get_distribution('ocrmypdf').version

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/api.py

© 2019 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import logging
import os
import sys
from enum import IntEnum
from pathlib import Path
from typing import BinaryIO, Iterable, Union

from ocrmypdf._logging import PageNumberFilter, TqdmConsole
from ocrmypdf._plugin_manager import get_plugin_manager
from ocrmypdf._sync import run_pipeline
from ocrmypdf._validation import check_options
from ocrmypdf.cli import ArgumentParser, get_parser
from ocrmypdf.helpers import is_iterable_notstr

try:
 import coloredlogs
except ModuleNotFoundError:
 coloredlogs = None

PathOrIO = Union[BinaryIO, os.PathLike, str, bytes]

class Verbosity(IntEnum):
 """Verbosity level for configure_logging."""

 quiet = -1 #: Suppress most messages
 default = 0 #: Default level of logging
 debug = 1 #: Output ocrmypdf debug messages
 debug_all = 2 #: More detailed debugging from ocrmypdf and dependent modules

def configure_logging(
 verbosity: Verbosity,
 progress_bar_friendly: bool = True,
 manage_root_logger: bool = False,
):
 """Set up logging.

 Library users may wish to use this function if they want their log output to be
 similar to ocrmypdf command line interface. If not used, the external application
 should configure logging on its own.

 ocrmypdf will perform all of its logging under the ``"ocrmypdf"`` logging namespace.
 In addition, ocrmypdf imports pdfminer, which logs under ``"pdfminer"``. A library
 user may wish to configure both; note that pdfminer is extremely chatty at the log
 level ``logging.INFO``.

 Library users may perform additional configuration afterwards.

 Args:
 verbosity (Verbosity): Verbosity level.
 progress_bar_friendly (bool): Install the TqdmConsole log handler, which is
 compatible with the tqdm progress bar; without this log messages will
 overwrite the progress bar
 manage_root_logger (bool): Configure the process's root logger, to ensure
 all log output is sent through

 Returns:
 The toplevel logger for ocrmypdf (or the root logger, if we are managing it).
 """

 prefix = '' if manage_root_logger else 'ocrmypdf'

 log = logging.getLogger(prefix)
 log.setLevel(logging.DEBUG)

 if progress_bar_friendly:
 console = logging.StreamHandler(stream=TqdmConsole(sys.stderr))
 else:
 console = logging.StreamHandler(stream=sys.stderr)

 if verbosity < 0:
 console.setLevel(logging.ERROR)
 elif verbosity >= 1:
 console.setLevel(logging.DEBUG)
 else:
 console.setLevel(logging.INFO)

 console.addFilter(PageNumberFilter())

 if verbosity >= 2:
 fmt = '%(levelname)7s %(name)s -%(pageno)s %(message)s'
 else:
 fmt = '%(pageno)s%(message)s'

 use_colors = progress_bar_friendly
 if not coloredlogs:
 use_colors = False
 if use_colors:
 if os.name == 'nt':
 use_colors = coloredlogs.enable_ansi_support()
 if use_colors:
 use_colors = coloredlogs.terminal_supports_colors()
 if use_colors:
 formatter = coloredlogs.ColoredFormatter(fmt=fmt)
 else:
 formatter = logging.Formatter(fmt=fmt)

 console.setFormatter(formatter)
 log.addHandler(console)

 if verbosity <= 1:
 pdfminer_log = logging.getLogger('pdfminer')
 pdfminer_log.setLevel(logging.ERROR)
 pil_log = logging.getLogger('PIL')
 pil_log.setLevel(logging.INFO)

 if manage_root_logger:
 logging.captureWarnings(True)

 return log

def create_options(
 *, input_file: PathOrIO, output_file: PathOrIO, parser: ArgumentParser, **kwargs
):
 cmdline = []
 deferred = []

 for arg, val in kwargs.items():
 if val is None:
 continue

 # These arguments with special handling for which we bypass
 # argparse
 if arg in {'progress_bar', 'plugins'}:
 deferred.append((arg, val))
 continue

 cmd_style_arg = arg.replace('_', '-')

 # Booleans are special: add only if True, omit for False
 if isinstance(val, bool):
 if val:
 cmdline.append(f"--{cmd_style_arg}")
 continue

 if is_iterable_notstr(val):
 for elem in val:
 cmdline.append(f"--{cmd_style_arg}")
 cmdline.append(elem)
 continue

 # We have a parameter
 cmdline.append(f"--{cmd_style_arg}")
 if isinstance(val, (int, float)):
 cmdline.append(str(val))
 elif isinstance(val, str):
 cmdline.append(val)
 elif isinstance(val, Path):
 cmdline.append(str(val))
 else:
 raise TypeError(f"{arg}: {val} ({type(val)})")

 try:
 cmdline.append(os.fspath(input_file))
 except TypeError:
 cmdline.append('stream://input_file')
 try:
 cmdline.append(os.fspath(output_file))
 except TypeError:
 cmdline.append('stream://output_file')

 parser._api_mode = True
 options = parser.parse_args(cmdline)
 for keyword, val in deferred:
 setattr(options, keyword, val)

 if options.input_file == 'stream://input_file':
 options.input_file = input_file
 if options.output_file == 'stream://output_file':
 options.output_file = output_file

 return options

def ocr(# pylint: disable=unused-argument
 input_file: PathOrIO,
 output_file: PathOrIO,
 *,
 language: Iterable[str] = None,
 image_dpi: int = None,
 output_type=None,
 sidecar: os.PathLike = None,
 jobs: int = None,
 use_threads: bool = None,
 title: str = None,
 author: str = None,
 subject: str = None,
 keywords: str = None,
 rotate_pages: bool = None,
 remove_background: bool = None,
 deskew: bool = None,
 clean: bool = None,
 clean_final: bool = None,
 unpaper_args: str = None,
 oversample: int = None,
 remove_vectors: bool = None,
 threshold: bool = None,
 force_ocr: bool = None,
 skip_text: bool = None,
 redo_ocr: bool = None,
 skip_big: float = None,
 optimize: int = None,
 jpg_quality: int = None,
 png_quality: int = None,
 jbig2_lossy: bool = None,
 jbig2_page_group_size: int = None,
 pages: str = None,
 max_image_mpixels: float = None,
 tesseract_config: Iterable[str] = None,
 tesseract_pagesegmode: int = None,
 tesseract_oem: int = None,
 pdf_renderer=None,
 tesseract_timeout: float = None,
 rotate_pages_threshold: float = None,
 pdfa_image_compression=None,
 user_words: os.PathLike = None,
 user_patterns: os.PathLike = None,
 fast_web_view: float = None,
 plugins: Iterable[str] = None,
 keep_temporary_files: bool = None,
 progress_bar: bool = None,
 **kwargs,
):
 """Run OCRmyPDF on one PDF or image.

 For most arguments, see documentation for the equivalent command line parameter.
 A few specific arguments are discussed here:

 Args:
 use_threads: Use worker threads instead of processes. This reduces
 performance but may make debugging easier since it is easier to set
 breakpoints.
 input_file: If a :class:`pathlib.Path`, ``str`` or ``bytes``, this is
 interpreted as file system path to the input file. If the object
 appears to be a readable stream (with methods such as ``.read()``
 and ``.seek()``), the object will be read in its entirety and saved to
 a temporary file. If ``input_file`` is ``"-"``, standard input will be
 read.
 output_file: If a :class:`pathlib.Path`, ``str`` or ``bytes``, this is
 interpreted as file system path to the output file. If the object
 appears to be a writable stream (with methods such as ``.read()`` and
 ``.seek()``), the output will be written to this stream. If
 ``output_file`` is ``"-"``, the output will be written to ``sys.stdout``
 (provided that standard output does not seem to be a terminal device).
 When a stream is used as output, whether via a writable object or
 ``"-"``, some final validation steps are not performed (we do not read
 back the stream after it is written).
 Raises:
 ocrmypdf.PdfMergeFailedError: If the input PDF is malformed, preventing merging
 with the OCR layer.
 ocrmypdf.MissingDependencyError: If a required dependency program is missing or
 was not found on PATH.
 ocrmypdf.UnsupportedImageFormatError: If the input file type was an image that
 could not be read, or some other file type that is not a PDF.
 ocrmypdf.DpiError: If the input file is an image, but the resolution of the
 image is not credible (allowing it to proceed would cause poor OCR).
 ocrmypdf.OutputFileAccessError: If an attempt to write to the intended output
 file failed.
 ocrmypdf.PriorOcrFoundError: If the input PDF seems to have OCR or digital
 text already, and settings did not tell us to proceed.
 ocrmypdf.InputFileError: Any other problem with the input file.
 ocrmypdf.SubprocessOutputError: Any error related to executing a subprocess.
 ocrmypdf.EncryptedPdfERror: If the input PDF is encrypted (password protected).
 OCRmyPDF does not remove passwords.
 ocrmypdf.TesseractConfigError: If Tesseract reported its configuration was not
 valid.

 Returns:
 :class:`ocrmypdf.ExitCode`
 """
 if not plugins:
 plugins = []
 else:
 plugins = list(plugins)

 parser = get_parser()
 _plugin_manager = get_plugin_manager(plugins)
 _plugin_manager.hook.add_options(parser=parser) # pylint: disable=no-member

 create_options_kwargs = {
 k: v for k, v in locals().items() if not k.startswith('_') and k != 'kwargs'
 }
 create_options_kwargs.update(kwargs)

 options = create_options(**create_options_kwargs)
 check_options(options, _plugin_manager)
 return run_pipeline(options=options, plugin_manager=_plugin_manager, api=True)

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/builtin_plugins/__init__.py

© 2020 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/builtin_plugins/ghostscript.py

© 2020 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import logging

from ocrmypdf import hookimpl
from ocrmypdf._exec import ghostscript
from ocrmypdf._validation import HOCR_OK_LANGS
from ocrmypdf.exceptions import MissingDependencyError
from ocrmypdf.subprocess import check_external_program

log = logging.getLogger(__name__)

@hookimpl
def check_options(options):
 gs_version = ghostscript.version()
 check_external_program(
 program='gs',
 package='ghostscript',
 version_checker=gs_version,
 need_version='9.15', # limited by Travis CI / Ubuntu 14.04 backports
)
 if gs_version in ('9.24', '9.51'):
 raise MissingDependencyError(
 f"Ghostscript {gs_version} contains serious regressions and is not "
 "supported. Please upgrade to a newer version, or downgrade to the "
 "previous version."
)

 # We have these constraints to check for.
 # 1. Ghostscript < 9.20 mangles multibyte Unicode
 # 2. hocr doesn't work on non-Latin languages (so don't select it)
 is_latin = options.languages.issubset(HOCR_OK_LANGS)
 if gs_version < '9.20' and options.output_type != 'pdf' and not is_latin:
 # https://bugs.ghostscript.com/show_bug.cgi?id=696874
 # Ghostscript < 9.20 fails to encode multibyte characters properly
 msg = (
 "The installed version of Ghostscript does not work correctly "
 "with the OCR languages you specified. Use --output-type pdf or "
 "upgrade to Ghostscript 9.20 or later to avoid this issue."
)
 msg += f"Found Ghostscript {gs_version}"
 log.warning(msg)

 if options.output_type == 'pdfa':
 options.output_type = 'pdfa-2'

 if options.output_type == 'pdfa-3' and ghostscript.version() < '9.19':
 raise MissingDependencyError(
 "--output-type pdfa-3 requires Ghostscript 9.19 or later"
)

@hookimpl
def rasterize_pdf_page(
 input_file,
 output_file,
 raster_device,
 raster_dpi,
 pageno,
 page_dpi=None,
 rotation=None,
 filter_vector=False,
):
 ghostscript.rasterize_pdf(
 input_file,
 output_file,
 raster_device=raster_device,
 raster_dpi=raster_dpi,
 pageno=pageno,
 page_dpi=page_dpi,
 rotation=rotation,
 filter_vector=filter_vector,
)
 return output_file

@hookimpl
def generate_pdfa(pdf_pages, pdfmark, output_file, compression, pdf_version, pdfa_part):
 ghostscript.generate_pdfa(
 pdf_pages=[*pdf_pages, pdfmark],
 output_file=output_file,
 compression=compression,
 pdf_version=pdf_version,
 pdfa_part=pdfa_part,
)
 return output_file

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/builtin_plugins/tesseract_ocr.py

© 2020 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import logging
import os

from ocrmypdf import hookimpl
from ocrmypdf._exec import tesseract
from ocrmypdf.cli import numeric
from ocrmypdf.exceptions import MissingDependencyError
from ocrmypdf.helpers import clamp
from ocrmypdf.pluginspec import OcrEngine
from ocrmypdf.subprocess import check_external_program

log = logging.getLogger(__name__)

@hookimpl
def add_options(parser):
 tess = parser.add_argument_group("Tesseract", "Advanced control of Tesseract OCR")
 tess.add_argument(
 '--tesseract-config',
 action='append',
 metavar='CFG',
 default=[],
 help="Additional Tesseract configuration files -- see documentation",
)
 tess.add_argument(
 '--tesseract-pagesegmode',
 action='store',
 type=int,
 metavar='PSM',
 choices=range(0, 14),
 help="Set Tesseract page segmentation mode (see tesseract --help)",
)
 tess.add_argument(
 '--tesseract-oem',
 action='store',
 type=int,
 metavar='MODE',
 choices=range(0, 4),
 help=(
 "Set Tesseract 4.0 OCR engine mode: "
 "0 - original Tesseract only; "
 "1 - neural nets LSTM only; "
 "2 - Tesseract + LSTM; "
 "3 - default."
),
)
 tess.add_argument(
 '--tesseract-timeout',
 default=180.0,
 type=numeric(float, 0),
 metavar='SECONDS',
 help='Give up on OCR after the timeout, but copy the preprocessed page '
 'into the final output',
)
 tess.add_argument(
 '--user-words',
 metavar='FILE',
 help="Specify the location of the Tesseract user words file. This is a "
 "list of words Tesseract should consider while performing OCR in "
 "addition to its standard language dictionaries. This can improve "
 "OCR quality especially for specialized and technical documents.",
)
 tess.add_argument(
 '--user-patterns',
 metavar='FILE',
 help="Specify the location of the Tesseract user patterns file.",
)

@hookimpl
def check_options(options):
 check_external_program(
 program='tesseract',
 package={'linux': 'tesseract-ocr'},
 version_checker=tesseract.version,
 need_version='4.0.0', # using backport for Travis CI
)

 # Decide on what renderer to use
 if options.pdf_renderer == 'auto':
 options.pdf_renderer = 'sandwich'

 if options.pdf_renderer == 'sandwich' and not tesseract.has_textonly_pdf(
 set(options.languages)
):
 raise MissingDependencyError(
 "You are using an alpha version of Tesseract 4.0 that does not support "
 "the textonly_pdf parameter. We don't support versions this old."
)
 if not tesseract.has_user_words() and (options.user_words or options.user_patterns):
 log.warning(
 "Tesseract 4.0 ignores --user-words and --user-patterns, so these "
 "arguments have no effect."
)
 if options.tesseract_pagesegmode in (0, 2):
 log.warning(
 "The --tesseract-pagesegmode argument you select will disable OCR. "
 "This may cause processing to fail."
)

@hookimpl
def validate(pdfinfo, options):
 # Tesseract 4.x can be multithreaded, and we also run multiple workers. We want
 # to manage how many threads it uses to avoid creating total threads than cores.
 # Performance testing shows we're better off
 # parallelizing ocrmypdf and forcing Tesseract to be single threaded, which we
 # get by setting the envvar OMP_THREAD_LIMIT to 1. But if the page count of the
 # input file is small, then we allow Tesseract to use threads, subject to the
 # constraint: (ocrmypdf workers) * (tesseract threads) <= max_workers.
 # As of Tesseract 4.1, 3 threads is the most effective on a 4 core/8 thread system.
 if not os.environ.get('OMP_THREAD_LIMIT', '').isnumeric():
 tess_threads = clamp(options.jobs // len(pdfinfo), 1, 3)
 os.environ['OMP_THREAD_LIMIT'] = str(tess_threads)
 else:
 tess_threads = int(os.environ['OMP_THREAD_LIMIT'])

 if tess_threads > 1:
 log.info("Using Tesseract OpenMP thread limit %d", tess_threads)

class TesseractOcrEngine(OcrEngine):
 @staticmethod
 def version():
 return tesseract.version()

 @staticmethod
 def creator_tag(options):
 tag = '-PDF' if options.pdf_renderer == 'sandwich' else ''
 return f"Tesseract OCR{tag} {TesseractOcrEngine.version()}"

 def __str__(self):
 return f"Tesseract OCR {TesseractOcrEngine.version()}"

 @staticmethod
 def languages(options):
 return tesseract.get_languages()

 @staticmethod
 def get_orientation(input_file, options):
 return tesseract.get_orientation(
 input_file,
 engine_mode=options.tesseract_oem,
 timeout=options.tesseract_timeout,
)

 @staticmethod
 def generate_hocr(input_file, output_hocr, output_text, options):
 tesseract.generate_hocr(
 input_file=input_file,
 output_hocr=output_hocr,
 output_text=output_text,
 languages=options.languages,
 engine_mode=options.tesseract_oem,
 tessconfig=options.tesseract_config,
 timeout=options.tesseract_timeout,
 pagesegmode=options.tesseract_pagesegmode,
 user_words=options.user_words,
 user_patterns=options.user_patterns,
)

 @staticmethod
 def generate_pdf(input_file, output_pdf, output_text, options):
 tesseract.generate_pdf(
 input_file=input_file,
 output_pdf=output_pdf,
 output_text=output_text,
 languages=options.languages,
 engine_mode=options.tesseract_oem,
 tessconfig=options.tesseract_config,
 timeout=options.tesseract_timeout,
 pagesegmode=options.tesseract_pagesegmode,
 user_words=options.user_words,
 user_patterns=options.user_patterns,
)

@hookimpl
def get_ocr_engine():
 return TesseractOcrEngine()

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/cli.py

© 2015-19 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import argparse

from ocrmypdf._version import PROGRAM_NAME as _PROGRAM_NAME
from ocrmypdf._version import __version__ as _VERSION

def numeric(basetype, min_=None, max_=None):
 """Validator for numeric params"""
 min_ = basetype(min_) if min_ is not None else None
 max_ = basetype(max_) if max_ is not None else None

 def _numeric(string):
 value = basetype(string)
 if (min_ is not None and value < min_) or (max_ is not None and value > max_):
 msg = "%r not in valid range %r" % (string, (min_, max_))
 raise argparse.ArgumentTypeError(msg)
 return value

 _numeric.__name__ = basetype.__name__
 return _numeric

class ArgumentParser(argparse.ArgumentParser):
 """Override parser's default behavior of calling sys.exit()

 https://stackoverflow.com/questions/5943249/python-argparse-and-controlling-overriding-the-exit-status-code
 """

 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)
 self._api_mode = False

 def error(self, message):
 if not self._api_mode:
 super().error(message)
 return
 raise ValueError(message)

class LanguageSetAction(argparse.Action):
 def __init__(self, option_strings, dest, default=None, **kwargs):
 if default is None:
 default = set()
 super().__init__(option_strings, dest, default=default, **kwargs)

 def __call__(self, parser, namespace, values, option_string=None):
 dest = getattr(namespace, self.dest)
 if '+' in values:
 dest.update(lang for lang in values.split('+'))
 else:
 dest.add(values)

def get_parser():
 parser = ArgumentParser(
 prog=_PROGRAM_NAME,
 allow_abbrev=True,
 fromfile_prefix_chars='@',
 formatter_class=argparse.RawDescriptionHelpFormatter,
 description="""\
Generates a searchable PDF or PDF/A from a regular PDF.

OCRmyPDF rasterizes each page of the input PDF, optionally corrects page
rotation and performs image processing, runs the Tesseract OCR engine on the
image, and then creates a PDF from the OCR information.
""",
 epilog="""\
OCRmyPDF attempts to keep the output file at about the same size. If a file
contains losslessly compressed images, and images in the output file will be
losslessly compressed as well.

PDF is a page description file that attempts to preserve a layout exactly.
A PDF can contain vector objects (such as text or lines) and raster objects
(images). A page might have multiple images. OCRmyPDF is prepared to deal
with the wide variety of PDFs that exist in the wild.

When a PDF page contains text, OCRmyPDF assumes that the page has already
been OCRed or is a "born digital" page that should not be OCRed. The default
behavior is to exit in this case without producing a file. You can use the
option --skip-text to ignore pages with text, or --force-ocr to rasterize
all objects on the page and produce an image-only PDF as output.

 ocrmypdf --skip-text file_with_some_text_pages.pdf output.pdf

 ocrmypdf --force-ocr word_document.pdf output.pdf

If you are concerned about long-term archiving of PDFs, use the default option
--output-type pdfa which converts the PDF to a standardized PDF/A-2b. This
removes some features from the PDF such as Javascript or forms. If you want to
minimize the number of changes made to your PDF, use --output-type pdf.

If OCRmyPDF is given an image file as input, it will attempt to convert the
image to a PDF before processing. For more control over the conversion of
images to PDF, use the Python package img2pdf or other image to PDF software.

For example, this command uses img2pdf to convert all .png files beginning
with the 'page' prefix to a PDF, fitting each image on A4-sized paper, and
sending the result to OCRmyPDF through a pipe.

 img2pdf --pagesize A4 page*.png | ocrmypdf - myfile.pdf

Online documentation is located at:
 https://ocrmypdf.readthedocs.io/en/latest/introduction.html

""",
)

 parser.add_argument(
 'input_file',
 metavar="input_pdf_or_image",
 help="PDF file containing the images to be OCRed (or '-' to read from "
 "standard input)",
)
 parser.add_argument(
 'output_file',
 metavar="output_pdf",
 help="Output searchable PDF file (or '-' to write to standard output). "
 "Existing files will be ovewritten. If same as input file, the "
 "input file will be updated only if processing is successful.",
)
 parser.add_argument(
 '-l',
 '--language',
 dest='languages',
 action=LanguageSetAction,
 help="Language(s) of the file to be OCRed (see tesseract --list-langs for "
 "all language packs installed in your system). Use -l eng+deu for "
 "multiple languages.",
)
 parser.add_argument(
 '--image-dpi',
 metavar='DPI',
 type=int,
 help="For input image instead of PDF, use this DPI instead of file's.",
)
 parser.add_argument(
 '--output-type',
 choices=['pdfa', 'pdf', 'pdfa-1', 'pdfa-2', 'pdfa-3'],
 default='pdfa',
 help="Choose output type. 'pdfa' creates a PDF/A-2b compliant file for "
 "long term archiving (default, recommended) but may not suitable "
 "for users who want their file altered as little as possible. 'pdfa' "
 "also has problems with full Unicode text. 'pdf' attempts to "
 "preserve file contents as much as possible. 'pdf-a1' creates a "
 "PDF/A1-b file. 'pdf-a2' is equivalent to 'pdfa'. 'pdf-a3' creates a "
 "PDF/A3-b file.",
)

 # Use null string '\0' as sentinel to indicate the user supplied no argument,
 # since that is the only invalid character for filepaths on all platforms
 # bool('\0') is True in Python
 parser.add_argument(
 '--sidecar',
 nargs='?',
 const='\0',
 default=None,
 metavar='FILE',
 help="Generate sidecar text files that contain the same text recognized "
 "by Tesseract. This may be useful for building a OCR text database. "
 "If FILE is omitted, the sidecar file be named {output_file}.txt "
 "If FILE is set to '-', the sidecar is written to stdout (a "
 "convenient way to preview OCR quality). The output file and sidecar "
 "may not both use stdout at the same time.",
)

 parser.add_argument(
 '--version',
 action='version',
 version=_VERSION,
 help="Print program version and exit",
)

 jobcontrol = parser.add_argument_group("Job control options")
 jobcontrol.add_argument(
 '-j',
 '--jobs',
 metavar='N',
 type=numeric(int, 0, 256),
 help="Use up to N CPU cores simultaneously (default: use all).",
)
 jobcontrol.add_argument(
 '-q', '--quiet', action='store_true', help="Suppress INFO messages"
)
 jobcontrol.add_argument(
 '-v',
 '--verbose',
 type=numeric(int, 0, 2),
 default=0,
 const=1,
 nargs='?',
 help="Print more verbose messages for each additional verbose level. Use "
 "`-v 1` typically for much more detailed logging. Higher numbers "
 "are probably only useful in debugging.",
)
 jobcontrol.add_argument(
 '--no-progress-bar',
 action='store_false',
 dest='progress_bar',
 help=argparse.SUPPRESS,
)
 jobcontrol.add_argument(
 '--use-threads', action='store_true', help=argparse.SUPPRESS
)

 metadata = parser.add_argument_group(
 "Metadata options",
 "Set output PDF/A metadata (default: copy input document's metadata)",
)
 metadata.add_argument(
 '--title', type=str, help="Set document title (place multiple words in quotes)"
)
 metadata.add_argument('--author', type=str, help="Set document author")
 metadata.add_argument(
 '--subject', type=str, help="Set document subject description"
)
 metadata.add_argument('--keywords', type=str, help="Set document keywords")

 preprocessing = parser.add_argument_group(
 "Image preprocessing options",
 "Options to improve the quality of the final PDF and OCR",
)
 preprocessing.add_argument(
 '-r',
 '--rotate-pages',
 action='store_true',
 help="Automatically rotate pages based on detected text orientation",
)
 preprocessing.add_argument(
 '--remove-background',
 action='store_true',
 help="Attempt to remove background from gray or color pages, setting it "
 "to white ",
)
 preprocessing.add_argument(
 '-d',
 '--deskew',
 action='store_true',
 help="Deskew each page before performing OCR",
)
 preprocessing.add_argument(
 '-c',
 '--clean',
 action='store_true',
 help="Clean pages from scanning artifacts before performing OCR, and send "
 "the cleaned page to OCR, but do not include the cleaned page in "
 "the output",
)
 preprocessing.add_argument(
 '-i',
 '--clean-final',
 action='store_true',
 help="Clean page as above, and incorporate the cleaned image in the final "
 "PDF. Might remove desired content.",
)
 preprocessing.add_argument(
 '--unpaper-args',
 type=str,
 default=None,
 help="A quoted string of arguments to pass to unpaper. Requires --clean. "
 "Example: --unpaper-args '--layout double'.",
)
 preprocessing.add_argument(
 '--oversample',
 metavar='DPI',
 type=numeric(int, 0, 5000),
 default=0,
 help="Oversample images to at least the specified DPI, to improve OCR "
 "results slightly",
)
 preprocessing.add_argument(
 '--remove-vectors',
 action='store_true',
 help="EXPERIMENTAL. Mask out any vector objects in the PDF so that they "
 "will not be included in OCR. This can eliminate false characters.",
)
 preprocessing.add_argument(
 '--threshold',
 action='store_true',
 help=(
 "EXPERIMENTAL. Threshold image to 1bpp before sending it to Tesseract "
 "for OCR. Can improve OCR quality compared to Tesseract's thresholder."
),
)

 ocrsettings = parser.add_argument_group("OCR options", "Control how OCR is applied")
 ocrsettings.add_argument(
 '-f',
 '--force-ocr',
 action='store_true',
 help="Rasterize any text or vector objects on each page, apply OCR, and "
 "save the rastered output (this rewrites the PDF)",
)
 ocrsettings.add_argument(
 '-s',
 '--skip-text',
 action='store_true',
 help="Skip OCR on any pages that already contain text, but include the "
 "page in final output; useful for PDFs that contain a mix of "
 "images, text pages, and/or previously OCRed pages",
)
 ocrsettings.add_argument(
 '--redo-ocr',
 action='store_true',
 help="Attempt to detect and remove the hidden OCR layer from files that "
 "were previously OCRed with OCRmyPDF or another program. Apply OCR "
 "to text found in raster images. Existing visible text objects will "
 "not be changed. If there is no existing OCR, OCR will be added.",
)
 ocrsettings.add_argument(
 '--skip-big',
 type=numeric(float, 0, 5000),
 metavar='MPixels',
 help="Skip OCR on pages larger than the specified amount of megapixels, "
 "but include skipped pages in final output",
)

 optimizing = parser.add_argument_group(
 "Optimization options", "Control how the PDF is optimized after OCR"
)
 optimizing.add_argument(
 '-O',
 '--optimize',
 type=int,
 choices=range(0, 4),
 default=1,
 help=(
 "Control how PDF is optimized after processing:"
 "0 - do not optimize; "
 "1 - do safe, lossless optimizations (default); "
 "2 - do some lossy optimizations; "
 "3 - do aggressive lossy optimizations (including lossy JBIG2)"
),
)
 optimizing.add_argument(
 '--jpeg-quality',
 type=numeric(int, 0, 100),
 default=0,
 metavar='Q',
 help=(
 "Adjust JPEG quality level for JPEG optimization. "
 "100 is best quality and largest output size; "
 "1 is lowest quality and smallest output; "
 "0 uses the default."
),
)
 optimizing.add_argument(
 '--jpg-quality',
 type=numeric(int, 0, 100),
 default=0,
 metavar='Q',
 dest='jpeg_quality',
 help=argparse.SUPPRESS, # Alias for --jpeg-quality
)
 optimizing.add_argument(
 '--png-quality',
 type=numeric(int, 0, 100),
 default=0,
 metavar='Q',
 help=(
 "Adjust PNG quality level to use when quantizing PNGs. "
 "Values have same meaning as with --jpeg-quality"
),
)
 optimizing.add_argument(
 '--jbig2-lossy',
 action='store_true',
 help=(
 "Enable JBIG2 lossy mode (better compression, not suitable for some "
 "use cases - see documentation)."
),
)
 optimizing.add_argument(
 '--jbig2-page-group-size',
 type=numeric(int, 1, 10000),
 default=0,
 metavar='N',
 # Adjust number of pages to consider at once for JBIG2 compression
 help=argparse.SUPPRESS,
)

 advanced = parser.add_argument_group(
 "Advanced", "Advanced options to control OCRmyPDF"
)
 advanced.add_argument(
 '--pages',
 type=str,
 help=(
 "Limit OCR to the specified pages (ranges or comma separated), "
 "skipping others"
),
)
 advanced.add_argument(
 '--max-image-mpixels',
 action='store',
 type=numeric(float, 0),
 metavar='MPixels',
 help="Set maximum number of pixels to unpack before treating an image as a "
 "decompression bomb",
 default=128.0,
)
 advanced.add_argument(
 '--pdf-renderer',
 choices=['auto', 'hocr', 'sandwich'],
 default='auto',
 help="Choose OCR PDF renderer - the default option is to let OCRmyPDF "
 "choose. See documentation for discussion.",
)
 advanced.add_argument(
 '--rotate-pages-threshold',
 default=14.0,
 type=numeric(float, 0, 1000),
 metavar='CONFIDENCE',
 help="Only rotate pages when confidence is above this value (arbitrary "
 "units reported by tesseract)",
)
 advanced.add_argument(
 '--pdfa-image-compression',
 choices=['auto', 'jpeg', 'lossless'],
 default='auto',
 help="Specify how to compress images in the output PDF/A. 'auto' lets "
 "OCRmyPDF decide. 'jpeg' changes all grayscale and color images to "
 "JPEG compression. 'lossless' uses PNG-style lossless compression "
 "for all images. Monochrome images are always compressed using a "
 "lossless codec. Compression settings "
 "are applied to all pages, including those for which OCR was "
 "skipped. Not supported for --output-type=pdf ; that setting "
 "preserves the original compression of all images.",
)
 advanced.add_argument(
 '--fast-web-view',
 type=numeric(float, 0),
 default=1.0,
 metavar="MEGABYTES",
 help="If the size of file is more than this threshold (in MB), then "
 "linearize the PDF for fast web viewing. This allows the PDF to be "
 "displayed before it is fully downloaded in web browsers, but increases "
 "the space required slightly. By default we skip this for small files "
 "which do not benefit. If the threshold is 0 it will be apply to all files. "
 "Set the threshold very high to disable.",
)
 advanced.add_argument(
 '--plugin',
 dest='plugins',
 action='append',
 default=[],
 help="Name of plugin to import. Argument may be issued multiple times to "
 "import multiple plugins. Plugins may be specified as module names in "
 "Python syntax, provided they are installed in the same Python (virtual) "
 "environment as ocrmypdf; or you may give the path to the Python file that "
 "contains the plugin. Plugins must conform to the specification in the "
 "OCRmyPDF documentation.",
)

 debugging = parser.add_argument_group(
 "Debugging", "Arguments to help with troubleshooting and debugging"
)
 debugging.add_argument(
 '-k',
 '--keep-temporary-files',
 action='store_true',
 help="Keep temporary files (helpful for debugging)",
)
 return parser

plugins_only_parser = ArgumentParser(
 prog=_PROGRAM_NAME, fromfile_prefix_chars='@', add_help=False, allow_abbrev=False
)
plugins_only_parser.add_argument(
 '--plugin',
 dest='plugins',
 action='append',
 default=[],
 help="Name of plugin to import.",
)

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/data/sRGB.icc

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/exceptions.py

© 2016 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

from enum import IntEnum
from textwrap import dedent

class ExitCode(IntEnum):
 ok = 0
 bad_args = 1
 input_file = 2
 missing_dependency = 3
 invalid_output_pdf = 4
 file_access_error = 5
 already_done_ocr = 6
 child_process_error = 7
 encrypted_pdf = 8
 invalid_config = 9
 pdfa_conversion_failed = 10
 other_error = 15
 ctrl_c = 130

class ExitCodeException(Exception):
 exit_code = ExitCode.other_error
 message = ""

 def __str__(self):
 super_msg = super().__str__() # Don't do str(super())
 if self.message:
 return self.message.format(super_msg)
 return super_msg

class BadArgsError(ExitCodeException):
 exit_code = ExitCode.bad_args

class PdfMergeFailedError(ExitCodeException):
 exit_code = ExitCode.input_file
 message = dedent(
 '''\
 Failed to merge PDF image layer with OCR layer

 Usually this happens because the input PDF file is malformed and
 ocrmypdf cannot automatically correct the problem on its own.

 Try using
 ocrmypdf --pdf-renderer sandwich [..other args..]
 '''
)

class MissingDependencyError(ExitCodeException):
 exit_code = ExitCode.missing_dependency

class UnsupportedImageFormatError(ExitCodeException):
 exit_code = ExitCode.input_file

class DpiError(ExitCodeException):
 exit_code = ExitCode.input_file

class OutputFileAccessError(ExitCodeException):
 exit_code = ExitCode.file_access_error

class PriorOcrFoundError(ExitCodeException):
 exit_code = ExitCode.already_done_ocr

class InputFileError(ExitCodeException):
 exit_code = ExitCode.input_file

class SubprocessOutputError(ExitCodeException):
 exit_code = ExitCode.child_process_error

class EncryptedPdfError(ExitCodeException):
 exit_code = ExitCode.encrypted_pdf
 message = dedent(
 '''\
 Input PDF is encrypted. The encryption must be removed to
 perform OCR.

 For information about this PDF's security use
 qpdf --show-encryption infilename

 You can remove the encryption using
 qpdf --decrypt [--password=[password]] infilename
 '''
)

class TesseractConfigError(ExitCodeException):
 exit_code = ExitCode.invalid_config
 message = "Error occurred while parsing a Tesseract configuration file"

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/helpers.py

© 2016 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import logging
import multiprocessing
import os
import shutil
import warnings
from collections import namedtuple
from collections.abc import Iterable
from contextlib import suppress
from functools import wraps
from io import StringIO
from math import isclose
from pathlib import Path
from typing import Any, Sequence, TypeVar

import pikepdf

log = logging.getLogger(__name__)

class Resolution(namedtuple('Resolution', ('x', 'y'))):
 """The number of pixels per inch in each 2D direction."""

 __slots__ = ()

 def round(self, ndigits: int):
 return Resolution(round(self.x, ndigits), round(self.y, ndigits))

 def to_int(self):
 return Resolution(int(round(self.x)), int(round(self.y)))

 @property
 def is_square(self) -> bool:
 return isclose(self.x, self.y, rel_tol=1e-3)

 def take_max(self, vals, yvals=None):
 if yvals is not None:
 return Resolution(max(self.x, *vals), max(self.y, *yvals))
 max_x, max_y = self.x, self.y
 for x, y in vals:
 max_x = max(x, max_x)
 max_y = max(y, max_y)
 return Resolution(max_x, max_y)

 def flip_axis(self):
 return Resolution(self.y, self.x)

 def __str__(self):
 return f"{self.x:f}x{self.y:f}"

 def __repr__(self):
 return f"Resolution({self.x}x{self.y} dpi)"

def safe_symlink(input_file: os.PathLike, soft_link_name: os.PathLike):
 """
 Helper function: relinks soft symbolic link if necessary
 """
 input_file = os.fspath(input_file)
 soft_link_name = os.fspath(soft_link_name)

 # Guard against soft linking to oneself
 if input_file == soft_link_name:
 log.warning(
 "No symbolic link made. You are using "
 "the original data directory as the working directory."
)
 return

 # Soft link already exists: delete for relink?
 if os.path.lexists(soft_link_name):
 # do not delete or overwrite real (non-soft link) file
 if not os.path.islink(soft_link_name):
 raise FileExistsError(f"{soft_link_name} exists and is not a link")
 try:
 os.unlink(soft_link_name)
 except OSError:
 log.debug("Can't unlink %s", soft_link_name)

 if not os.path.exists(input_file):
 raise FileNotFoundError(f"trying to create a broken symlink to {input_file}")

 if os.name == 'nt':
 # Don't actually use symlinks on Windows due to permission issues
 shutil.copyfile(input_file, soft_link_name)
 return

 log.debug("os.symlink(%s, %s)", input_file, soft_link_name)

 # Create symbolic link using absolute path
 os.symlink(os.path.abspath(input_file), soft_link_name)

def samefile(f1: os.PathLike, f2: os.PathLike):
 if os.name == 'nt':
 return f1 == f2
 else:
 return os.path.samefile(f1, f2)

def is_iterable_notstr(thing: Any) -> bool:
 """Is this is an iterable type, other than a string?"""
 return isinstance(thing, Iterable) and not isinstance(thing, str)

def monotonic(L: Sequence) -> bool:
 """Does list increase monotonically?"""
 return all(b > a for a, b in zip(L, L[1:]))

def page_number(input_file: os.PathLike) -> int:
 """Get one-based page number implied by filename (000002.pdf -> 2)"""
 return int(os.path.basename(os.fspath(input_file))[0:6])

def available_cpu_count() -> int:
 """Returns number of CPUs in the system."""
 try:
 return multiprocessing.cpu_count()
 except NotImplementedError:
 pass
 warnings.warn(
 "Could not get CPU count. Assuming one (1) CPU." "Use -j N to set manually."
)
 return 1

def is_file_writable(test_file: os.PathLike) -> bool:
 """Intentionally racy test if target is writable.

 We intend to write to the output file if and only if we succeed and
 can replace it atomically. Before doing the OCR work, make sure
 the location is writable.
 """
 try:
 p = Path(test_file)
 if p.is_symlink():
 p = p.resolve(strict=False)

 # p.is_file() throws an exception in some cases
 if p.exists() and p.is_file():
 return os.access(
 os.fspath(p),
 os.W_OK,
 effective_ids=(os.access in os.supports_effective_ids),
)
 else:
 try:
 fp = p.open('wb')
 except OSError:
 return False
 else:
 fp.close()
 with suppress(OSError):
 p.unlink()
 return True
 except (EnvironmentError, RuntimeError) as e:
 log.debug(e)
 log.error(str(e))
 return False

def check_pdf(input_file: Path) -> bool:
 """Check if a PDF complies with the PDF specification.

 Checks for proper formatting and proper linearization.
 """
 pdf = None
 try:
 pdf = pikepdf.open(input_file)
 except pikepdf.PdfError as e:
 log.error(e)
 return False
 else:
 messages = pdf.check()
 for msg in messages:
 if 'error' in msg.lower():
 log.error(msg)
 else:
 log.warning(msg)

 sio = StringIO()
 linearize = None
 try:
 pdf.check_linearization(sio)
 except RuntimeError:
 pass
 else:
 linearize = sio.getvalue()
 if linearize:
 log.warning(linearize)

 if not messages and not linearize:
 return True
 return False
 finally:
 if pdf:
 pdf.close()

T = TypeVar('T')

def clamp(n: T, smallest: T, largest: T) -> T:
 """Clamps the value of n to between smallest and largest."""
 return max(smallest, min(n, largest))

def pikepdf_enable_mmap():
 try:
 if pikepdf._qpdf.set_access_default_mmap(True):
 log.debug("pikepdf mmap enabled")
 except AttributeError:
 log.debug("pikepdf mmap not available")

def deprecated(func):
 """Warn that function is deprecated"""

 @wraps(func)
 def new_func(*args, **kwargs):
 warnings.simplefilter('always', DeprecationWarning) # turn off filter
 warnings.warn(
 "Call to deprecated function {}.".format(func.__name__),
 category=DeprecationWarning,
 stacklevel=2,
)
 warnings.simplefilter('default', DeprecationWarning) # reset filter
 return func(*args, **kwargs)

 return new_func

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/hocrtransform.py

#!/usr/bin/env python3
#
Copyright (c) 2010, Jonathan Brinley
Original version from: https://github.com/jbrinley/HocrConverter
#
Copyright (c) 2013-14, Julien Pfefferkorn
Modifications
#
Copyright (c) 2015-16, James R. Barlow
Set text to transparent
#
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
#
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

import argparse
import os
import re
from collections import namedtuple
from itertools import chain
from math import atan, cos, sin
from pathlib import Path
from typing import Optional, Tuple, Union
from xml.etree import ElementTree

from reportlab.lib.colors import black, cyan, magenta, red
from reportlab.lib.units import inch
from reportlab.pdfgen.canvas import Canvas

Rect = namedtuple('Rect', ['x1', 'y1', 'x2', 'y2'])

class HocrTransformError(Exception):
 pass

class HocrTransform:

 """
 A class for converting documents from the hOCR format.
 For details of the hOCR format, see:
 http://kba.cloud/hocr-spec/
 """

 box_pattern = re.compile(r'bbox((\s+\d+){4})')
 baseline_pattern = re.compile(
 r'''
 baseline \s+
 ([\-\+]?\d*\.?\d*) \s+ # +/- decimal float
 ([\-\+]?\d+) # +/- int''',
 re.VERBOSE,
)
 ligatures = str.maketrans(
 {'ﬀ': 'ff', 'ﬃ': 'ffi', 'ﬄ': 'ffl', 'ﬁ': 'fi', 'ﬂ': 'fl'}
)

 def __init__(self, hocr_filename: Union[str, Path], dpi: float):
 self.dpi = dpi
 self.hocr = ElementTree.parse(os.fspath(hocr_filename))

 # if the hOCR file has a namespace, ElementTree requires its use to
 # find elements
 matches = re.match(r'({.*})html', self.hocr.getroot().tag)
 self.xmlns = ''
 if matches:
 self.xmlns = matches.group(1)

 # get dimension in pt (not pixel!!!!) of the OCRed image
 self.width, self.height = None, None
 for div in self.hocr.findall(self._child_xpath('div', 'ocr_page')):
 coords = self.element_coordinates(div)
 pt_coords = self.pt_from_pixel(coords)
 self.width = pt_coords.x2 - pt_coords.x1
 self.height = pt_coords.y2 - pt_coords.y1
 # there shouldn't be more than one, and if there is, we don't want
 # it
 break
 if self.width is None or self.height is None:
 raise HocrTransformError("hocr file is missing page dimensions")

 def __str__(self): # pragma: no cover
 """
 Return the textual content of the HTML body
 """
 if self.hocr is None:
 return ''
 body = self.hocr.find(self._child_xpath('body'))
 if body:
 return self._get_element_text(body)
 else:
 return ''

 def _get_element_text(self, element):
 """
 Return the textual content of the element and its children
 """
 text = ''
 if element.text is not None:
 text += element.text
 for child in element:
 text += self._get_element_text(child)
 if element.tail is not None:
 text += element.tail
 return text

 @classmethod
 def element_coordinates(cls, element) -> Rect:
 """
 Returns a tuple containing the coordinates of the bounding box around
 an element
 """
 out = Rect._make(0 for _ in range(4))
 if 'title' in element.attrib:
 matches = cls.box_pattern.search(element.attrib['title'])
 if matches:
 coords = matches.group(1).split()
 out = Rect._make(int(coords[n]) for n in range(4))
 return out

 @classmethod
 def baseline(cls, element) -> Tuple[float, float]:
 """
 Returns a tuple containing the baseline slope and intercept.
 """
 if 'title' in element.attrib:
 matches = cls.baseline_pattern.search(element.attrib['title'])
 if matches:
 return float(matches.group(1)), int(matches.group(2))
 return (0.0, 0.0)

 def pt_from_pixel(self, pxl) -> Rect:
 """
 Returns the quantity in PDF units (pt) given quantity in pixels
 """
 return Rect._make((c / self.dpi * inch) for c in pxl)

 def _child_xpath(self, html_tag, html_class=None):
 xpath = f".//{self.xmlns}{html_tag}"
 if html_class:
 xpath += f"[@class='{html_class}']"
 return xpath

 @classmethod
 def replace_unsupported_chars(cls, s: str) -> str:
 """
 Given an input string, returns the corresponding string that:
 * is available in the Helvetica facetype
 * does not contain any ligature (to allow easy search in the PDF file)
 """
 return s.translate(cls.ligatures)

 def topdown_position(self, element):
 pxl_line_coords = self.element_coordinates(element)
 line_box = self.pt_from_pixel(pxl_line_coords)
 return -line_box.y2

 def to_pdf(
 self,
 out_filename: Path,
 image_filename: Optional[Path] = None,
 show_bounding_boxes: bool = False,
 fontname: str = "Helvetica",
 invisible_text: bool = False,
 interword_spaces: bool = False,
) -> None:
 """
 Creates a PDF file with an image superimposed on top of the text.
 Text is positioned according to the bounding box of the lines in
 the hOCR file.
 The image need not be identical to the image used to create the hOCR
 file.
 It can have a lower resolution, different color mode, etc.

 Arguments:
 out_filename: Path of PDF to write.
 image_filename: Image to use for this file. If omitted, the OCR text
 is shown.
 show_bounding_boxes: Show bounding boxes around various text regions,
 for debugging.
 fontname: Name of font to use.
 invisible_text: If True, text is rendered invisible so that is
 selectable but never drawn. If False, text is visible and may
 be seen if the image is skipped or deleted in Acrobat.
 interword_spaces: If True, insert spaces between words rather than
 drawing each word without spaces. Generally this improves text
 extraction.
 """
 # create the PDF file
 # page size in points (1/72 in.)
 pdf = Canvas(
 os.fspath(out_filename),
 pagesize=(self.width, self.height),
 pageCompression=1,
)

 # draw bounding box for each paragraph
 # light blue for bounding box of paragraph
 pdf.setStrokeColor(cyan)
 # light blue for bounding box of paragraph
 pdf.setFillColor(cyan)
 pdf.setLineWidth(0) # no line for bounding box
 for elem in self.hocr.iterfind(self._child_xpath('p', 'ocr_par')):
 elemtxt = self._get_element_text(elem).rstrip()
 if len(elemtxt) == 0:
 continue

 pxl_coords = self.element_coordinates(elem)
 pt = self.pt_from_pixel(pxl_coords)

 # draw the bbox border
 if show_bounding_boxes: # pragma: no cover
 pdf.rect(
 pt.x1, self.height - pt.y2, pt.x2 - pt.x1, pt.y2 - pt.y1, fill=1
)

 found_lines = False
 for line in sorted(
 chain(
 self.hocr.iterfind(self._child_xpath('span', 'ocr_header')),
 self.hocr.iterfind(self._child_xpath('span', 'ocr_line')),
 self.hocr.iterfind(self._child_xpath('span', 'ocr_textfloat')),
),
 key=self.topdown_position,
):
 found_lines = True
 self._do_line(
 pdf,
 line,
 "ocrx_word",
 fontname,
 invisible_text,
 interword_spaces,
 show_bounding_boxes,
)

 if not found_lines:
 # Tesseract did not report any lines (just words)
 root = self.hocr.find(self._child_xpath('div', 'ocr_page'))
 self._do_line(
 pdf,
 root,
 "ocrx_word",
 fontname,
 invisible_text,
 interword_spaces,
 show_bounding_boxes,
)
 # put the image on the page, scaled to fill the page
 if image_filename is not None:
 pdf.drawImage(
 os.fspath(image_filename), 0, 0, width=self.width, height=self.height
)

 # finish up the page and save it
 pdf.showPage()
 pdf.save()

 @classmethod
 def polyval(cls, poly, x): # pragma: no cover
 return x * poly[0] + poly[1]

 def _do_line(
 self,
 pdf: Canvas,
 line,
 elemclass: str,
 fontname: str,
 invisible_text: bool,
 interword_spaces: bool,
 show_bounding_boxes: bool,
):
 pxl_line_coords = self.element_coordinates(line)
 line_box = self.pt_from_pixel(pxl_line_coords)
 line_height = line_box.y2 - line_box.y1

 slope, pxl_intercept = self.baseline(line)
 if abs(slope) < 0.005:
 slope = 0.0
 angle = atan(slope)
 cos_a, sin_a = cos(angle), sin(angle)

 text = pdf.beginText()
 intercept = pxl_intercept / self.dpi * inch

 # Don't allow the font to break out of the bounding box. Division by
 # cos_a accounts for extra clearance between the glyph's vertical axis
 # on a sloped baseline and the edge of the bounding box.
 fontsize = (line_height - abs(intercept)) / cos_a
 text.setFont(fontname, fontsize)
 if invisible_text:
 text.setTextRenderMode(3) # Invisible (indicates OCR text)

 # Intercept is normally negative, so this places it above the bottom
 # of the line box
 baseline_y2 = self.height - (line_box.y2 + intercept)

 if show_bounding_boxes: # pragma: no cover
 # draw the baseline in magenta, dashed
 pdf.setDash()
 pdf.setStrokeColor(magenta)
 pdf.setLineWidth(0.5)
 # negate slope because it is defined as a rise/run in pixel
 # coordinates and page coordinates have the y axis flipped
 pdf.line(
 line_box.x1,
 baseline_y2,
 line_box.x2,
 self.polyval((-slope, baseline_y2), line_box.x2 - line_box.x1),
)
 # light green for bounding box of word/line
 pdf.setDash(6, 3)
 pdf.setStrokeColor(red)

 text.setTextTransform(cos_a, -sin_a, sin_a, cos_a, line_box.x1, baseline_y2)
 pdf.setFillColor(black) # text in black

 elements = line.findall(self._child_xpath('span', elemclass))
 for elem in elements:
 elemtxt = self._get_element_text(elem).strip()
 elemtxt = self.replace_unsupported_chars(elemtxt)
 if elemtxt == '':
 continue

 pxl_coords = self.element_coordinates(elem)
 box = self.pt_from_pixel(pxl_coords)
 if interword_spaces:
 # if `--interword-spaces` is true, append a space
 # to the end of each text element to allow simpler PDF viewers
 # such as PDF.js to better recognize words in search and copy
 # and paste. Do not remove space from last word in line, even
 # though it would look better, because it will interfere with
 # naive text extraction. \n does not work either.
 elemtxt += ' '
 box = Rect._make(
 (
 box.x1,
 line_box.y1,
 box.x2 + pdf.stringWidth(' ', fontname, line_height),
 line_box.y2,
)
)
 box_width = box.x2 - box.x1
 font_width = pdf.stringWidth(elemtxt, fontname, fontsize)

 # draw the bbox border
 if show_bounding_boxes: # pragma: no cover
 pdf.rect(
 box.x1, self.height - line_box.y2, box_width, line_height, fill=0
)

 # Adjust relative position of cursor
 # This is equivalent to:
 # text.setTextOrigin(pt.x1, self.height - line_box.y2)
 # but the former generates a full text reposition matrix (Tm) in the
 # content stream while this issues a "offset" (Td) command.
 # .moveCursor() is relative to start of the text line, where the
 # "text line" means whatever reportlab defines it as. Do not use
 # use .getCursor(), since moveCursor() rather unintuitively plans
 # its moves relative to .getStartOfLine().
 # For skewed lines, in the text transform we set up a rotated
 # coordinate system, so we don't have to account for the
 # incremental offset. Surprisingly most PDF viewers can handle this.
 cursor = text.getStartOfLine()
 dx = box.x1 - cursor[0]
 dy = baseline_y2 - cursor[1]
 text.moveCursor(dx, dy)

 # If reportlab tells us this word is 0 units wide, our best seems
 # to be to suppress this text
 if font_width > 0:
 text.setHorizScale(100 * box_width / font_width)
 text.textOut(elemtxt)
 pdf.drawText(text)

if __name__ == "__main__":
 parser = argparse.ArgumentParser(description='Convert hocr file to PDF')
 parser.add_argument(
 '-b',
 '--boundingboxes',
 action="store_true",
 default=False,
 help='Show bounding boxes borders',
)
 parser.add_argument(
 '-r',
 '--resolution',
 type=int,
 default=300,
 help='Resolution of the image that was OCRed',
)
 parser.add_argument(
 '-i',
 '--image',
 default=None,
 help='Path to the image to be placed above the text',
)
 parser.add_argument(
 '--interword-spaces',
 action='store_true',
 default=False,
 help='Add spaces between words',
)
 parser.add_argument('hocrfile', help='Path to the hocr file to be parsed')
 parser.add_argument('outputfile', help='Path to the PDF file to be generated')
 args = parser.parse_args()

 hocr = HocrTransform(args.hocrfile, args.resolution)
 hocr.to_pdf(
 args.outputfile,
 args.image,
 args.boundingboxes,
 interword_spaces=args.interword_spaces,
)

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/leptonica.py

#!/usr/bin/env python3
-*- coding: utf-8 -*-
#
© 2013-16: jbarlow83 from Github (https://github.com/jbarlow83)
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.
#
Python FFI wrapper for Leptonica library

import argparse
import logging
import os
import sys
import threading
import warnings
from collections import deque
from collections.abc import Sequence
from contextlib import suppress
from ctypes.util import find_library
from functools import lru_cache
from io import BytesIO, UnsupportedOperation
from os import fspath
from tempfile import TemporaryFile

from ocrmypdf.exceptions import MissingDependencyError
from ocrmypdf.lib._leptonica import ffi
from ocrmypdf.subprocess import shim_paths_with_program_files

pylint: disable=protected-access

logger = logging.getLogger(__name__)

if os.name == 'nt':
 libname = 'liblept-5'
 os.environ['PATH'] = shim_paths_with_program_files()
else:
 libname = 'lept'
_libpath = find_library(libname)
if not _libpath:
 raise MissingDependencyError(
 """

 This error normally occurs when ocrmypdf can't find the Leptonica
 library, which is usually installed with Tesseract OCR. It could be that
 Tesseract is not installed properly, we can't find the installation
 on your system PATH environment variable.

 The library we are looking for is usually called:
 liblept-5.dll (Windows)
 liblept*.dylib (macOS)
 liblept*.so (Linux/BSD)

 Please review our installation procedures to find a solution:
 https://ocrmypdf.readthedocs.io/en/latest/installation.html

 """
)
try:
 lept = ffi.dlopen(_libpath)
 lept.setMsgSeverity(lept.L_SEVERITY_WARNING)
except ffi.error as e:
 raise MissingDependencyError(
 f"Leptonica library found at {_libpath}, but we could not access it"
) from e

class _LeptonicaErrorTrap_Redirect:
 """
 Context manager to trap errors reported by Leptonica.

 Leptonica's error return codes don't provide much informatino about what
 went wrong. Leptonica does, however, write more detailed errors to stderr
 (provided this is not disabled at compile time). The Leptonica source
 code is very consistent in its use of macros to generate errors.

 This context manager redirects stderr to a temporary file which is then
 read and parsed for error messages. As a side benefit, debug messages
 from Leptonica are also suppressed.

 """

 leptonica_lock = threading.Lock()

 def __init__(self):
 self.tmpfile = None
 self.copy_of_stderr = -1
 self.no_stderr = False

 def __enter__(self):
 self.tmpfile = TemporaryFile()

 # Save the old stderr, and redirect stderr to temporary file
 self.leptonica_lock.acquire()
 try:
 with suppress(AttributeError):
 sys.stderr.flush()
 self.copy_of_stderr = os.dup(sys.stderr.fileno())
 os.dup2(self.tmpfile.fileno(), sys.stderr.fileno(), inheritable=False)
 except AttributeError:
 # We are in some unusual context where our Python process does not
 # have a sys.stderr. Leptonica still expects to write to file
 # descriptor 2, so we are going to ensure it is redirected.
 self.copy_of_stderr = None
 self.no_stderr = True
 os.dup2(self.tmpfile.fileno(), 2, inheritable=False)
 except UnsupportedOperation:
 self.copy_of_stderr = None
 except Exception:
 self.leptonica_lock.release()
 raise
 return self

 def __exit__(self, exc_type, exc_value, traceback):
 # Restore old stderr
 with suppress(AttributeError):
 sys.stderr.flush()

 if self.copy_of_stderr is not None:
 os.dup2(self.copy_of_stderr, sys.stderr.fileno())
 os.close(self.copy_of_stderr)
 if self.no_stderr:
 os.close(2)

 # Get data from tmpfile
 self.tmpfile.seek(0) # Cursor will be at end, so move back to beginning
 leptonica_output = self.tmpfile.read().decode(errors='replace')
 self.tmpfile.close()
 self.leptonica_lock.release()

 # If there are Python errors, record them
 if exc_type:
 logger.warning(leptonica_output)

 # If there are Leptonica errors, wrap them in Python excpetions
 if 'Error' in leptonica_output:
 if 'image file not found' in leptonica_output:
 raise FileNotFoundError()
 if 'pixWrite: stream not opened' in leptonica_output:
 raise LeptonicaIOError()
 if 'index not valid' in leptonica_output:
 raise IndexError()
 raise LeptonicaError(leptonica_output)

 return False

tls = threading.local()
tls.trap = None

@ffi.callback("void(char *)")
def _stderr_handler(cstr):
 msg = ffi.string(cstr).decode(errors='replace')
 if msg.startswith("Error"):
 logger.error(msg)
 elif msg.startswith("Warning"):
 logger.warning(msg)
 else:
 logger.debug(msg)
 if tls.trap is not None:
 tls.trap.append(msg)
 return

class _LeptonicaErrorTrap_Queue:
 def __init__(self):
 self.queue = deque()

 def __enter__(self):
 self.queue.clear()
 tls.trap = self.queue

 def __exit__(self, exc_type, exc_value, traceback):
 tls.trap = None
 output = ''.join(self.queue)
 self.queue.clear()

 # If there are Python errors, record them
 if exc_type:
 logger.warning(output)

 if 'Error' in output:
 if 'image file not found' in output:
 raise FileNotFoundError()
 if 'pixWrite: stream not opened' in output:
 raise LeptonicaIOError()
 if 'index not valid' in output:
 raise IndexError()
 raise LeptonicaError(output)
 return False

try:
 lept.leptSetStderrHandler(_stderr_handler)
except ffi.error:
 # Pre-1.79 Leptonica does not have leptSetStderrHandler
 _LeptonicaErrorTrap = _LeptonicaErrorTrap_Redirect
else:
 # 1.79 have this new symbol
 _LeptonicaErrorTrap = _LeptonicaErrorTrap_Queue

class LeptonicaError(Exception):
 pass

class LeptonicaIOError(LeptonicaError):
 pass

class LeptonicaObject:
 """General wrapper for Leptonica objects

 When Leptonica returns an object, we bundled it in a wrapper class, which
 manages its memory. The wrapper class assumes that it will be calling some
 sort of lept.thingDestroy() function when the instance is deleted. Most
 Leptonica objects are reference counted, and destroy decrements the
 refcount.

 Most of the time, when Leptonica returns something, we wrap and it the job
 is done. When wrapping objects that came from a Leptonica container, like
 a PIXA returning PIX, the subclass must clone the object before passing it
 here, to maintain the reference count.

 CFFI ensures that the destroy function is called at garbage collection time
 so we do not need to mess with __del__.
 """

 cdata_destroy = lambda cdata: None
 LEPTONICA_TYPENAME = ''

 def __init__(self, cdata):
 if not cdata:
 raise ValueError('Tried to wrap a NULL ' + self.LEPTONICA_TYPENAME)
 self._cdata = ffi.gc(cdata, self._destroy)

 @classmethod
 def _destroy(cls, cdata):
 """Destroy some cdata"""
 # Leptonica API uses double-pointers for its destroy APIs to prevent
 # dangling pointers. This means we need to put our single pointer,
 # cdata, in a temporary CDATA**.
 pp = ffi.new('{} **'.format(cls.LEPTONICA_TYPENAME), cdata)
 cls.cdata_destroy(pp)

class Pix(LeptonicaObject):
 """
 Wrapper around leptonica's PIX object.

 Leptonica uses referencing counting on PIX objects. Also, many Leptonica
 functions return the original object with an increased reference count
 if the operation had no effect (for example, image skew was found to be 0).
 This has complications for memory management in Python. Whenever Leptonica
 returns a PIX object (new or old), we wrap it in this class, which
 registers it with the FFI garbage collector. pixDestroy() decrements the
 reference count and only destroys when the last reference is removed.

 Leptonica's reference counting is not threadsafe. This class can be used
 in a threadsafe manner if a Python threading.Lock protects the data.

 This class treats Pix objects as immutable. All methods return new
 modified objects. This allows convenient chaining:

 >>> Pix.open('filename.jpg').scale((0.5, 0.5)).deskew().show()
 """

 LEPTONICA_TYPENAME = "PIX"
 cdata_destroy = lept.pixDestroy

 def __repr__(self):
 if self._cdata:
 s = "<leptonica.Pix image size={0}x{1} depth={2}{4} at 0x{3:x}>"
 return s.format(
 self._cdata.w,
 self._cdata.h,
 self._cdata.d,
 int(ffi.cast('intptr_t', self._cdata)),
 '(colormapped)' if self._cdata.colormap else '',
)
 else:
 return "<leptonica.Pix image NULL>"

 def _repr_png_(self):
 """iPython display hook

 returns png version of image
 """

 data = ffi.new('l_uint8 **')
 size = ffi.new('size_t *')

 err = lept.pixWriteMemPng(data, size, self._cdata, 0)
 if err != 0:
 raise LeptonicaIOError("pixWriteMemPng")

 char_data = ffi.cast('char *', data[0])
 return ffi.buffer(char_data, size[0])[:]

 def __getstate__(self):
 data = ffi.new('l_uint32 **')
 size = ffi.new('size_t *')

 err = lept.pixSerializeToMemory(self._cdata, data, size)
 if err != 0:
 raise LeptonicaIOError("pixSerializeToMemory")

 char_data = ffi.cast('char *', data[0])

 # Copy from C bytes to python bytes()
 data_bytes = ffi.buffer(char_data, size[0])[:]

 # Can now free C bytes
 lept.lept_free(char_data)
 return dict(data=data_bytes)

 def __setstate__(self, state):
 cdata_bytes = ffi.new('char[]', state['data'])
 cdata_uint32 = ffi.cast('l_uint32 *', cdata_bytes)

 pix = lept.pixDeserializeFromMemory(cdata_uint32, len(state['data']))
 Pix.__init__(self, pix)

 def __eq__(self, other):
 if not isinstance(other, Pix):
 return NotImplemented
 same = ffi.new('l_int32 *', 0)
 with _LeptonicaErrorTrap():
 err = lept.pixEqual(self._cdata, other._cdata, same)
 if err:
 raise TypeError()
 return bool(same[0])

 @property
 def width(self):
 return self._cdata.w

 @property
 def height(self):
 return self._cdata.h

 @property
 def depth(self):
 return self._cdata.d

 @property
 def size(self):
 return (self._cdata.w, self._cdata.h)

 @property
 def info(self):
 return {'dpi': (self._cdata.xres, self._cdata.yres)}

 @property
 def mode(self):
 "Return mode like PIL.Image"
 if self.depth == 1:
 return '1'
 elif self.depth >= 16:
 return 'RGB'
 elif not self._cdata.colormap:
 return 'L'
 else:
 return 'P'

 @classmethod
 def read(cls, path):
 warnings.warn('Use Pix.open() instead', DeprecationWarning)
 return cls.open(path)

 @classmethod
 def open(cls, path):
 """Load an image file into a PIX object.

 Leptonica can load TIFF, PNM (PBM, PGM, PPM), PNG, and JPEG. If
 loading fails then the object will wrap a C null pointer.
 """
 with open(path, 'rb') as py_file:
 data = py_file.read()
 buffer = ffi.from_buffer(data)
 with _LeptonicaErrorTrap():
 return cls(lept.pixReadMem(buffer, len(buffer)))

 def write_implied_format(self, path, jpeg_quality=0, jpeg_progressive=0):
 """Write pix to the filename, with the extension indicating format.

 jpeg_quality -- quality (iff JPEG; 1 - 100, 0 for default)
 jpeg_progressive -- (iff JPEG; 0 for baseline seq., 1 for progressive)
 """
 lept_format = lept.getImpliedFileFormat(os.fsencode(path))
 with open(path, 'wb') as py_file:
 data = ffi.new('l_uint8 **pdata')
 size = ffi.new('size_t *psize')
 with _LeptonicaErrorTrap():
 if lept_format == lept.L_JPEG_ENCODE:
 lept.pixWriteMemJpeg(
 data, size, self._cdata, jpeg_quality, jpeg_progressive
)
 else:
 lept.pixWriteMem(data, size, self._cdata, lept_format)
 buffer = ffi.buffer(data[0], size[0])
 py_file.write(buffer)

 @classmethod
 def frompil(cls, pillow_image):
 """Create a copy of a PIL.Image from this Pix"""
 bio = BytesIO()
 pillow_image.save(bio, format='png', compress_level=1)
 py_buffer = bio.getbuffer()
 c_buffer = ffi.from_buffer(py_buffer)
 with _LeptonicaErrorTrap():
 pix = Pix(lept.pixReadMem(c_buffer, len(c_buffer)))
 return pix

 def topil(self):
 """Returns a PIL.Image version of this Pix"""
 from PIL import Image # pylint: disable=import-outside-toplevel

 # Leptonica manages data in words, so it implicitly does an endian
 # swap. Tell Pillow about this when it reads the data.
 pix = self
 if sys.byteorder == 'little':
 if self.mode == 'RGB':
 raw_mode = 'XBGR'
 elif self.mode == 'RGBA':
 raw_mode = 'ABGR'
 elif self.mode == '1':
 raw_mode = '1;I'
 pix = Pix(lept.pixEndianByteSwapNew(pix._cdata))
 else:
 raw_mode = self.mode
 pix = Pix(lept.pixEndianByteSwapNew(pix._cdata))
 else:
 raw_mode = self.mode # no endian swap needed

 size = (pix._cdata.w, pix._cdata.h)
 bytecount = pix._cdata.wpl * 4 * pix._cdata.h
 buf = ffi.buffer(pix._cdata.data, bytecount)
 stride = pix._cdata.wpl * 4

 im = Image.frombytes(self.mode, size, buf, 'raw', raw_mode, stride)

 return im

 def show(self):
 return self.topil().show()

 def deskew(self, reduction_factor=0):
 """Returns the deskewed pix object.

 A clone of the original is returned when the algorithm cannot find a
 skew angle with sufficient confidence.

 reduction_factor -- amount to downsample (0 for default) when searching
 for skew angle
 """
 with _LeptonicaErrorTrap():
 return Pix(lept.pixDeskew(self._cdata, reduction_factor))

 def scale(self, scale_xy):
 "Returns the pix object rescaled according to the proportions given."
 with _LeptonicaErrorTrap():
 return Pix(lept.pixScale(self._cdata, scale_xy[0], scale_xy[1]))

 def rotate180(self):
 with _LeptonicaErrorTrap():
 return Pix(lept.pixRotate180(ffi.NULL, self._cdata))

 def rotate_orth(self, quads):
 "Orthographic rotation, quads: 0-3, number of clockwise rotations"
 with _LeptonicaErrorTrap():
 return Pix(lept.pixRotateOrth(self._cdata, quads))

 def find_skew(self):
 """Returns a tuple (deskew angle in degrees, confidence value).

 Returns (None, None) if no angle is available.
 """
 with _LeptonicaErrorTrap():
 angle = ffi.new('float *', 0.0)
 confidence = ffi.new('float *', 0.0)
 result = lept.pixFindSkew(self._cdata, angle, confidence)
 if result == 0:
 return (angle[0], confidence[0])
 else:
 return (None, None)

 def convert_rgb_to_luminance(self):
 with _LeptonicaErrorTrap():
 gray_pix = lept.pixConvertRGBToLuminance(self._cdata)
 if gray_pix:
 return Pix(gray_pix)
 return None

 def remove_colormap(self, removal_type):
 """Remove a palette (colormap); if no colormap, returns a copy of this
 image

 removal_type - any of lept.REMOVE_CMAP_*

 """
 with _LeptonicaErrorTrap():
 return Pix(
 lept.pixRemoveColormapGeneral(self._cdata, removal_type, lept.L_COPY)
)

 def otsu_adaptive_threshold(
 self, tile_size=(300, 300), kernel_size=(4, 4), scorefract=0.1
):
 with _LeptonicaErrorTrap():
 sx, sy = tile_size
 smoothx, smoothy = kernel_size
 p_pix = ffi.new('PIX **')

 pix = Pix(lept.pixConvertTo8(self._cdata, 0))
 result = lept.pixOtsuAdaptiveThreshold(
 pix._cdata, sx, sy, smoothx, smoothy, scorefract, ffi.NULL, p_pix
)
 if result == 0:
 return Pix(p_pix[0])
 else:
 return None

 def otsu_threshold_on_background_norm(
 self,
 mask=None,
 tile_size=(10, 15),
 thresh=100,
 mincount=50,
 bgval=255,
 kernel_size=(2, 2),
 scorefract=0.1,
):
 with _LeptonicaErrorTrap():
 sx, sy = tile_size
 smoothx, smoothy = kernel_size
 mask = ffi.NULL
 if isinstance(mask, Pix):
 mask = mask._cdata

 pix = Pix(lept.pixConvertTo8(self._cdata, 0))
 thresh_pix = lept.pixOtsuThreshOnBackgroundNorm(
 pix._cdata,
 mask,
 sx,
 sy,
 thresh,
 mincount,
 bgval,
 smoothx,
 smoothy,
 scorefract,
 ffi.NULL,
)
 return Pix(thresh_pix)

 def masked_threshold_on_background_norm(
 self,
 mask=None,
 tile_size=(10, 15),
 thresh=100,
 mincount=50,
 kernel_size=(2, 2),
 scorefract=0.1,
):
 with _LeptonicaErrorTrap():
 sx, sy = tile_size
 smoothx, smoothy = kernel_size
 mask = ffi.NULL
 if isinstance(mask, Pix):
 mask = mask._cdata

 pix = Pix(lept.pixConvertTo8(self._cdata, 0))
 thresh_pix = lept.pixMaskedThreshOnBackgroundNorm(
 pix._cdata,
 mask,
 sx,
 sy,
 thresh,
 mincount,
 smoothx,
 smoothy,
 scorefract,
 ffi.NULL,
)
 return Pix(thresh_pix)

 def crop_to_foreground(self, threshold=128, mindist=70, erasedist=30, showmorph=0):
 if get_leptonica_version() < 'leptonica-1.76':
 # Leptonica 1.76 changed the API for pixFindPageForeground; we don't
 # support the old version
 raise LeptonicaError("Not available in this version of Leptonica")
 with _LeptonicaErrorTrap():
 cropbox = Box(
 lept.pixFindPageForeground(
 self._cdata, threshold, mindist, erasedist, showmorph, ffi.NULL
)
)

 cropped_pix = lept.pixClipRectangle(self._cdata, cropbox._cdata, ffi.NULL)

 return Pix(cropped_pix)

 def clean_background_to_white(
 self, mask=None, grayscale=None, gamma=1.0, black=0, white=255
):
 with _LeptonicaErrorTrap():
 return Pix(
 lept.pixCleanBackgroundToWhite(
 self._cdata,
 mask or ffi.NULL,
 grayscale or ffi.NULL,
 gamma,
 black,
 white,
)
)

 def gamma_trc(self, gamma=1.0, minval=0, maxval=255):
 with _LeptonicaErrorTrap():
 return Pix(lept.pixGammaTRC(ffi.NULL, self._cdata, gamma, minval, maxval))

 def background_norm(
 self,
 mask=None,
 grayscale=None,
 tile_size=(10, 15),
 fg_threshold=60,
 min_count=40,
 bg_val=200,
 smooth_kernel=(2, 1),
):
 # Background norm doesn't work on color mapped Pix, so remove colormap
 target_pix = self.remove_colormap(lept.REMOVE_CMAP_BASED_ON_SRC)
 with _LeptonicaErrorTrap():
 return Pix(
 lept.pixBackgroundNorm(
 target_pix._cdata,
 mask or ffi.NULL,
 grayscale or ffi.NULL,
 tile_size[0],
 tile_size[1],
 fg_threshold,
 min_count,
 bg_val,
 smooth_kernel[0],
 smooth_kernel[1],
)
)

 @staticmethod
 @lru_cache(maxsize=1)
 def make_pixel_sum_tab8():
 return lept.makePixelSumTab8()

 @staticmethod
 def correlation_binary(pix1, pix2):
 if get_leptonica_version() < 'leptonica-1.72':
 # Older versions of Leptonica (pre-1.72) have a buggy
 # implementation of pixCorrelationBinary that overflows on larger
 # images. Ubuntu 14.04/trusty has 1.70. Ubuntu PPA
 # ppa:alex-p/tesseract-ocr has leptonlib 1.75.
 raise LeptonicaError("Leptonica version is too old")

 correlation = ffi.new('float *', 0.0)
 result = lept.pixCorrelationBinary(pix1._cdata, pix2._cdata, correlation)
 if result != 0:
 raise LeptonicaError("Correlation failed")
 return correlation[0]

 def generate_pdf_ci_data(self, type_, quality):
 "Convert to PDF data, with transcoding"
 p_compdata = ffi.new('L_COMP_DATA **')
 result = lept.pixGenerateCIData(self._cdata, type_, quality, 0, p_compdata)
 if result != 0:
 raise LeptonicaError("Generate PDF data failed")
 return CompressedData(p_compdata[0])

 def invert(self):
 return Pix(lept.pixInvert(ffi.NULL, self._cdata))

 def locate_barcodes(self):
 try:
 with _LeptonicaErrorTrap():
 pix = Pix(lept.pixConvertTo8(self._cdata, 0))
 pixa_candidates = PixArray(lept.pixExtractBarcodes(pix._cdata, 0))
 if not pixa_candidates:
 return
 sarray = StringArray(
 lept.pixReadBarcodes(
 pixa_candidates._cdata,
 lept.L_BF_ANY,
 lept.L_USE_WIDTHS,
 ffi.NULL,
 0,
)
)
 except (LeptonicaError, ValueError, IndexError):
 return
 finally:
 leptonica_junk = ('junkpixt.png', 'junkpixt')
 for junk in leptonica_junk:
 with suppress(FileNotFoundError):
 os.unlink(junk) # leptonica may produce this

 for n, s in enumerate(sarray):
 decoded = s.decode()
 if decoded.strip() == '':
 continue
 box = pixa_candidates.get_box(n)
 left, top = box.x, box.y
 right, bottom = box.x + box.w, box.y + box.h
 yield (decoded, (left, top, right, bottom))

 def despeckle(self, size):
 if size == 2:
 speckle2 = """
 oooo
 oC o
 o o
 oooo
 """
 sel1 = Sel.from_selstr(speckle2, 'speckle2')
 sel2 = Sel.create_brick(2, 2, 0, 0, lept.SEL_HIT)
 elif size == 3:
 speckle3 = """
 ooooo
 oC o
 o o
 o o
 ooooo
 """
 sel1 = Sel.from_selstr(speckle3, 'speckle3')
 sel2 = Sel.create_brick(3, 3, 0, 0, lept.SEL_HIT)
 else:
 raise ValueError(size)

 pixhmt = Pix(lept.pixHMT(ffi.NULL, self._cdata, sel1._cdata))
 pixdilated = Pix(lept.pixDilate(ffi.NULL, pixhmt._cdata, sel2._cdata))

 pixsub = Pix(lept.pixSubtract(ffi.NULL, self._cdata, pixdilated._cdata))
 return pixsub

class CompressedData(LeptonicaObject):
 """Wrapper for L_COMP_DATA - abstract compressed image data"""

 LEPTONICA_TYPENAME = 'L_COMP_DATA'
 cdata_destroy = lept.l_CIDataDestroy

 @classmethod
 def open(cls, path, jpeg_quality=75):
 "Open compressed data, without transcoding"
 filename = fspath(path)

 p_compdata = ffi.new('L_COMP_DATA **')
 result = lept.l_generateCIDataForPdf(
 os.fsencode(filename), ffi.NULL, jpeg_quality, p_compdata
)
 if result != 0:
 raise LeptonicaError("CompressedData.open")
 return CompressedData(p_compdata[0])

 def __len__(self):
 return self._cdata.nbytescomp

 def read(self):
 buf = ffi.buffer(self._cdata.datacomp, self._cdata.nbytescomp)
 return bytes(buf)

 def __getattr__(self, name):
 if hasattr(self._cdata, name):
 return getattr(self._cdata, name)
 raise AttributeError(name)

 def get_palette_pdf_string(self):
 "Returns palette pre-formatted for use in PDF"
 buflen = len('< ') + len(' rrggbb') * self._cdata.ncolors + len('>')
 buf = ffi.buffer(self._cdata.cmapdatahex, buflen)
 return bytes(buf)

class PixArray(LeptonicaObject, Sequence):
 """Wrapper around PIXA (array of PIX)"""

 LEPTONICA_TYPENAME = 'PIXA'
 cdata_destroy = lept.pixaDestroy

 def __len__(self):
 return self._cdata[0].n

 def __getitem__(self, n):
 with _LeptonicaErrorTrap():
 return Pix(lept.pixaGetPix(self._cdata, n, lept.L_CLONE))

 def get_box(self, n):
 with _LeptonicaErrorTrap():
 return Box(lept.pixaGetBox(self._cdata, n, lept.L_CLONE))

class Box(LeptonicaObject):
 """Wrapper around Leptonica's BOX objects (a pixel rectangle)

 Uses x, y, w, h coordinates.
 """

 LEPTONICA_TYPENAME = 'BOX'
 cdata_destroy = lept.boxDestroy

 def __repr__(self):
 if self._cdata:
 return '<leptonica.Box x={0} y={1} w={2} h={3}>'.format(
 self.x, self.y, self.w, self.h
)
 return '<leptonica.Box NULL>'

 @property
 def x(self):
 return self._cdata.x

 @property
 def y(self):
 return self._cdata.y

 @property
 def w(self):
 return self._cdata.w

 @property
 def h(self):
 return self._cdata.h

class BoxArray(LeptonicaObject, Sequence):
 """Wrapper around Leptonica's BOXA (Array of BOX) objects."""

 LEPTONICA_TYPENAME = 'BOXA'
 cdata_destroy = lept.boxaDestroy

 def __repr__(self):
 if not self._cdata:
 return '<BoxArray>'
 boxes = (repr(box) for box in self)
 return '<BoxArray [' + ', '.join(boxes) + ']>'

 def __len__(self):
 return self._cdata.n

 def __getitem__(self, n):
 if not isinstance(n, int):
 raise TypeError('list indices must be integers')
 if 0 <= n < len(self):
 return Box(lept.boxaGetBox(self._cdata, n, lept.L_CLONE))
 raise IndexError(n)

class StringArray(LeptonicaObject, Sequence):
 """Leptonica SARRAY/string array"""

 LEPTONICA_TYPENAME = 'SARRAY'
 cdata_destroy = lept.sarrayDestroy

 def __len__(self):
 return self._cdata.n

 def __getitem__(self, n):
 if 0 <= n < len(self):
 return ffi.string(self._cdata.array[n])
 raise IndexError(n)

class Sel(LeptonicaObject):
 """Leptonica 'sel'/selection element for hit-miss transform"""

 LEPTONICA_TYPENAME = 'SEL'
 cdata_destroy = lept.selDestroy

 @classmethod
 def from_selstr(cls, selstr, name):
 # TODO this will strip a horizontal line of don't care's
 lines = [line.strip() for line in selstr.split('\n') if line.strip()]
 h = len(lines)
 w = len(lines[0])
 lengths = set(len(line) for line in lines)
 if len(lengths) != 1:
 raise ValueError("All lines in selstr must be same length")

 repacked = ''.join(line.strip() for line in lines)
 buf_selstr = ffi.from_buffer(repacked.encode('ascii'))
 buf_name = ffi.from_buffer(name.encode('ascii'))
 sel = lept.selCreateFromString(buf_selstr, h, w, buf_name)
 return cls(sel)

 @classmethod
 def create_brick(cls, h, w, cy, cx, type_):
 sel = lept.selCreateBrick(h, w, cy, cx, type_)
 return cls(sel)

 def __repr__(self):
 selstr = ffi.gc(lept.selPrintToString(self._cdata), lept.lept_free)
 return '<Sel \n' + ffi.string(selstr).decode('ascii') + '\n>'

@lru_cache(maxsize=1)
def get_leptonica_version():
 """Get Leptonica version string.

 Caveat: Leptonica expects the caller to free this memory. We don't,
 since that would involve binding to libc to access libc.free(),
 a pointless effort to reclaim 100 bytes of memory.

 Reminder that this returns "leptonica-1.xx" or "leptonica-1.yy.0".
 """
 return ffi.string(lept.getLeptonicaVersion()).decode()

def deskew(infile, outfile, dpi):
 try:
 pix_source = Pix.open(infile)
 except LeptonicaIOError:
 raise LeptonicaIOError("Failed to open file: %s" % infile)

 if dpi < 150:
 reduction_factor = 1 # Don't downsample too much if DPI is already low
 else:
 reduction_factor = 0 # Use default
 pix_deskewed = pix_source.deskew(reduction_factor)

 try:
 pix_deskewed.write_implied_format(outfile)
 except LeptonicaIOError:
 raise LeptonicaIOError("Failed to open destination file: %s" % outfile)

def remove_background(
 infile,
 outfile,
 tile_size=(40, 60),
 gamma=1.0,
 black_threshold=70,
 white_threshold=190,
):
 try:
 pix = Pix.open(infile)
 except LeptonicaIOError:
 raise LeptonicaIOError("Failed to open file: %s" % infile)

 pix = pix.background_norm(tile_size=tile_size).gamma_trc(
 gamma, black_threshold, white_threshold
)

 try:
 pix.write_implied_format(outfile)
 except LeptonicaIOError:
 raise LeptonicaIOError("Failed to open destination file: %s" % outfile)

if __name__ == '__main__':
 parser = argparse.ArgumentParser(description="Python wrapper to access Leptonica")

 subparsers = parser.add_subparsers(
 title='commands', description='supported operations'
)

 parser_deskew = subparsers.add_parser('deskew')
 parser_deskew.add_argument(
 '-r',
 '--dpi',
 dest='dpi',
 action='store',
 type=int,
 default=300,
 help='input resolution',
)
 parser_deskew.add_argument('infile', help='image to deskew')
 parser_deskew.add_argument('outfile', help='deskewed output image')
 parser_deskew.set_defaults(func=deskew)

 args = parser.parse_args()
 args.func(args)

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/lib/__init__.py

© 2017 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

"""Bindings to external libraries"""

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/lib/_leptonica.py

auto-generated file
import _cffi_backend

ffi = _cffi_backend.FFI('ocrmypdf.lib._leptonica',
 _version = 0x2601,
 _types = b'\x00\x00\x01\x0D\x00\x01\x5C\x03\x00\x00\x00\x0F\x00\x00\x01\x0D\x00\x01\x5D\x03\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x01\x0D\x00\x01\x61\x03\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x01\x63\x03\x00\x00\x00\x0F\x00\x00\x01\x0D\x00\x01\x62\x03\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x04\x0D\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x09\x03\x00\x00\x18\x11\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x01\x5E\x03\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x00\x09\x11\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x00\x09\x11\x00\x00\x01\x11\x00\x00\x01\x03\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x00\x09\x11\x00\x00\x18\x11\x00\x00\x05\x03\x00\x00\x11\x11\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x00\x09\x11\x00\x00\x09\x11\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x00\x09\x11\x00\x00\x09\x11\x00\x00\x09\x11\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x00\x09\x11\x00\x00\x09\x11\x00\x00\x09\x11\x00\x00\x0D\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x00\x09\x11\x00\x00\x09\x11\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x00\x09\x11\x00\x00\x09\x11\x00\x01\x67\x03\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x00\x09\x11\x00\x00\x09\x11\x00\x00\x0D\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x00\x09\x11\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x00\x09\x11\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x0D\x01\x00\x00\x2A\x11\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x00\x09\x11\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x0D\x01\x00\x00\x2A\x11\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x00\x09\x11\x00\x00\x0D\x01\x00\x00\x0D\x01\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x00\x11\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x01\x6A\x03\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x01\x7C\x03\x00\x00\x1C\x01\x00\x00\x00\x0F\x00\x00\x09\x0D\x00\x01\x7E\x03\x00\x00\x1C\x01\x00\x00\x00\x0F\x00\x00\x11\x0D\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x01\x65\x0D\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x01\x65\x03\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x01\x65\x0D\x00\x00\x11\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\xA4\x11\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x4D\x0D\x00\x00\x92\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x92\x11\x00\x00\x00\x0F\x00\x00\x4D\x0D\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x01\x69\x0D\x00\x00\x4D\x11\x00\x00\x00\x0F\x00\x01\x69\x0D\x00\x00\x00\x0F\x00\x00\x2A\x0D\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x00\x1C\x11\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x00\x1C\x11\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x00\x09\x11\x00\x00\x04\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x00\x09\x11\x00\x00\x09\x11\x00\x00\x3A\x03\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x00\x09\x11\x00\x00\x09\x11\x00\x00\x2A\x11\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x00\x09\x11\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\xD6\x11\x00\x00\xD6\x11\x00\x00\xD6\x11\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x00\x09\x11\x00\x00\xD6\x11\x00\x00\xD6\x11\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x00\x09\x11\x00\x00\x2A\x11\x00\x00\x2A\x11\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x0D\x01\x00\x00\x07\x01\x00\x00\x2A\x11\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x01\x5F\x03\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\xD6\x11\x00\x00\xD6\x11\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x0D\x01\x00\x00\x18\x11\x00\x00\x18\x11\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x00\x09\x11\x00\x01\x7D\x03\x00\x00\x96\x03\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x00\x92\x11\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x00\x92\x11\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\xFF\x11\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x00\x92\x11\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x01\x7B\x03\x00\x01\x17\x11\x00\x00\x09\x11\x00\x00\x0D\x01\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x01\x2C\x11\x00\x01\x17\x11\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x00\x05\x0D\x00\x01\x2C\x11\x00\x01\x17\x11\x00\x00\x09\x11\x00\x00\x07\x01\x00\x00\x07\x01\x00\x00\x00\x0F\x00\x01\x81\x0D\x00\x00\x25\x11\x00\x00\x00\x0F\x00\x01\x81\x0D\x00\x00\x04\x03\x00\x00\x00\x0F\x00\x01\x81\x0D\x00\x00\xFF\x11\x00\x00\x00\x0F\x00\x01\x81\x0D\x00\x00\x18\x11\x00\x00\x00\x0F\x00\x01\x81\x0D\x00\x00\x11\x03\x00\x00\x00\x0F\x00\x01\x81\x0D\x00\x00\xA4\x11\x00\x00\x00\x0F\x00\x01\x81\x0D\x00\x00\x4D\x03\x00\x00\x00\x0F\x00\x01\x81\x0D\x00\x00\x92\x11\x00\x00\x00\x0F\x00\x01\x81\x0D\x00\x01\x81\x03\x00\x00\x00\x0F\x00\x01\x81\x0D\x00\x01\x53\x03\x00\x00\x00\x0F\x00\x00\x00\x09\x00\x00\x01\x09\x00\x00\x0A\x09\x00\x01\x60\x03\x00\x00\x02\x09\x00\x00\x03\x09\x00\x00\x06\x09\x00\x00\x07\x09\x00\x00\x04\x09\x00\x01\x66\x03\x00\x00\x08\x09\x00\x00\x09\x09\x00\x01\x69\x03\x00\x01\x6A\x03\x00\x00\x02\x01\x00\x00\x0E\x01\x00\x00\x00\x0B\x00\x00\x01\x0B\x00\x00\x02\x0B\x00\x00\x03\x0B\x00\x00\x04\x0B\x00\x00\x05\x0B\x00\x00\x06\x0B\x00\x00\x2A\x03\x00\x00\x0B\x01\x00\x00\x05\x01\x00\x00\x03\x01\x00\x01\x64\x03\x00\x01\x79\x03\x00\x01\x7A\x03\x00\x00\x05\x09\x00\x01\x7C\x03\x00\x00\x04\x01\x00\x01\x7E\x03\x00\x00\x08\x01\x00\x00\x0C\x01\x00\x00\x06\x01\x00\x00\x00\x01',
 _globals = (b'\xFF\xFF\xFF\x0BL_BF_ANY',1,b'\xFF\xFF\xFF\x0BL_BF_CODABAR',9,b'\xFF\xFF\xFF\x0BL_BF_CODE128',2,b'\xFF\xFF\xFF\x0BL_BF_CODE2OF5',5,b'\xFF\xFF\xFF\x0BL_BF_CODE39',7,b'\xFF\xFF\xFF\x0BL_BF_CODE93',8,b'\xFF\xFF\xFF\x0BL_BF_CODEI2OF5',6,b'\xFF\xFF\xFF\x0BL_BF_EAN13',4,b'\xFF\xFF\xFF\x0BL_BF_EAN8',3,b'\xFF\xFF\xFF\x0BL_BF_UNKNOWN',0,b'\xFF\xFF\xFF\x0BL_BF_UPCA',10,b'\xFF\xFF\xFF\x0BL_CLONE',2,b'\xFF\xFF\xFF\x0BL_COPY',1,b'\xFF\xFF\xFF\x0BL_COPY_CLONE',3,b'\xFF\xFF\xFF\x0BL_DEFAULT_ENCODE',0,b'\xFF\xFF\xFF\x0BL_FLATE_ENCODE',3,b'\xFF\xFF\xFF\x0BL_G4_ENCODE',2,b'\xFF\xFF\xFF\x0BL_INSERT',0,b'\xFF\xFF\xFF\x0BL_JP2K_ENCODE',4,b'\xFF\xFF\xFF\x0BL_JPEG_ENCODE',1,b'\xFF\xFF\xFF\x0BL_NOCOPY',0,b'\xFF\xFF\xFF\x0BL_SEVERITY_ALL',1,b'\xFF\xFF\xFF\x0BL_SEVERITY_DEBUG',2,b'\xFF\xFF\xFF\x0BL_SEVERITY_ERROR',5,b'\xFF\xFF\xFF\x0BL_SEVERITY_EXTERNAL',0,b'\xFF\xFF\xFF\x0BL_SEVERITY_INFO',3,b'\xFF\xFF\xFF\x0BL_SEVERITY_NONE',6,b'\xFF\xFF\xFF\x0BL_SEVERITY_WARNING',4,b'\xFF\xFF\xFF\x0BL_USE_WIDTHS',1,b'\xFF\xFF\xFF\x0BL_USE_WINDOWS',2,b'\xFF\xFF\xFF\x0BREMOVE_CMAP_BASED_ON_SRC',4,b'\xFF\xFF\xFF\x0BREMOVE_CMAP_TO_BINARY',0,b'\xFF\xFF\xFF\x0BREMOVE_CMAP_TO_FULL_COLOR',2,b'\xFF\xFF\xFF\x0BREMOVE_CMAP_TO_GRAYSCALE',1,b'\xFF\xFF\xFF\x0BREMOVE_CMAP_WITH_ALPHA',3,b'\xFF\xFF\xFF\x0BSEL_DONT_CARE',0,b'\xFF\xFF\xFF\x0BSEL_HIT',1,b'\xFF\xFF\xFF\x0BSEL_MISS',2,b'\x00\x00\x00\x23boxClone',0,b'\x00\x01\x3E\x23boxDestroy',0,b'\x00\x01\x41\x23boxaDestroy',0,b'\x00\x00\x03\x23boxaGetBox',0,b'\x00\x01\x19\x23getImpliedFileFormat',0,b'\x00\x00\xBE\x23getLeptonicaVersion',0,b'\x00\x01\x44\x23l_CIDataDestroy',0,b'\x00\x01\x1C\x23l_generateCIDataForPdf',0,b'\x00\x01\x59\x23leptSetStderrHandler',0,b'\x00\x01\x56\x23lept_free',0,b'\x00\x00\xC0\x23makePixelSumTab8',0,b'\x00\x00\x31\x23pixAnd',0,b'\x00\x00\x3E\x23pixBackgroundNorm',0,b'\x00\x00\x36\x23pixCleanBackgroundToWhite',0,b'\x00\x00\x22\x23pixClipRectangle',0,b'\x00\x01\x01\x23pixColorFraction',0,b'\x00\x00\x85\x23pixColorMagnitude',0,b'\x00\x00\x1F\x23pixConvertRGBToLuminance',0,b'\x00\x00\x7C\x23pixConvertTo8',0,b'\x00\x00\xD3\x23pixCorrelationBinary',0,b'\x00\x00\xED\x23pixCountPixels',0,b'\x00\x00\x98\x23pixDeserializeFromMemory',0,b'\x00\x00\x7C\x23pixDeskew',0,b'\x00\x01\x47\x23pixDestroy',0,b'\x00\x00\x4A\x23pixDilate',0,b'\x00\x00\x1F\x23pixEndianByteSwapNew',0,b'\x00\x00\xD8\x23pixEqual',0,b'\x00\x00\x4A\x23pixErode',0,b'\x00\x00\x9C\x23pixExtractBarcodes',0,b'\x00\x00\x08\x23pixFindPageForeground',0,b'\x00\x00\xE8\x23pixFindSkew',0,b'\x00\x00\x4F\x23pixGammaTRC',0,b'\x00\x00\x27\x23pixGenHalftoneMask',0,b'\x00\x00\xFA\x23pixGenerateCIData',0,b'\x00\x00\xDD\x23pixGetAverageMaskedRGB',0,b'\x00\x00\x56\x23pixGlobalNormRGB',0,b'\x00\x00\x4A\x23pixHMT',0,b'\x00\x00\x2D\x23pixInvert',0,b'\x00\x00\x15\x23pixLocateBarcodes',0,b'\x00\x00\x80\x23pixMaskOverColorPixels',0,b'\x00\x00\x5E\x23pixMaskedThreshOnBackgroundNorm',0,b'\x00\x00\xF2\x23pixNumSignificantGrayColors',0,b'\x00\x01\x0A\x23pixOtsuAdaptiveThreshold',0,b'\x00\x00\x6A\x23pixOtsuThreshOnBackgroundNorm',0,b'\x00\x00\xA0\x23pixProcessBarcodes',0,b'\x00\x00\x91\x23pixRead',0,b'\x00\x00\xA7\x23pixReadBarcodes',0,b'\x00\x00\x94\x23pixReadMem',0,b'\x00\x00\x1B\x23pixReadStream',0,b'\x00\x00\x7C\x23pixRemoveColormap',0,b'\x00\x00\x80\x23pixRemoveColormapGeneral',0,b'\x00\x00\xCD\x23pixRenderBoxa',0,b'\x00\x00\x2D\x23pixRotate180',0,b'\x00\x00\x7C\x23pixRotateOrth',0,b'\x00\x00\x77\x23pixScale',0,b'\x00\x01\x14\x23pixSerializeToMemory',0,b'\x00\x00\x31\x23pixSubtract',0,b'\x00\x01\x22\x23pixWriteImpliedFormat',0,b'\x00\x01\x31\x23pixWriteMem',0,b'\x00\x01\x37\x23pixWriteMemJpeg',0,b'\x00\x01\x2B\x23pixWriteMemPng',0,b'\x00\x00\xC2\x23pixWriteStream',0,b'\x00\x00\xC7\x23pixWriteStreamJpeg',0,b'\x00\x01\x4A\x23pixaDestroy',0,b'\x00\x00\x10\x23pixaGetBox',0,b'\x00\x00\x8C\x23pixaGetPix',0,b'\x00\x01\x4D\x23sarrayDestroy',0,b'\x00\x00\xB4\x23selCreateBrick',0,b'\x00\x00\xAE\x23selCreateFromString',0,b'\x00\x01\x50\x23selDestroy',0,b'\x00\x00\xBB\x23selPrintToString',0,b'\x00\x01\x28\x23setMsgSeverity',0),
 _struct_unions = ((b'\x00\x00\x01\x5C\x00\x00\x00\x02Box',b'\x00\x00\x05\x11x',b'\x00\x00\x05\x11y',b'\x00\x00\x05\x11w',b'\x00\x00\x05\x11h',b'\x00\x01\x7E\x11refcount'),(b'\x00\x00\x01\x5D\x00\x00\x00\x02Boxa',b'\x00\x00\x05\x11n',b'\x00\x00\x05\x11nalloc',b'\x00\x01\x7E\x11refcount',b'\x00\x00\x25\x11box'),(b'\x00\x00\x01\x60\x00\x00\x00\x02L_Compressed_Data',b'\x00\x00\x05\x11type',b'\x00\x01\x7B\x11datacomp',b'\x00\x00\x96\x11nbytescomp',b'\x00\x01\x69\x11data85',b'\x00\x00\x96\x11nbytes85',b'\x00\x01\x69\x11cmapdata85',b'\x00\x01\x69\x11cmapdatahex',b'\x00\x00\x05\x11ncolors',b'\x00\x00\x05\x11w',b'\x00\x00\x05\x11h',b'\x00\x00\x05\x11bps',b'\x00\x00\x05\x11spp',b'\x00\x00\x05\x11minisblack',b'\x00\x00\x05\x11predictor',b'\x00\x00\x96\x11nbytes',b'\x00\x00\x05\x11res'),(b'\x00\x00\x01\x61\x00\x00\x00\x02Pix',b'\x00\x01\x7E\x11w',b'\x00\x01\x7E\x11h',b'\x00\x01\x7E\x11d',b'\x00\x01\x7E\x11spp',b'\x00\x01\x7E\x11wpl',b'\x00\x01\x7E\x11refcount',b'\x00\x00\x05\x11xres',b'\x00\x00\x05\x11yres',b'\x00\x00\x05\x11informat',b'\x00\x00\x05\x11special',b'\x00\x01\x69\x11text',b'\x00\x01\x77\x11colormap',b'\x00\x01\x7D\x11data'),(b'\x00\x00\x01\x64\x00\x00\x00\x02PixColormap',b'\x00\x01\x57\x11array',b'\x00\x00\x05\x11depth',b'\x00\x00\x05\x11nalloc',b'\x00\x00\x05\x11n'),(b'\x00\x00\x01\x7A\x00\x00\x00\x10PixComp',),(b'\x00\x00\x01\x62\x00\x00\x00\x02Pixa',b'\x00\x00\x05\x11n',b'\x00\x00\x05\x11nalloc',b'\x00\x01\x7E\x11refcount',b'\x00\x00\x18\x11pix',b'\x00\x00\x04\x11boxa'),(b'\x00\x00\x01\x63\x00\x00\x00\x02PixaComp',b'\x00\x00\x05\x11n',b'\x00\x00\x05\x11nalloc',b'\x00\x00\x05\x11offset',b'\x00\x01\x78\x11pixc',b'\x00\x00\x04\x11boxa'),(b'\x00\x00\x01\x66\x00\x00\x00\x02Sarray',b'\x00\x00\x05\x11nalloc',b'\x00\x00\x05\x11n',b'\x00\x00\x05\x11refcount',b'\x00\x01\x68\x11array'),(b'\x00\x00\x01\x67\x00\x00\x00\x02Sel',b'\x00\x00\x05\x11sy',b'\x00\x00\x05\x11sx',b'\x00\x00\x05\x11cy',b'\x00\x00\x05\x11cx',b'\x00\x01\x73\x11data',b'\x00\x01\x69\x11name'),(b'\x00\x00\x01\x5E\x00\x00\x00\x10_IO_FILE',)),
 _enums = (b'\x00\x00\x01\x6C\x00\x00\x00\x16$1\x00L_DEFAULT_ENCODE,L_JPEG_ENCODE,L_G4_ENCODE,L_FLATE_ENCODE,L_JP2K_ENCODE',b'\x00\x00\x01\x6D\x00\x00\x00\x16$2\x00REMOVE_CMAP_TO_BINARY,REMOVE_CMAP_TO_GRAYSCALE,REMOVE_CMAP_TO_FULL_COLOR,REMOVE_CMAP_WITH_ALPHA,REMOVE_CMAP_BASED_ON_SRC',b'\x00\x00\x01\x6E\x00\x00\x00\x16$3\x00L_NOCOPY,L_INSERT,L_COPY,L_CLONE,L_COPY_CLONE',b'\x00\x00\x01\x6F\x00\x00\x00\x16$4\x00L_USE_WIDTHS,L_USE_WINDOWS',b'\x00\x00\x01\x70\x00\x00\x00\x16$5\x00L_BF_UNKNOWN,L_BF_ANY,L_BF_CODE128,L_BF_EAN8,L_BF_EAN13,L_BF_CODE2OF5,L_BF_CODEI2OF5,L_BF_CODE39,L_BF_CODE93,L_BF_CODABAR,L_BF_UPCA',b'\x00\x00\x01\x71\x00\x00\x00\x16$6\x00L_SEVERITY_EXTERNAL,L_SEVERITY_ALL,L_SEVERITY_DEBUG,L_SEVERITY_INFO,L_SEVERITY_WARNING,L_SEVERITY_ERROR,L_SEVERITY_NONE',b'\x00\x00\x01\x72\x00\x00\x00\x16$7\x00SEL_DONT_CARE,SEL_HIT,SEL_MISS'),
 _typenames = (b'\x00\x00\x01\x5CBOX',b'\x00\x00\x01\x5DBOXA',b'\x00\x00\x01\x5EFILE',b'\x00\x00\x01\x60L_COMP_DATA',b'\x00\x00\x01\x61PIX',b'\x00\x00\x01\x62PIXA',b'\x00\x00\x01\x63PIXAC',b'\x00\x00\x01\x64PIXCMAP',b'\x00\x00\x01\x66SARRAY',b'\x00\x00\x01\x67SEL',b'\x00\x00\x00\x3Al_float32',b'\x00\x00\x01\x6Bl_float64',b'\x00\x00\x01\x75l_int16',b'\x00\x00\x00\x05l_int32',b'\x00\x00\x01\x74l_int64',b'\x00\x00\x01\x76l_int8',b'\x00\x00\x00\x05l_ok',b'\x00\x00\x01\x80l_uint16',b'\x00\x00\x01\x7El_uint32',b'\x00\x00\x01\x7Fl_uint64',b'\x00\x00\x01\x7Cl_uint8'),
)

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/lib/compile_leptonica.py

#!/usr/bin/env python3
© 2017 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

from pathlib import Path

from cffi import FFI

ffibuilder = FFI()
ffibuilder.cdef(
 """
typedef signed char l_int8;
typedef unsigned char l_uint8;
typedef short l_int16;
typedef unsigned short l_uint16;
typedef int l_int32;
typedef unsigned int l_uint32;
typedef float l_float32;
typedef double l_float64;
typedef long long l_int64;
typedef unsigned long long l_uint64;

typedef int l_ok; /*!< return type 0 if OK, 1 on error */

struct Pix
{
 l_uint32 w; /* width in pixels */
 l_uint32 h; /* height in pixels */
 l_uint32 d; /* depth in bits (bpp) */
 l_uint32 spp; /* number of samples per pixel */
 l_uint32 wpl; /* 32-bit words/line */
 l_uint32 refcount; /* reference count (1 if no clones) */
 l_int32 xres; /* image res (ppi) in x direction */
 /* (use 0 if unknown) */
 l_int32 yres; /* image res (ppi) in y direction */
 /* (use 0 if unknown) */
 l_int32 informat; /* input file format, IFF_* */
 l_int32 special; /* special instructions for I/O, etc */
 char *text; /* text string associated with pix */
 struct PixColormap *colormap; /* colormap (may be null) */
 l_uint32 *data; /* the image data */
};
typedef struct Pix PIX;

struct PixColormap
{
 void *array; /* colormap table (array of RGBA_QUAD) */
 l_int32 depth; /* of pix (1, 2, 4 or 8 bpp) */
 l_int32 nalloc; /* number of color entries allocated */
 l_int32 n; /* number of color entries used */
};
typedef struct PixColormap PIXCMAP;

/*! Array of pix */
struct Pixa
{
 l_int32 n; /*!< number of Pix in ptr array */
 l_int32 nalloc; /*!< number of Pix ptrs allocated */
 l_uint32 refcount; /*!< reference count (1 if no clones) */
 struct Pix **pix; /*!< the array of ptrs to pix */
 struct Boxa *boxa; /*!< array of boxes */
};
typedef struct Pixa PIXA;

/*! Array of compressed pix */
struct PixaComp
{
 l_int32 n; /*!< number of PixComp in ptr array */
 l_int32 nalloc; /*!< number of PixComp ptrs allocated */
 l_int32 offset; /*!< indexing offset into ptr array */
 struct PixComp **pixc; /*!< the array of ptrs to PixComp */
 struct Boxa *boxa; /*!< array of boxes */
};
typedef struct PixaComp PIXAC;

struct Box
{
 l_int32 x;
 l_int32 y;
 l_int32 w;
 l_int32 h;
 l_uint32 refcount; /* reference count (1 if no clones) */

};
typedef struct Box BOX;

/*! Array of Box */
struct Boxa
{
 l_int32 n; /*!< number of box in ptr array */
 l_int32 nalloc; /*!< number of box ptrs allocated */
 l_uint32 refcount; /*!< reference count (1 if no clones) */
 struct Box **box; /*!< box ptr array */
};
typedef struct Boxa BOXA;

/*! String array: an array of C strings */
struct Sarray
{
 l_int32 nalloc; /*!< size of allocated ptr array */
 l_int32 n; /*!< number of strings allocated */
 l_int32 refcount; /*!< reference count (1 if no clones) */
 char **array; /*!< string array */
};
typedef struct Sarray SARRAY;

/*! Pdf formatted encoding types */
enum {
 L_DEFAULT_ENCODE = 0, /*!< use default encoding based on image */
 L_JPEG_ENCODE = 1, /*!< use dct encoding: 8 and 32 bpp, no cmap */
 L_G4_ENCODE = 2, /*!< use ccitt g4 fax encoding: 1 bpp */
 L_FLATE_ENCODE = 3, /*!< use flate encoding: any depth, cmap ok */
 L_JP2K_ENCODE = 4 /*!< use jp2k encoding: 8 and 32 bpp, no cmap */
};

/*! Compressed image data */
struct L_Compressed_Data
{
 l_int32 type; /*!< encoding type: L_JPEG_ENCODE, etc */
 l_uint8 *datacomp; /*!< gzipped raster data */
 size_t nbytescomp; /*!< number of compressed bytes */
 char *data85; /*!< ascii85-encoded gzipped raster data */
 size_t nbytes85; /*!< number of ascii85 encoded bytes */
 char *cmapdata85; /*!< ascii85-encoded uncompressed cmap */
 char *cmapdatahex; /*!< hex pdf array for the cmap */
 l_int32 ncolors; /*!< number of colors in cmap */
 l_int32 w; /*!< image width */
 l_int32 h; /*!< image height */
 l_int32 bps; /*!< bits/sample; typ. 1, 2, 4 or 8 */
 l_int32 spp; /*!< samples/pixel; typ. 1 or 3 */
 l_int32 minisblack; /*!< tiff g4 photometry */
 l_int32 predictor; /*!< flate data has PNG predictors */
 size_t nbytes; /*!< number of uncompressed raster bytes */
 l_int32 res; /*!< resolution (ppi) */
};
typedef struct L_Compressed_Data L_COMP_DATA;

/*! Selection */
struct Sel
{
 l_int32 sy; /*!< sel height */
 l_int32 sx; /*!< sel width */
 l_int32 cy; /*!< y location of sel origin */
 l_int32 cx; /*!< x location of sel origin */
 l_int32 **data; /*!< {0,1,2}; data[i][j] in [row][col] order */
 char *name; /*!< used to find sel by name */
};
typedef struct Sel SEL;

enum {
 REMOVE_CMAP_TO_BINARY = 0, /*!< remove colormap for conv to 1 bpp */
 REMOVE_CMAP_TO_GRAYSCALE = 1, /*!< remove colormap for conv to 8 bpp */
 REMOVE_CMAP_TO_FULL_COLOR = 2, /*!< remove colormap for conv to 32 bpp */
 REMOVE_CMAP_WITH_ALPHA = 3, /*!< remove colormap and alpha */
 REMOVE_CMAP_BASED_ON_SRC = 4 /*!< remove depending on src format */
};

/*! Access and storage flags */
enum {
 L_NOCOPY = 0, /*!< do not copy the object; do not delete the ptr */
 L_INSERT = L_NOCOPY, /*!< stuff it in; do not copy or clone */
 L_COPY = 1, /*!< make/use a copy of the object */
 L_CLONE = 2, /*!< make/use clone (ref count) of the object */
 L_COPY_CLONE = 3 /*!< make a new array object (e.g., pixa) and fill */
 /*!< the array with clones (e.g., pix) */
};

/*! Flags for method of extracting barcode widths */
enum {
 L_USE_WIDTHS = 1, /*!< use histogram of barcode widths */
 L_USE_WINDOWS = 2 /*!< find best window for decoding transitions */
};

/*! Flags for barcode formats */
enum {
 L_BF_UNKNOWN = 0, /*!< unknown format */
 L_BF_ANY = 1, /*!< try decoding with all known formats */
 L_BF_CODE128 = 2, /*!< decode with Code128 format */
 L_BF_EAN8 = 3, /*!< decode with EAN8 format */
 L_BF_EAN13 = 4, /*!< decode with EAN13 format */
 L_BF_CODE2OF5 = 5, /*!< decode with Code 2 of 5 format */
 L_BF_CODEI2OF5 = 6, /*!< decode with Interleaved 2 of 5 format */
 L_BF_CODE39 = 7, /*!< decode with Code39 format */
 L_BF_CODE93 = 8, /*!< decode with Code93 format */
 L_BF_CODABAR = 9, /*!< decode with Code93 format */
 L_BF_UPCA = 10 /*!< decode with UPC A format */
};

enum {
 L_SEVERITY_EXTERNAL = 0, /* Get the severity from the environment */
 L_SEVERITY_ALL = 1, /* Lowest severity: print all messages */
 L_SEVERITY_DEBUG = 2, /* Print debugging and higher messages */
 L_SEVERITY_INFO = 3, /* Print informational and higher messages */
 L_SEVERITY_WARNING = 4, /* Print warning and higher messages */
 L_SEVERITY_ERROR = 5, /* Print error and higher messages */
 L_SEVERITY_NONE = 6 /* Highest severity: print no messages */
};

enum {
 SEL_DONT_CARE = 0,
 SEL_HIT = 1,
 SEL_MISS = 2
};

"""
)

ffibuilder.cdef(
 """
PIX * pixRead (const char *filename);
PIX * pixReadMem (const l_uint8 *data, size_t size);
PIX * pixReadStream (FILE *fp, l_int32 hint);
PIX * pixScale (PIX *pixs, l_float32 scalex, l_float32 scaley);
l_int32 pixFindSkew (PIX *pixs, l_float32 *pangle, l_float32 *pconf);
l_int32 pixWriteImpliedFormat (const char *filename, PIX *pix, l_int32 quality, l_int32 progressive);
l_int32 getImpliedFileFormat (const char *filename);
l_ok pixWriteStream (FILE *fp, PIX *pix, l_int32 format);
l_ok pixWriteStreamJpeg (FILE *fp, PIX *pixs, l_int32 quality, l_int32 progressive);
l_ok pixWriteMem (l_uint8 **pdata, size_t *psize, PIX *pix, l_int32 format);
l_ok pixWriteMemJpeg (l_uint8 **pdata, size_t *psize, PIX *pix, l_int32 quality, l_int32 progressive);
l_int32
pixWriteMemPng(l_uint8 **pdata,
 size_t *psize,
 PIX *pix,
 l_float32 gamma);

void pixDestroy (PIX **ppix);

l_ok
pixEqual(PIX *pix1,
 PIX *pix2,
 l_int32 *psame);

PIX *
pixEndianByteSwapNew(PIX *pixs);

PIX * pixDeskew (PIX *pixs, l_int32 redsearch);
char * getLeptonicaVersion ();
l_int32 pixCorrelationBinary(PIX *pix1, PIX *pix2, l_float32 *pval);
PIX *pixRotate180(PIX *pixd, PIX *pixs);
PIX *
pixRotateOrth(PIX *pixs,
 l_int32 quads);

l_int32 pixCountPixels (PIX *pix, l_int32 *pcount, l_int32 *tab8);
PIX * pixAnd (PIX *pixd, PIX *pixs1, PIX *pixs2);
l_int32 * makePixelSumTab8 (void);

PIX * pixDeserializeFromMemory (const l_uint32 *data, size_t nbytes);
l_int32 pixSerializeToMemory (PIX *pixs, l_uint32 **pdata, size_t *pnbytes);

PIX * pixConvertRGBToLuminance(PIX *pixs);

PIX * pixConvertTo8(PIX *pixs, l_int32 cmapflag);

PIX * pixRemoveColormap(PIX *pixs, l_int32 type);

l_int32
pixOtsuAdaptiveThreshold(PIX *pixs,
 l_int32 sx,
 l_int32 sy,
 l_int32 smoothx,
 l_int32 smoothy,
 l_float32 scorefract,
 PIX **ppixth,
 PIX **ppixd);

PIX *
pixOtsuThreshOnBackgroundNorm(PIX *pixs,
 PIX *pixim,
 l_int32 sx,
 l_int32 sy,
 l_int32 thresh,
 l_int32 mincount,
 l_int32 bgval,
 l_int32 smoothx,
 l_int32 smoothy,
 l_float32 scorefract,
 l_int32 *pthresh);

PIX *
pixMaskedThreshOnBackgroundNorm(PIX *pixs,
 PIX *pixim,
 l_int32 sx,
 l_int32 sy,
 l_int32 thresh,
 l_int32 mincount,
 l_int32 smoothx,
 l_int32 smoothy,
 l_float32 scorefract,
 l_int32 *pthresh);

PIX *
pixCleanBackgroundToWhite(PIX *pixs,
 PIX *pixim,
 PIX *pixg,
 l_float32 gamma,
 l_int32 blackval,
 l_int32 whiteval);

BOX *
pixFindPageForeground (PIX *pixs,
 l_int32 threshold,
 l_int32 mindist,
 l_int32 erasedist,
 l_int32 showmorph,
 PIXAC *pixac);

PIX *
pixClipRectangle(PIX *pixs,
 BOX *box,
 BOX **pboxc);

PIX *
pixBackgroundNorm(PIX *pixs,
 PIX *pixim,
 PIX *pixg,
 l_int32 sx,
 l_int32 sy,
 l_int32 thresh,
 l_int32 mincount,
 l_int32 bgval,
 l_int32 smoothx,
 l_int32 smoothy);

PIX *
pixGammaTRC(PIX *pixd,
 PIX *pixs,
 l_float32 gamma,
 l_int32 minval,
 l_int32 maxval);

l_int32
pixNumSignificantGrayColors(PIX *pixs,
 l_int32 darkthresh,
 l_int32 lightthresh,
 l_float32 minfract,
 l_int32 factor,
 l_int32 *pncolors);

l_int32
pixColorFraction(PIX *pixs,
 l_int32 darkthresh,
 l_int32 lightthresh,
 l_int32 diffthresh,
 l_int32 factor,
 l_float32 *ppixfract,
 l_float32 *pcolorfract);

PIX *
pixColorMagnitude(PIX *pixs,
 l_int32 rwhite,
 l_int32 gwhite,
 l_int32 bwhite,
 l_int32 type);

PIX *
pixMaskOverColorPixels(PIX *pixs,
 l_int32 threshdiff,
 l_int32 mindist);

l_int32
pixGetAverageMaskedRGB(PIX *pixs,
 PIX *pixm,
 l_int32 x,
 l_int32 y,
 l_int32 factor,
 l_int32 type,
 l_float32 *prval,
 l_float32 *pgval,
 l_float32 *pbval);

PIX *
pixGlobalNormRGB(PIX * 	pixd,
 PIX * 	pixs,
 l_int32 	rval,
 l_int32 	gval,
 l_int32 	bval,
 l_int32 	mapval);

PIX *
pixInvert(PIX * pixd,
 PIX * pixs);

PIX *
pixRemoveColormapGeneral(PIX *pixs,
 l_int32 type,
 l_int32 ifnocmap);

l_int32
pixGenerateCIData(PIX *pixs,
 l_int32 type,
 l_int32 quality,
 l_int32 ascii85,
 L_COMP_DATA **pcid);

SARRAY *
pixProcessBarcodes(PIX *pixs,
 l_int32 format,
 l_int32 method,
 SARRAY **psaw,
 l_int32 debugflag);

PIX *
pixaGetPix(PIXA *pixa,
 l_int32 index,
 l_int32 accesstype);

BOX*
pixaGetBox 	(PIXA * 	pixa,
		 l_int32 	index,
		 l_int32 	accesstype);

PIXA *
pixExtractBarcodes(PIX *pixs,
 l_int32 debugflag);

BOXA *
pixLocateBarcodes (PIX *pixs,
 l_int32 thresh,
 PIX **ppixb,
 PIX **ppixm);

SARRAY *
pixReadBarcodes(PIXA *pixa,
 l_int32 format,
 l_int32 method,
 SARRAY **psaw,
 l_int32 debugflag);

PIX *
pixGenHalftoneMask(PIX *pixs,
 PIX **ppixtext,
 l_int32 *phtfound,
 PIXA *pixadb);

l_int32
l_generateCIDataForPdf(const char *fname,
 PIX *pix,
 l_int32 quality,
 L_COMP_DATA **pcid);

BOX *
boxClone (BOX *box);

BOX *
boxaGetBox (BOXA *boxa, l_int32 index, l_int32 accessflag);

SEL *
selCreateFromString (const char *text, l_int32 h, l_int32 w, const char *name);

SEL *
selCreateBrick (l_int32 h, l_int32 w, l_int32 cy, l_int32 cx, l_int32 type);

char *
selPrintToString(SEL *sel);

PIX *
pixDilate (PIX *pixd, PIX *pixs, SEL *sel);

PIX *
pixErode (PIX *pixd, PIX *pixs, SEL *sel);

PIX *
pixHMT (PIX *pixd, PIX *pixs, SEL *sel);

PIX *
pixSubtract (PIX *pixd, PIX *pixs1, PIX *pixs2);

void
boxDestroy(BOX **pbox);

void
boxaDestroy (BOXA **pboxa);

void
pixaDestroy(PIXA **ppixa);

l_ok
pixRenderBoxa (PIX *pix, BOXA *boxa, l_int32 width, l_int32 op);

void
l_CIDataDestroy(L_COMP_DATA **pcid);

void
sarrayDestroy(SARRAY **psa);

void
lept_free(void *ptr);

void selDestroy (SEL **psel);

l_int32
setMsgSeverity(l_int32 newsev);

void
leptSetStderrHandler(void (*handler)(const char *));
"""
)

ffibuilder.set_source("ocrmypdf.lib._leptonica", None)

if __name__ == '__main__':
 ffibuilder.compile(verbose=True)
 if Path('ocrmypdf/lib/_leptonica.py').exists() and Path('src/ocrmypdf').exists():
 output = Path('ocrmypdf/lib/_leptonica.py')
 output.rename('src/ocrmypdf/lib/_leptonica.py')
 Path('ocrmypdf/lib').rmdir()
 Path('ocrmypdf').rmdir()

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/optimize.py

© 2018 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import logging
import sys
import tempfile
from collections import defaultdict
from functools import partial
from os import fspath
from pathlib import Path
from typing import (
 Any,
 Callable,
 Dict,
 Iterator,
 List,
 MutableSet,
 NamedTuple,
 NewType,
 Optional,
 Sequence,
 Tuple,
 Union,
)

import pikepdf
from pikepdf import Dictionary, Name, Object, Pdf, PdfImage
from PIL import Image
from tqdm import tqdm

from ocrmypdf import leptonica
from ocrmypdf._concurrent import exec_progress_pool
from ocrmypdf._exec import jbig2enc, pngquant
from ocrmypdf._jobcontext import PdfContext
from ocrmypdf.exceptions import OutputFileAccessError
from ocrmypdf.helpers import safe_symlink

log = logging.getLogger(__name__)

DEFAULT_JPEG_QUALITY = 75
DEFAULT_PNG_QUALITY = 70

Xref = NewType('Xref', int)

class XrefExt(NamedTuple):
 xref: Xref
 ext: str

def img_name(root: Path, xref: Xref, ext: str) -> Path:
 return root / f'{xref:08d}{ext}'

def png_name(root: Path, xref: Xref) -> Path:
 return img_name(root, xref, '.png')

def jpg_name(root: Path, xref: Xref) -> Path:
 return img_name(root, xref, '.jpg')

def tif_name(root: Path, xref: Xref) -> Path:
 return img_name(root, xref, '.tif')

def extract_image_filter(
 pike: Pdf, root: Path, image: Object, xref: Xref
) -> Optional[Tuple[PdfImage, Tuple[Name, Object]]]:
 if image.Subtype != Name.Image:
 return None
 if image.Length < 100:
 log.debug("Skipping small image, xref %s", xref)
 return None

 pim = PdfImage(image)

 if len(pim.filter_decodeparms) > 1:
 log.debug("Skipping multiply filtered, xref %s", xref)
 return None
 filtdp = pim.filter_decodeparms[0]

 if pim.bits_per_component > 8:
 return None # Don't mess with wide gamut images

 if filtdp[0] == Name.JPXDecode:
 return None # Don't do JPEG2000

 if Name.Decode in image:
 return None # Don't mess with custom Decode tables

 return pim, filtdp

def extract_image_jbig2(
 *, pike: pikepdf.Pdf, root: Path, image: Object, xref: Xref, options
) -> Optional[XrefExt]:
 result = extract_image_filter(pike, root, image, xref)
 if result is None:
 return None
 pim, filtdp = result

 if (
 pim.bits_per_component == 1
 and filtdp[0] != Name.JBIG2Decode
 and jbig2enc.available()
):
 try:
 imgname = root / f'{xref:08d}'
 with imgname.open('wb') as f:
 ext = pim.extract_to(stream=f)
 imgname.rename(imgname.with_suffix(ext))
 except pikepdf.UnsupportedImageTypeError:
 return None
 return XrefExt(xref, ext)
 return None

def extract_image_generic(
 *, pike: Pdf, root: Path, image: PdfImage, xref: Xref, options
) -> Optional[XrefExt]:
 result = extract_image_filter(pike, root, image, xref)
 if result is None:
 return None
 pim, filtdp = result

 # Don't try to PNG-optimize 1bpp images, since JBIG2 does it better.
 if pim.bits_per_component == 1:
 return None

 try:
 pim.indexed # pikepdf 1.6.3 can't handle [/Indexed [/Array...]]
 except NotImplementedError:
 return None

 if filtdp[0] == Name.DCTDecode and options.optimize >= 2:
 # This is a simple heuristic derived from some training data, that has
 # about a 70% chance of guessing whether the JPEG is high quality,
 # and possibly recompressible, or not. The number itself doesn't mean
 # anything.
 # bytes_per_pixel = int(raw_jpeg.Length) / (w * h)
 # jpeg_quality_estimate = 117.0 * (bytes_per_pixel ** 0.213)
 # if jpeg_quality_estimate < 65:
 # return None

 # We could get the ICC profile here, but there's no need to look at it
 # for quality transcoding
 # if icc:
 # stream = BytesIO(raw_jpeg.read_raw_bytes())
 # iccbytes = icc.read_bytes()
 # with Image.open(stream) as im:
 # im.save(jpg_name(root, xref), icc_profile=iccbytes)
 try:
 imgname = root / f'{xref:08d}'
 with imgname.open('wb') as f:
 ext = pim.extract_to(stream=f)
 imgname.rename(imgname.with_suffix(ext))
 except pikepdf.UnsupportedImageTypeError:
 return None
 return XrefExt(xref, ext)
 elif (
 pim.indexed
 and pim.colorspace in pim.SIMPLE_COLORSPACES
 and options.optimize >= 3
):
 # Try to improve on indexed images - these are far from low hanging
 # fruit in most cases
 pim.as_pil_image().save(png_name(root, xref))
 return XrefExt(xref, '.png')
 elif not pim.indexed and pim.colorspace in pim.SIMPLE_COLORSPACES:
 # An optimization opportunity here, not currently taken, is directly
 # generating a PNG from compressed data
 pim.as_pil_image().save(png_name(root, xref))
 return XrefExt(xref, '.png')
 elif (
 not pim.indexed
 and pim.colorspace == Name.ICCBased
 and pim.bits_per_component == 1
 and not options.jbig2_lossy
):
 # We can losslessly optimize 1-bit images to CCITT or JBIG2 without
 # paying any attention to the ICC profile, provided we're not doing
 # lossy JBIG2
 pim.as_pil_image().save(png_name(root, xref))
 return XrefExt(xref, '.png')

 return None

def extract_images(
 pike: Pdf, root: Path, options, extract_fn: Callable[..., Optional[XrefExt]],
) -> Iterator[Tuple[int, XrefExt]]:
 """Extract image using extract_fn

 Enumerate images on each page, lookup their xref/ID number in the PDF.
 Exclude images that are soft masks (i.e. alpha transparency related).
 Record the page number on which an image is first used, since images may be
 used on multiple pages (or multiple times on the same page).

 Current we do not check Form XObjects or other objects that may contain
 images, and we don't evaluate alternate images or thumbnails.

 extract_fn must decide if wants to extract the image in this context. If
 it does a tuple should be returned: (xref, ext) where .ext is the file
 extension. extract_fn must also extract the file it finds interesting.
 """

 include_xrefs: MutableSet[Xref] = set()
 exclude_xrefs: MutableSet[Xref] = set()
 pageno_for_xref = {}
 errors = 0
 for pageno, page in enumerate(pike.pages):
 try:
 xobjs = page.Resources.XObject
 except AttributeError:
 continue
 for _imname, image in dict(xobjs).items():
 if image.objgen[1] != 0:
 continue # Ignore images in an incremental PDF
 xref = Xref(image.objgen[0])
 if hasattr(image, 'SMask'):
 # Ignore soft masks
 smask_xref = Xref(image.SMask.objgen[0])
 exclude_xrefs.add(smask_xref)
 include_xrefs.add(xref)
 if xref not in pageno_for_xref:
 pageno_for_xref[xref] = pageno

 working_xrefs = include_xrefs - exclude_xrefs
 for xref in working_xrefs:
 image = pike.get_object((xref, 0))
 try:
 result = extract_fn(
 pike=pike, root=root, image=image, xref=xref, options=options
)
 except Exception as e: # pylint: disable=broad-except
 log.debug("Image xref %s, error %s", xref, repr(e))
 errors += 1
 else:
 if result:
 _, ext = result
 yield pageno_for_xref[xref], XrefExt(xref, ext)

def extract_images_generic(
 pike: Pdf, root: Path, options
) -> Tuple[List[Xref], List[Xref]]:
 """Extract any >=2bpp image we think we can improve"""

 jpegs = []
 pngs = []
 for _, xref_ext in extract_images(pike, root, options, extract_image_generic):
 log.debug('%s', xref_ext)
 if xref_ext.ext == '.png':
 pngs.append(xref_ext.xref)
 elif xref_ext.ext == '.jpg':
 jpegs.append(xref_ext.xref)
 log.debug("Optimizable images: JPEGs: %s PNGs: %s", len(jpegs), len(pngs))
 return jpegs, pngs

def extract_images_jbig2(pike: Pdf, root: Path, options) -> Dict[int, List[XrefExt]]:
 """Extract any bitonal image that we think we can improve as JBIG2"""

 jbig2_groups = defaultdict(list)
 for pageno, xref_ext in extract_images(pike, root, options, extract_image_jbig2):
 group = pageno // options.jbig2_page_group_size
 jbig2_groups[group].append(xref_ext)

 # Elide empty groups
 jbig2_groups = {
 group: xrefs for group, xrefs in jbig2_groups.items() if len(xrefs) > 0
 }
 log.debug("Optimizable images: JBIG2 groups: %s", (len(jbig2_groups),))
 return jbig2_groups

def _produce_jbig2_images(
 jbig2_groups: Dict[int, List[XrefExt]], root: Path, options
) -> None:
 """Produce JBIG2 images from their groups"""

 def jbig2_group_args(root: Path, groups: Dict[int, List[XrefExt]]):
 for group, xref_exts in groups.items():
 prefix = f'group{group:08d}'
 yield dict(
 cwd=fspath(root),
 infiles=(img_name(root, xref, ext) for xref, ext in xref_exts),
 out_prefix=prefix,
)

 def jbig2_single_args(root, groups: Dict[int, List[XrefExt]]):
 for group, xref_exts in groups.items():
 prefix = f'group{group:08d}'
 # Second loop is to ensure multiple images per page are unpacked
 for n, xref_ext in enumerate(xref_exts):
 xref, ext = xref_ext
 yield dict(
 cwd=fspath(root),
 infile=img_name(root, xref, ext),
 outfile=root / f'{prefix}.{n:04d}',
)

 def convert_generic(fn, kwargs_dict):
 return fn(**kwargs_dict)

 if options.jbig2_page_group_size > 1:
 jbig2_args = jbig2_group_args
 jbig2_convert = partial(convert_generic, jbig2enc.convert_group)
 else:
 jbig2_args = jbig2_single_args
 jbig2_convert = partial(convert_generic, jbig2enc.convert_single)

 exec_progress_pool(
 use_threads=True,
 max_workers=options.jobs,
 tqdm_kwargs=dict(
 total=len(jbig2_groups),
 desc="JBIG2",
 unit='item',
 disable=not options.progress_bar,
),
 task=jbig2_convert,
 task_arguments=jbig2_args(root, jbig2_groups),
)

def convert_to_jbig2(
 pike: Pdf, jbig2_groups: Dict[int, List[XrefExt]], root: Path, options
) -> None:
 """Convert images to JBIG2 and insert into PDF.

 When the JBIG2 page group size is > 1 we do several JBIG2 images at once
 and build a symbol dictionary that will span several pages. Each JBIG2
 image must reference to its symbol dictionary. If too many pages shared the
 same dictionary JBIG2 encoding becomes more expensive and less efficient.
 The default value of 10 was determined through testing. Currently this
 must be lossy encoding since jbig2enc does not support refinement coding.

 When the JBIG2 symbolic coder is not used, each JBIG2 stands on its own
 and needs no dictionary. Currently this must be lossless JBIG2.
 """

 _produce_jbig2_images(jbig2_groups, root, options)

 for group, xref_exts in jbig2_groups.items():
 prefix = f'group{group:08d}'
 jbig2_symfile = root / (prefix + '.sym')
 if jbig2_symfile.exists():
 jbig2_globals_data = jbig2_symfile.read_bytes()
 jbig2_globals = pikepdf.Stream(pike, jbig2_globals_data)
 jbig2_globals_dict = Dictionary(JBIG2Globals=jbig2_globals)
 elif options.jbig2_page_group_size == 1:
 jbig2_globals_dict = None
 else:
 raise FileNotFoundError(jbig2_symfile)

 for n, xref_ext in enumerate(xref_exts):
 xref, _ = xref_ext
 jbig2_im_file = root / (prefix + f'.{n:04d}')
 jbig2_im_data = jbig2_im_file.read_bytes()
 im_obj = pike.get_object(xref, 0)
 im_obj.write(
 jbig2_im_data, filter=Name.JBIG2Decode, decode_parms=jbig2_globals_dict
)

def transcode_jpegs(pike: Pdf, jpegs: Sequence[Xref], root: Path, options) -> None:
 for xref in tqdm(
 jpegs, desc="JPEGs", unit='image', disable=not options.progress_bar
):
 in_jpg = jpg_name(root, xref)
 opt_jpg = in_jpg.with_suffix('.opt.jpg')

 # This produces a debug warning from PIL
 # DEBUG:PIL.Image:Error closing: 'NoneType' object has no attribute
 # 'close'. Seems to be mostly harmless
 # https://github.com/python-pillow/Pillow/issues/1144
 with Image.open(in_jpg) as im:
 im.save(opt_jpg, optimize=True, quality=options.jpeg_quality)

 if opt_jpg.stat().st_size > in_jpg.stat().st_size:
 log.debug("xref %s, jpeg, made larger - skip", xref)
 continue

 compdata = leptonica.CompressedData.open(opt_jpg)
 im_obj = pike.get_object(xref, 0)
 im_obj.write(compdata.read(), filter=Name.DCTDecode)

def transcode_pngs(
 pike: Pdf,
 images: Sequence[Xref],
 image_name_fn: Callable[[Path, Xref], Path],
 root: Path,
 options,
) -> None:
 modified: MutableSet[Xref] = set()
 if options.optimize >= 2:
 png_quality = (
 max(10, options.png_quality - 10),
 min(100, options.png_quality + 10),
)

 def pngquant_args():
 for xref in images:
 log.debug(image_name_fn(root, xref))
 yield (
 image_name_fn(root, xref),
 png_name(root, xref),
 png_quality[0],
 png_quality[1],
)
 modified.add(xref)

 def pngquant_fn(args):
 pngquant.quantize(*args)

 exec_progress_pool(
 use_threads=True,
 max_workers=options.jobs,
 tqdm_kwargs=dict(
 desc="PNGs",
 total=len(images),
 unit='image',
 disable=not options.progress_bar,
),
 task=pngquant_fn,
 task_arguments=pngquant_args(),
)

 for xref in modified:
 im_obj = pike.get_object(xref, 0)
 try:
 pix = leptonica.Pix.open(png_name(root, xref))
 if pix.mode == '1':
 compdata = pix.generate_pdf_ci_data(leptonica.lept.L_G4_ENCODE, 0)
 else:
 compdata = leptonica.CompressedData.open(png_name(root, xref))
 except leptonica.LeptonicaError as e:
 # Most likely this means file not found, i.e. quantize did not
 # produce an improved version
 log.error(e)
 continue

 # If re-coded image is larger don't use it - we test here because
 # pngquant knows the size of the temporary output file but not the actual
 # object in the PDF
 if len(compdata) > int(im_obj.stream_dict.Length):
 log.debug(
 f"pngquant: pngquant did not improve over original image "
 f"{len(compdata)} > {int(im_obj.stream_dict.Length)}"
)
 continue
 if compdata.type == leptonica.lept.L_FLATE_ENCODE:
 rewrite_png(pike, im_obj, compdata)
 elif compdata.type == leptonica.lept.L_G4_ENCODE:
 rewrite_png_as_g4(pike, im_obj, compdata)

def rewrite_png_as_g4(pike: Pdf, im_obj: Object, compdata) -> None:
 im_obj.BitsPerComponent = 1
 im_obj.Width = compdata.w
 im_obj.Height = compdata.h

 im_obj.write(compdata.read())

 log.debug(f"PNG to G4 {im_obj.objgen}")
 if Name.Predictor in im_obj:
 del im_obj.Predictor
 if Name.DecodeParms in im_obj:
 del im_obj.DecodeParms
 im_obj.DecodeParms = Dictionary(
 K=-1, BlackIs1=bool(compdata.minisblack), Columns=compdata.w
)

 im_obj.Filter = Name.CCITTFaxDecode
 return

def rewrite_png(pike: Pdf, im_obj: Object, compdata) -> None:
 # When a PNG is inserted into a PDF, we more or less copy the IDAT section from
 # the PDF and transfer the rest of the PNG headers to PDF image metadata.
 # One thing we have to do is tell the PDF reader whether a predictor was used
 # on the image before Flate encoding. (Typically one is.)
 # According to Leptonica source, PDF readers don't actually need us
 # to specify the correct predictor, they just need a value of either:
 # 1 - no predictor
 # 10-14 - there is a predictor
 # Leptonica's compdata->predictor only tells TRUE or FALSE
 # 10-14 means the actual predictor is specified in the data, so for any
 # number >= 10 the PDF reader will use whatever the PNG data specifies.
 # In practice Leptonica should use Paeth, 14, but 15 seems to be the
 # designated value for "optimal". So we will use 15.
 # See:
 # - PDF RM 7.4.4.4 Table 10
 # - https://github.com/DanBloomberg/leptonica/blob/master/src/pdfio2.c#L757
 predictor = 15 if compdata.predictor > 0 else 1
 dparms = Dictionary(Predictor=predictor)
 if predictor > 1:
 dparms.BitsPerComponent = compdata.bps # Yes, this is redundant
 dparms.Colors = compdata.spp
 dparms.Columns = compdata.w

 im_obj.BitsPerComponent = compdata.bps
 im_obj.Width = compdata.w
 im_obj.Height = compdata.h

 log.debug(
 f"PNG {im_obj.objgen}: palette={compdata.ncolors} spp={compdata.spp} bps={compdata.bps}"
)
 if compdata.ncolors > 0:
 # .ncolors is the number of colors in the palette, not the number of
 # colors used in a true color image. The palette string is always
 # given as RGB tuples even when the image is grayscale; see
 # https://github.com/DanBloomberg/leptonica/blob/master/src/colormap.c#L2067
 palette_pdf_string = compdata.get_palette_pdf_string()
 palette_data = pikepdf.Object.parse(palette_pdf_string)
 palette_stream = pikepdf.Stream(pike, bytes(palette_data))
 palette = [Name.Indexed, Name.DeviceRGB, compdata.ncolors - 1, palette_stream]
 cs = palette
 else:
 # ncolors == 0 means we are using a colorspace without a palette
 if compdata.spp == 1:
 cs = Name.DeviceGray
 elif compdata.spp == 3:
 cs = Name.DeviceRGB
 elif compdata.spp == 4:
 cs = Name.DeviceCMYK
 im_obj.ColorSpace = cs
 im_obj.write(compdata.read(), filter=Name.FlateDecode, decode_parms=dparms)

def optimize(input_file: Path, output_file: Path, context, save_settings) -> None:
 options = context.options
 if options.optimize == 0:
 safe_symlink(input_file, output_file)
 return

 if options.jpeg_quality == 0:
 options.jpeg_quality = DEFAULT_JPEG_QUALITY if options.optimize < 3 else 40
 if options.png_quality == 0:
 options.png_quality = DEFAULT_PNG_QUALITY if options.optimize < 3 else 30
 if options.jbig2_page_group_size == 0:
 options.jbig2_page_group_size = 10 if options.jbig2_lossy else 1

 with pikepdf.Pdf.open(input_file) as pike:
 root = output_file.parent / 'images'
 root.mkdir(exist_ok=True)

 jpegs, pngs = extract_images_generic(pike, root, options)
 transcode_jpegs(pike, jpegs, root, options)
 # if options.optimize >= 2:
 # Try pngifying the jpegs
 # transcode_pngs(pike, jpegs, jpg_name, root, options)
 transcode_pngs(pike, pngs, png_name, root, options)

 jbig2_groups = extract_images_jbig2(pike, root, options)
 convert_to_jbig2(pike, jbig2_groups, root, options)

 target_file = output_file.with_suffix('.opt.pdf')
 pike.remove_unreferenced_resources()
 pike.save(target_file, **save_settings)

 input_size = input_file.stat().st_size
 output_size = target_file.stat().st_size
 if output_size == 0:
 raise OutputFileAccessError(
 f"Output file not created after optimizing. We probably ran "
 f"out of disk space in the temporary folder: {tempfile.gettempdir()}."
)
 ratio = input_size / output_size
 savings = 1 - output_size / input_size
 log.info(f"Optimize ratio: {ratio:.2f} savings: {(100 * savings):.1f}%")

 if savings < 0:
 log.info("Image optimization did not improve the file - discarded")
 # We still need to save the file
 with pikepdf.open(input_file) as pike:
 pike.remove_unreferenced_resources()
 pike.save(output_file, **save_settings)
 else:
 safe_symlink(target_file, output_file)

def main(infile, outfile, level, jobs=1):
 from shutil import copy # pylint: disable=import-outside-toplevel
 from tempfile import TemporaryDirectory # pylint: disable=import-outside-toplevel

 class OptimizeOptions:
 """Emulate ocrmypdf's options"""

 def __init__(
 self, input_file, jobs, optimize_, jpeg_quality, png_quality, jb2lossy
):
 self.input_file = input_file
 self.jobs = jobs
 self.optimize = optimize_
 self.jpeg_quality = jpeg_quality
 self.png_quality = png_quality
 self.jbig2_page_group_size = 0
 self.jbig2_lossy = jb2lossy
 self.quiet = True
 self.progress_bar = False

 infile = Path(infile)
 options = OptimizeOptions(
 input_file=infile,
 jobs=jobs,
 optimize_=int(level),
 jpeg_quality=0, # Use default
 png_quality=0,
 jb2lossy=False,
)

 with TemporaryDirectory() as td:
 context = PdfContext(options, td, infile, None, None)
 tmpout = Path(td) / 'out.pdf'
 optimize(
 infile,
 tmpout,
 context,
 dict(
 compress_streams=True,
 preserve_pdfa=True,
 object_stream_mode=pikepdf.ObjectStreamMode.generate,
),
)
 copy(fspath(tmpout), fspath(outfile))

if __name__ == '__main__':
 main(sys.argv[1], sys.argv[2], sys.argv[3])

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/pdfa.py

© 2015 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

"""
Utilities for PDF/A production and confirmation with Ghostspcript.
"""

import base64
from pathlib import Path
from string import Template
from typing import Dict, Union

import pikepdf
import pkg_resources

ICC_PROFILE_RELPATH = 'data/sRGB.icc'

SRGB_ICC_PROFILE = pkg_resources.resource_filename('ocrmypdf', ICC_PROFILE_RELPATH)

This is a template written in PostScript which is needed to create PDF/A
files, from the Ghostscript documentation. Lines beginning with % are
comments. Python substitution variables have a '$' prefix.
pdfa_def_template = u"""%!
% Define an ICC profile :
/ICCProfile $icc_profile
def

[/_objdef {icc_PDFA} /type /stream /OBJ pdfmark
[{icc_PDFA} << /N 3 >> /PUT pdfmark
[{icc_PDFA} ICCProfile /PUT pdfmark

% Define the output intent dictionary :

[/_objdef {OutputIntent_PDFA} /type /dict /OBJ pdfmark
[{OutputIntent_PDFA} <<
 /Type /OutputIntent % Must be so (the standard requires).
 /S /GTS_PDFA1 % Must be so (the standard requires).
 /DestOutputProfile {icc_PDFA} % Must be so (see above).
 /OutputConditionIdentifier ($icc_identifier)
>> /PUT pdfmark
[{Catalog} <</OutputIntents [{OutputIntent_PDFA}]>> /PUT pdfmark
"""

def generate_pdfa_ps(target_filename: Path, icc: str = 'sRGB'):
 """Create a Postscript PDFMARK file for Ghostscript PDF/A conversion

 pdfmark is an extension to the Postscript language that describes some PDF
 features like bookmarks and annotations. It was originally specified Adobe
 Distiller, for Postscript to PDF conversion.

 Ghostscript uses pdfmark for PDF to PDF/A conversion as well. To use Ghostscript
 to create a PDF/A, we need to create a pdfmark file with the necessary metadata.

 This function takes care of the many version-specific bugs and pecularities in
 Ghostscript's handling of pdfmark.

 The only information we put in specifies that we want the file to be a
 PDF/A, and we want to Ghostscript to convert objects to the sRGB colorspace
 if it runs into any object that it decides must be converted.

 Arguments:
 target_filename: filename to save
 icc: ICC identifier such as 'sRGB'
 References:
 Adobe PDFMARK Reference: https://www.adobe.com/content/dam/acom/en/devnet/acrobat/pdfs/pdfmark_reference.pdf
 """
 if icc == 'sRGB':
 icc_profile = SRGB_ICC_PROFILE
 else:
 raise NotImplementedError("Only supporting sRGB")

 # Read the ICC profile, encode as ASCII85 and convert to a string which we
 # will insert in the .ps file
 bytes_icc_profile = Path(icc_profile).read_bytes()
 icc_profile = base64.a85encode(bytes_icc_profile, adobe=True).decode('ascii')

 t = Template(pdfa_def_template)
 ps = t.substitute(icc_profile=icc_profile, icc_identifier=icc)

 # We should have encoded everything to pure ASCII by this point, and
 # to be safe, only allow ASCII in PostScript
 Path(target_filename).write_text(ps, encoding='ascii')
 return target_filename

def file_claims_pdfa(filename: Path):
 """Determines if the file claims to be PDF/A compliant

 This only checks if the XMP metadata contains a PDF/A marker. It does not
 do full PDF/A validation.
 """

 with pikepdf.open(filename) as pdf:
 pdfmeta = pdf.open_metadata()
 if not pdfmeta.pdfa_status:
 return {
 'pass': False,
 'output': 'pdf',
 'conformance': 'No PDF/A metadata in XMP',
 }
 valid_part_conforms = {'1A', '1B', '2A', '2B', '2U', '3A', '3B', '3U'}
 conformance = f'PDF/A-{pdfmeta.pdfa_status}'
 pdfa_dict: Dict[str, Union[str, bool]] = {}
 if pdfmeta.pdfa_status in valid_part_conforms:
 pdfa_dict['pass'] = True
 pdfa_dict['output'] = 'pdfa'
 pdfa_dict['conformance'] = conformance
 return pdfa_dict

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/pdfinfo/__init__.py

#!/usr/bin/env python3
© 2015 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

from ocrmypdf.pdfinfo.info import Colorspace, Encoding, PdfInfo

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/pdfinfo/info.py

#!/usr/bin/env python3
© 2015 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import logging
import re
from collections import defaultdict, namedtuple
from decimal import Decimal
from enum import Enum
from functools import partial
from math import hypot, isclose
from os import PathLike
from pathlib import Path
from typing import Any, Dict, List, Optional, Union
from warnings import warn

import pikepdf
from pikepdf import PdfMatrix

from ocrmypdf._concurrent import exec_progress_pool
from ocrmypdf.exceptions import EncryptedPdfError
from ocrmypdf.helpers import Resolution, available_cpu_count, pikepdf_enable_mmap
from ocrmypdf.pdfinfo.layout import get_page_analysis, get_text_boxes

logger = logging.getLogger()

Colorspace = Enum('Colorspace', 'gray rgb cmyk lab icc index sep devn pattern jpeg2000')

Encoding = Enum(
 'Encoding', 'ccitt jpeg jpeg2000 jbig2 asciihex ascii85 lzw flate runlength'
)

FRIENDLY_COLORSPACE = {
 '/DeviceGray': Colorspace.gray,
 '/CalGray': Colorspace.gray,
 '/DeviceRGB': Colorspace.rgb,
 '/CalRGB': Colorspace.rgb,
 '/DeviceCMYK': Colorspace.cmyk,
 '/Lab': Colorspace.lab,
 '/ICCBased': Colorspace.icc,
 '/Indexed': Colorspace.index,
 '/Separation': Colorspace.sep,
 '/DeviceN': Colorspace.devn,
 '/Pattern': Colorspace.pattern,
 '/G': Colorspace.gray, # Abbreviations permitted in inline images
 '/RGB': Colorspace.rgb,
 '/CMYK': Colorspace.cmyk,
 '/I': Colorspace.index,
}

FRIENDLY_ENCODING = {
 '/CCITTFaxDecode': Encoding.ccitt,
 '/DCTDecode': Encoding.jpeg,
 '/JPXDecode': Encoding.jpeg2000,
 '/JBIG2Decode': Encoding.jbig2,
 '/CCF': Encoding.ccitt, # Abbreviations permitted in inline images
 '/DCT': Encoding.jpeg,
 '/AHx': Encoding.asciihex,
 '/A85': Encoding.ascii85,
 '/LZW': Encoding.lzw,
 '/Fl': Encoding.flate,
 '/RL': Encoding.runlength,
}

FRIENDLY_COMP = {
 Colorspace.gray: 1,
 Colorspace.rgb: 3,
 Colorspace.cmyk: 4,
 Colorspace.lab: 3,
 Colorspace.index: 1,
}

UNIT_SQUARE = (1.0, 0.0, 0.0, 1.0, 0.0, 0.0)

def _is_unit_square(shorthand):
 values = map(float, shorthand)
 pairwise = zip(values, UNIT_SQUARE)
 return all(isclose(a, b, rel_tol=1e-3) for a, b in pairwise)

XobjectSettings = namedtuple('XobjectSettings', ['name', 'shorthand', 'stack_depth'])

InlineSettings = namedtuple('InlineSettings', ['iimage', 'shorthand', 'stack_depth'])

ContentsInfo = namedtuple(
 'ContentsInfo',
 ['xobject_settings', 'inline_images', 'found_vector', 'found_text', 'name_index'],
)

TextboxInfo = namedtuple('TextboxInfo', ['bbox', 'is_visible', 'is_corrupt'])

class VectorMarker:
 pass

class TextMarker:
 pass

def _normalize_stack(graphobjs):
 """Convert runs of qQ's in the stack into single graphobjs"""
 for operands, operator in graphobjs:
 operator = str(operator)
 if re.match(r'Q*q+$', operator): # Zero or more Q, one or more q
 for char in operator: # Split into individual
 yield ([], char) # Yield individual
 else:
 yield (operands, operator)

def _interpret_contents(contentstream, initial_shorthand=UNIT_SQUARE):
 """Interpret the PDF content stream.

 The stack represents the state of the PDF graphics stack. We are only
 interested in the current transformation matrix (CTM) so we only track
 this object; a full implementation would need to track many other items.

 The CTM is initialized to the mapping from user space to device space.
 PDF units are 1/72". In a PDF viewer or printer this matrix is initialized
 to the transformation to device space. For example if set to
 (1/72, 0, 0, 1/72, 0, 0) then all units would be calculated in inches.

 Images are always considered to be (0, 0) -> (1, 1). Before drawing an
 image there should be a 'cm' that sets up an image coordinate system
 where drawing from (0, 0) -> (1, 1) will draw on the desired area of the
 page.

 PDF units suit our needs so we initialize ctm to the identity matrix.

 According to the PDF specification, the maximum stack depth is 32. Other
 viewers tolerate some amount beyond this. We issue a warning if the
 stack depth exceeds the spec limit and set a hard limit beyond this to
 bound our memory requirements. If the stack underflows behavior is
 undefined in the spec, but we just pretend nothing happened and leave the
 CTM unchanged.
 """

 stack = []
 ctm = PdfMatrix(initial_shorthand)
 xobject_settings = []
 inline_images = []
 name_index = defaultdict(lambda: [])
 found_vector = False
 found_text = False
 vector_ops = set('S s f F f* B B* b b*'.split())
 text_showing_ops = set("""TJ Tj " '""".split())
 image_ops = set('BI ID EI q Q Do cm'.split())
 operator_whitelist = ' '.join(vector_ops | text_showing_ops | image_ops)

 for n, graphobj in enumerate(
 _normalize_stack(
 pikepdf.parse_content_stream(contentstream, operator_whitelist)
)
):
 operands, operator = graphobj
 if operator == 'q':
 stack.append(ctm)
 if len(stack) > 32: # See docstring
 if len(stack) > 128:
 raise RuntimeError(
 "PDF graphics stack overflowed hard limit, operator %i" % n
)
 warn("PDF graphics stack overflowed spec limit")
 elif operator == 'Q':
 try:
 ctm = stack.pop()
 except IndexError:
 # Keeping the ctm the same seems to be the only sensible thing
 # to do. Just pretend nothing happened, keep calm and carry on.
 warn("PDF graphics stack underflowed - PDF may be malformed")
 elif operator == 'cm':
 ctm = PdfMatrix(operands) @ ctm
 elif operator == 'Do':
 image_name = operands[0]
 settings = XobjectSettings(
 name=image_name, shorthand=ctm.shorthand, stack_depth=len(stack)
)
 xobject_settings.append(settings)
 name_index[image_name].append(settings)
 elif operator == 'INLINE IMAGE': # BI/ID/EI are grouped into this
 iimage = operands[0]
 inline = InlineSettings(
 iimage=iimage, shorthand=ctm.shorthand, stack_depth=len(stack)
)
 inline_images.append(inline)
 elif operator in vector_ops:
 found_vector = True
 elif operator in text_showing_ops:
 found_text = True

 return ContentsInfo(
 xobject_settings=xobject_settings,
 inline_images=inline_images,
 found_vector=found_vector,
 found_text=found_text,
 name_index=name_index,
)

def _get_dpi(ctm_shorthand, image_size):
 """Given the transformation matrix and image size, find the image DPI.

 PDFs do not include image resolution information within image data.
 Instead, the PDF page content stream describes the location where the
 image will be rasterized, and the effective resolution is the ratio of the
 pixel size to raster target size.

 Normally a scanned PDF has the paper size set appropriately but this is
 not guaranteed. The most common case is a cropped image will change the
 page size (/CropBox) without altering the page content stream. That means
 it is not sufficient to assume that the image fills the page, even though
 that is the most common case.

 A PDF image may be scaled (always), cropped, translated, rotated in place
 to an arbitrary angle (rarely) and skewed. Only equal area mappings can
 be expressed, that is, it is not necessary to consider distortions where
 the effective DPI varies with position.

 To determine the image scale, transform an offset axis vector v0 (0, 0),
 width-axis vector v0 (1, 0), height-axis vector vh (0, 1) with the matrix,
 which gives the dimensions of the image in PDF units. From there we can
 compare to actual image dimensions. PDF uses
 row vector * matrix_transposed unlike the traditional
 matrix * column vector.

 The offset, width and height vectors can be combined in a matrix and
 multiplied by the transform matrix. Then we want to calculated
 magnitude(width_vector - offset_vector)
 and
 magnitude(height_vector - offset_vector)

 When the above is worked out algebraically, the effect of translation
 cancels out, and the vector magnitudes become functions of the nonzero
 transformation matrix indices. The results of the derivation are used
 in this code.

 pdfimages -list does calculate the DPI in some way that is not completely
 naive, but it does not get the DPI of rotated images right, so cannot be
 used anymore to validate this. Photoshop works, or using Acrobat to
 rotate the image back to normal.

 It does not matter if the image is partially cropped, or even out of the
 /MediaBox.

 """

 a, b, c, d, _, _ = ctm_shorthand

 # Calculate the width and height of the image in PDF units
 image_drawn_width = hypot(a, b)
 image_drawn_height = hypot(c, d)

 # The scale of the image is pixels per unit of default user space (1/72")
 scale_w = image_size[0] / image_drawn_width
 scale_h = image_size[1] / image_drawn_height

 # DPI = scale * 72
 dpi_w = scale_w * 72.0
 dpi_h = scale_h * 72.0

 return Resolution(dpi_w, dpi_h)

class ImageInfo:
 DPI_PREC = Decimal('1.000')

 def __init__(self, *, name='', pdfimage=None, inline=None, shorthand=None):

 self._name = str(name)
 self._shorthand = shorthand

 if inline is not None:
 self._origin = 'inline'
 pim = inline.iimage
 elif pdfimage is not None:
 self._origin = 'xobject'
 pim = pikepdf.PdfImage(pdfimage)
 self._width = pim.width
 self._height = pim.height

 # If /ImageMask is true, then this image is a stencil mask
 # (Images that draw with this stencil mask will have a reference to
 # it in their /Mask, but we don't actually need that information)
 if pim.image_mask:
 self._type = 'stencil'
 else:
 self._type = 'image'

 self._bpc = int(pim.bits_per_component)
 try:
 self._enc = FRIENDLY_ENCODING.get(pim.filters[0], 'image')
 except IndexError:
 self._enc = '?'

 try:
 self._color = FRIENDLY_COLORSPACE.get(pim.colorspace, '?')
 except NotImplementedError:
 self._color = '?'
 if self._enc == Encoding.jpeg2000:
 self._color = Colorspace.jpeg2000

 if self._color == Colorspace.icc:
 # Check the ICC profile to determine actual colorspace
 pim_icc = pim.icc
 if pim_icc.profile.xcolor_space == 'GRAY':
 self._comp = 1
 elif pim_icc.profile.xcolor_space == 'CMYK':
 self._comp = 4
 else:
 self._comp = 3
 else:
 self._comp = FRIENDLY_COMP.get(self._color, '?')

 # Bit of a hack... infer grayscale if component count is uncertain
 # but encoding only supports monochrome.
 if self._comp == '?' and self._enc in (Encoding.ccitt, Encoding.jbig2):
 self._comp = FRIENDLY_COMP[Colorspace.gray]

 @property
 def name(self):
 return self._name

 @property
 def type_(self):
 return self._type

 @property
 def width(self):
 return self._width

 @property
 def height(self):
 return self._height

 @property
 def bpc(self):
 return self._bpc

 @property
 def color(self):
 return self._color

 @property
 def comp(self):
 return self._comp

 @property
 def enc(self):
 return self._enc

 @property
 def dpi(self):
 return _get_dpi(self._shorthand, (self._width, self._height))

 def __repr__(self):
 class_locals = {
 attr: getattr(self, attr, None)
 for attr in dir(self)
 if not attr.startswith('_')
 }
 return (
 "<ImageInfo '{name}' {type_} {width}x{height} {color} "
 "{comp} {bpc} {enc} {dpi}>"
).format(**class_locals)

def _find_inline_images(contentsinfo):
 "Find inline images in the contentstream"

 for n, inline in enumerate(contentsinfo.inline_images):
 yield ImageInfo(
 name='inline-%02d' % n, shorthand=inline.shorthand, inline=inline
)

def _image_xobjects(container):
 """Search for all XObject-based images in the container

 Usually the container is a page, but it could also be a Form XObject
 that contains images. Filter out the Form XObjects which are dealt with
 elsewhere.

 Generate a sequence of tuples (image, xobj container), where container,
 where xobj is the name of the object and image is the object itself,
 since the object does not know its own name.

 """

 if '/Resources' not in container:
 return
 resources = container['/Resources']
 if '/XObject' not in resources:
 return
 xobjs = resources['/XObject'].as_dict()
 for xobj in xobjs:
 candidate = xobjs[xobj]
 if not '/Subtype' in candidate:
 continue
 if candidate['/Subtype'] == '/Image':
 pdfimage = candidate
 yield (pdfimage, xobj)

def _find_regular_images(container, contentsinfo):
 """Find images stored in the container's /Resources /XObject

 Usually the container is a page, but it could also be a Form XObject
 that contains images.

 Generates images with their DPI at time of drawing.
 """

 for pdfimage, xobj in _image_xobjects(container):
 if xobj not in contentsinfo.name_index:
 continue
 for draw in contentsinfo.name_index[xobj]:
 if draw.stack_depth == 0 and _is_unit_square(draw.shorthand):
 # At least one PDF in the wild (and test suite) draws an image
 # when the graphics stack depth is 0, meaning that the image
 # gets drawn into a square of 1x1 PDF units (or 1/72",
 # or 0.35 mm). The equivalent DPI will be >100,000. Exclude
 # these from our DPI calculation for the page.
 continue

 yield ImageInfo(name=draw.name, pdfimage=pdfimage, shorthand=draw.shorthand)

def _find_form_xobject_images(pdf, container, contentsinfo):
 """Find any images that are in Form XObjects in the container

 The container may be a page, or a parent Form XObject.

 """
 if '/Resources' not in container:
 return
 resources = container['/Resources']
 if '/XObject' not in resources:
 return
 xobjs = resources['/XObject'].as_dict()
 for xobj in xobjs:
 candidate = xobjs[xobj]
 if candidate['/Subtype'] != '/Form':
 continue

 form_xobject = candidate
 for settings in contentsinfo.xobject_settings:
 if settings.name != xobj:
 continue

 # Find images once for each time this Form XObject is drawn.
 # This could be optimized to cache the multiple drawing events
 # but in practice both Form XObjects and multiple drawing of the
 # same object are both very rare.
 ctm_shorthand = settings.shorthand
 yield from _process_content_streams(
 pdf=pdf, container=form_xobject, shorthand=ctm_shorthand
)

def _process_content_streams(*, pdf, container, shorthand=None):
 """Find all individual instances of images drawn in the container

 Usually the container is a page, but it may also be a Form XObject.

 On a typical page images are stored inline or as regular images
 in an XObject.

 Form XObjects may include inline images, XObject images,
 and recursively, other Form XObjects; and also vector graphic objects.

 Every instance of an image being drawn somewhere is flattened and
 treated as a unique image, since if the same image is drawn multiple times
 on one page it may be drawn at differing resolutions, and our objective
 is to find the resolution at which the page can be rastered without
 downsampling.

 """

 if container.get('/Type') == '/Page' and '/Contents' in container:
 initial_shorthand = shorthand or UNIT_SQUARE
 elif container.get('/Type') == '/XObject' and container['/Subtype'] == '/Form':
 # Set the CTM to the state it was when the "Do" operator was
 # encountered that is drawing this instance of the Form XObject
 ctm = PdfMatrix(shorthand) if shorthand else PdfMatrix.identity()

 # A Form XObject may provide its own matrix to map form space into
 # user space. Get this if one exists
 form_shorthand = container.get('/Matrix', PdfMatrix.identity())
 form_matrix = PdfMatrix(form_shorthand)

 # Concatenate form matrix with CTM to ensure CTM is correct for
 # drawing this instance of the XObject
 ctm = form_matrix @ ctm
 initial_shorthand = ctm.shorthand
 else:
 return

 contentsinfo = _interpret_contents(container, initial_shorthand)

 if contentsinfo.found_vector:
 yield VectorMarker()
 if contentsinfo.found_text:
 yield TextMarker()
 yield from _find_inline_images(contentsinfo)
 yield from _find_regular_images(container, contentsinfo)
 yield from _find_form_xobject_images(pdf, container, contentsinfo)

def _page_has_text(text_blocks, page_width, page_height) -> bool:
 """Smarter text detection that ignores text in margins"""

 pw, ph = float(page_width), float(page_height)

 margin_ratio = 0.125
 interior_bbox = (
 margin_ratio * pw, # left
 (1 - margin_ratio) * ph, # top
 (1 - margin_ratio) * pw, # right
 margin_ratio * ph, # bottom (first quadrant: bottom < top)
)

 def rects_intersect(a, b):
 """
 Where (a,b) are 4-tuple rects (left-0, top-1, right-2, bottom-3)
 https://stackoverflow.com/questions/306316/determine-if-two-rectangles-overlap-each-other
 Formula assumes all boxes are in first quadrant
 """
 return a[0] < b[2] and a[2] > b[0] and a[1] > b[3] and a[3] < b[1]

 has_text = False
 for bbox in text_blocks:
 if rects_intersect(bbox, interior_bbox):
 has_text = True
 break
 return has_text

def simplify_textboxes(miner, textbox_getter):
 """Extract only limited content from text boxes

 We do this to save memory and ensure that our objects are pickleable.
 """
 for box in textbox_getter(miner):
 first_line = box._objs[0]
 first_char = first_line._objs[0]

 visible = first_char.rendermode != 3
 corrupt = first_char.get_text() == '\ufffd'
 yield TextboxInfo(box.bbox, visible, corrupt)

def _pdf_get_pageinfo(
 pdf, pageno: int, infile: PathLike, check_pages, detailed_analysis: bool
):
 pageinfo: Dict[str, Any] = {}
 pageinfo['pageno'] = pageno
 pageinfo['images'] = []

 page = pdf.pages[pageno]
 mediabox = [Decimal(d) for d in page.MediaBox.as_list()]
 width_pt = mediabox[2] - mediabox[0]
 height_pt = mediabox[3] - mediabox[1]

 check_this_page = pageno in check_pages

 if check_this_page and detailed_analysis:
 pscript5_mode = str(pdf.docinfo.get('/Creator')).startswith('PScript5')
 miner = get_page_analysis(infile, pageno, pscript5_mode)
 pageinfo['textboxes'] = list(simplify_textboxes(miner, get_text_boxes))
 bboxes = (box.bbox for box in pageinfo['textboxes'])

 pageinfo['has_text'] = _page_has_text(bboxes, width_pt, height_pt)
 else:
 pageinfo['textboxes'] = []
 pageinfo['has_text'] = None # i.e. "no information"

 userunit = page.get('/UserUnit', Decimal(1.0))
 if not isinstance(userunit, Decimal):
 userunit = Decimal(userunit)
 pageinfo['userunit'] = userunit
 pageinfo['width_inches'] = width_pt * userunit / Decimal(72.0)
 pageinfo['height_inches'] = height_pt * userunit / Decimal(72.0)

 try:
 pageinfo['rotate'] = int(page['/Rotate'])
 except KeyError:
 pageinfo['rotate'] = 0

 userunit_shorthand = (userunit, 0, 0, userunit, 0, 0)

 if check_this_page:
 pageinfo['has_vector'] = False
 pageinfo['has_text'] = False
 pageinfo['images'] = []
 for ci in _process_content_streams(
 pdf=pdf, container=page, shorthand=userunit_shorthand
):
 if isinstance(ci, VectorMarker):
 pageinfo['has_vector'] = True
 elif isinstance(ci, TextMarker):
 pageinfo['has_text'] = True
 elif isinstance(ci, ImageInfo):
 pageinfo['images'].append(ci)
 else:
 raise NotImplementedError()
 else:
 pageinfo['has_vector'] = None # i.e. "no information"
 pageinfo['has_text'] = None
 pageinfo['images'] = None

 if pageinfo['images']:
 dpi = Resolution(0.0, 0.0).take_max(image.dpi for image in pageinfo['images'])
 pageinfo['dpi'] = dpi
 pageinfo['width_pixels'] = int(round(dpi.x * float(pageinfo['width_inches'])))
 pageinfo['height_pixels'] = int(round(dpi.y * float(pageinfo['height_inches'])))

 return pageinfo

worker_pdf = None

def _pdf_pageinfo_sync_init(infile):
 global worker_pdf # pylint: disable=global-statement
 pikepdf_enable_mmap()
 worker_pdf = pikepdf.open(infile)

def _pdf_pageinfo_sync(args):
 global worker_pdf # pylint: disable=global-statement
 pageno, infile, check_pages, detailed_analysis = args
 page = PageInfo(worker_pdf, pageno, infile, check_pages, detailed_analysis)
 return page

def _pdf_pageinfo_concurrent(
 pdf, infile, progbar, max_workers, check_pages, detailed_analysis=False
):
 pages = [None] * len(pdf.pages)

 def update_pageinfo(result, pbar):
 page = result
 pages[page.pageno] = page
 pbar.update()

 if max_workers is None:
 max_workers = available_cpu_count()

 total = len(pdf.pages)
 contexts = ((n, infile, check_pages, detailed_analysis) for n in range(total))

 use_threads = False # No performance gain if threaded due to GIL
 n_workers = min(1 + len(pages) // 4, max_workers)
 if n_workers == 1:
 # But if we decided on only one worker, there is no point in using
 # a separate process.
 use_threads = True

 exec_progress_pool(
 use_threads=use_threads,
 max_workers=n_workers,
 tqdm_kwargs=dict(
 total=total, desc="Scanning contents", unit='page', disable=not progbar
),
 task_initializer=partial(_pdf_pageinfo_sync_init, infile),
 task=_pdf_pageinfo_sync,
 task_arguments=contexts,
 task_finished=update_pageinfo,
)
 return pages

class PageInfo:
 def __init__(self, pdf, pageno, infile, check_pages, detailed_analysis=False):
 self._pageno = pageno
 self._infile = infile
 self._detailed_analysis = detailed_analysis
 self._pageinfo = _pdf_get_pageinfo(
 pdf, pageno, infile, check_pages, detailed_analysis
)

 @property
 def pageno(self) -> int:
 return self._pageno

 @property
 def has_text(self) -> bool:
 return self._pageinfo['has_text']

 @property
 def has_corrupt_text(self) -> bool:
 if not self._detailed_analysis:
 raise NotImplementedError('Did not do detailed analysis')
 return any(tbox.is_corrupt for tbox in self._pageinfo['textboxes'])

 @property
 def has_vector(self) -> bool:
 return self._pageinfo['has_vector']

 @property
 def width_inches(self) -> Decimal:
 return self._pageinfo['width_inches']

 @property
 def height_inches(self) -> Decimal:
 return self._pageinfo['height_inches']

 @property
 def width_pixels(self) -> int:
 return int(round(float(self.width_inches) * self.dpi.x))

 @property
 def height_pixels(self) -> int:
 return int(round(float(self.height_inches) * self.dpi.y))

 @property
 def rotation(self) -> int:
 return self._pageinfo.get('rotate', None)

 @rotation.setter
 def rotation(self, value):
 if value in (0, 90, 180, 270, 360, -90, -180, -270):
 self._pageinfo['rotate'] = value
 else:
 raise ValueError("rotation must be a cardinal angle")

 @property
 def images(self):
 return self._pageinfo['images']

 def get_textareas(
 self, visible: Optional[bool] = None, corrupt: Optional[bool] = None
):
 def predicate(obj, want_visible, want_corrupt):
 result = True
 if want_visible is not None:
 if obj.is_visible != want_visible:
 result = False
 if want_corrupt is not None:
 if obj.is_corrupt != want_corrupt:
 result = False
 return result

 if 'textboxes' not in self._pageinfo:
 if visible is not None and corrupt is not None:
 raise NotImplementedError('Incomplete information on textboxes')
 return self._pageinfo['bboxes']

 return (
 obj.bbox
 for obj in self._pageinfo['textboxes']
 if predicate(obj, visible, corrupt)
)

 @property
 def dpi(self) -> Resolution:
 return self._pageinfo.get('dpi', Resolution(0.0, 0.0))

 @property
 def userunit(self) -> Decimal:
 return self._pageinfo.get('userunit', None)

 @property
 def min_version(self) -> str:
 if self.userunit is not None:
 return '1.6'
 else:
 return '1.5'

 def __repr__(self):
 return (
 f'<PageInfo '
 f'pageno={self.pageno} {self.width_inches}"x{self.height_inches}" '
 f'rotation={self.rotation} dpi={self.dpi} has_text={self.has_text}>'
)

class PdfInfo:
 """Get summary information about a PDF"""

 def __init__(
 self,
 infile,
 detailed_analysis: bool = False,
 progbar: bool = False,
 max_workers: int = None,
 check_pages=None,
):
 self._infile = infile
 if check_pages is None:
 check_pages = range(0, 1_000_000_000)

 with pikepdf.open(infile) as pdf:
 if pdf.is_encrypted:
 raise EncryptedPdfError() # Triggered by encryption with empty passwd
 self._pages = _pdf_pageinfo_concurrent(
 pdf,
 infile,
 progbar,
 max_workers,
 check_pages=check_pages,
 detailed_analysis=detailed_analysis,
)
 self._needs_rendering = pdf.root.get('/NeedsRendering', False)
 self._has_acroform = False
 if '/AcroForm' in pdf.root:
 if len(pdf.root.AcroForm.get('/Fields', [])) > 0:
 self._has_acroform = True
 elif '/XFA' in pdf.root.AcroForm:
 self._has_acroform = True

 @property
 def pages(self):
 return self._pages

 @property
 def min_version(self) -> str:
 # The minimum PDF is the maximum version that any particular page needs
 return max(page.min_version for page in self.pages)

 @property
 def has_userunit(self) -> bool:
 return any(page.userunit != 1.0 for page in self.pages)

 @property
 def has_acroform(self) -> bool:
 return self._has_acroform

 @property
 def filename(self) -> Union[str, Path]:
 if not isinstance(self._infile, (str, Path)):
 raise NotImplementedError("can't get filename from stream")
 return self._infile

 @property
 def needs_rendering(self) -> bool:
 return self._needs_rendering

 def __getitem__(self, item) -> PageInfo:
 return self._pages[item]

 def __len__(self):
 return len(self._pages)

 def __repr__(self):
 return f"<PdfInfo('...'), page count={len(self)}>"

def main():
 import argparse # pylint: disable=import-outside-toplevel
 from pprint import pprint # pylint: disable=import-outside-toplevel

 parser = argparse.ArgumentParser()
 parser.add_argument('infile')
 args = parser.parse_args()
 pdfinfo = PdfInfo(args.infile)

 pprint(pdfinfo)
 for page in pdfinfo.pages:
 pprint(page)
 for im in page.images:
 pprint(im)

if __name__ == '__main__':
 main()

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/pdfinfo/layout.py

© 2018 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import re
from math import copysign
from pathlib import Path
from unittest.mock import patch

import pdfminer
import pdfminer.encodingdb
import pdfminer.pdfdevice
import pdfminer.pdfinterp
from pdfminer.converter import PDFLayoutAnalyzer
from pdfminer.layout import LAParams, LTChar, LTPage, LTTextBox
from pdfminer.pdfdocument import PDFTextExtractionNotAllowed
from pdfminer.pdffont import PDFSimpleFont, PDFUnicodeNotDefined
from pdfminer.pdfpage import PDFPage
from pdfminer.utils import bbox2str, matrix2str

from ocrmypdf.exceptions import EncryptedPdfError

STRIP_NAME = re.compile(r'[0-9]+')

original_PDFSimpleFont_init = PDFSimpleFont.__init__

def PDFSimpleFont__init__(self, descriptor, widths, spec):
 # Font encoding is specified either by a name of
 # built-in encoding or a dictionary that describes
 # the differences.
 original_PDFSimpleFont_init(self, descriptor, widths, spec)
 # pdfminer is incorrect. If there is no ToUnicode and no Encoding, do not
 # assume Unicode conversion is possible. RM 9.10.2
 if not self.unicode_map and 'Encoding' not in spec:
 self.cid2unicode = {}
 return

PDFSimpleFont.__init__ = PDFSimpleFont__init__

#
pdfminer patches when creator is PScript5.dll
#

def PDFType3Font__PScript5_get_height(self):
 h = self.bbox[3] - self.bbox[1]
 if h == 0:
 h = self.ascent - self.descent
 return h * copysign(1.0, self.vscale)

def PDFType3Font__PScript5_get_descent(self):
 return self.descent * copysign(1.0, self.vscale)

def PDFType3Font__PScript5_get_ascent(self):
 return self.ascent * copysign(1.0, self.vscale)

class LTStateAwareChar(LTChar):
 """A subclass of LTChar that tracks text render mode at time of drawing"""

 __slots__ = (
 'rendermode',
 '_text',
 'matrix',
 'fontname',
 'adv',
 'upright',
 'size',
 'width',
 'height',
 'bbox',
 'x0',
 'x1',
 'y0',
 'y1',
)

 def __init__(
 self,
 matrix,
 font,
 fontsize,
 scaling,
 rise,
 text,
 textwidth,
 textdisp,
 ncs,
 graphicstate,
 textstate,
):
 super().__init__(
 matrix,
 font,
 fontsize,
 scaling,
 rise,
 text,
 textwidth,
 textdisp,
 ncs,
 graphicstate,
)
 self.rendermode = textstate.render

 def is_compatible(self, obj):
 """Check if characters can be combined into a textline

 We consider characters compatible if:
 - the Unicode mapping is known, and both have the same render mode
 - the Unicode mapping is unknown but both are part of the same font
 """
 # pylint: disable=protected-access
 both_unicode_mapped = isinstance(self._text, str) and isinstance(obj._text, str)
 try:
 if both_unicode_mapped:
 return self.rendermode == obj.rendermode
 font0, _ = self._text
 font1, _ = obj._text
 return font0 == font1 and self.rendermode == obj.rendermode
 except (ValueError, AttributeError):
 return False

 def get_text(self):
 if isinstance(self._text, tuple):
 return '\ufffd' # standard 'Unknown symbol'
 return self._text

 def __repr__(self):
 return '<%s %s matrix=%s rendermode=%r font=%r adv=%s text=%r>' % (
 self.__class__.__name__,
 bbox2str(self.bbox),
 matrix2str(self.matrix),
 self.rendermode,
 self.fontname,
 self.adv,
 self.get_text(),
)

class TextPositionTracker(PDFLayoutAnalyzer):
 """A page layout analyzer that pays attention to text visibility"""

 def __init__(self, rsrcmgr, pageno=1, laparams=None):
 super().__init__(rsrcmgr, pageno, laparams)
 self.textstate = None
 self.result = None
 self.cur_item = None # not defined in pdfminer code as it should be

 def begin_page(self, page, ctm):
 super().begin_page(page, ctm)
 self.cur_item = LTPage(self.pageno, page.mediabox)

 def end_page(self, page):
 assert not self._stack, str(len(self._stack))
 assert isinstance(self.cur_item, LTPage), str(type(self.cur_item))
 if self.laparams is not None:
 self.cur_item.analyze(self.laparams)
 self.pageno += 1
 self.receive_layout(self.cur_item)

 def render_string(self, textstate, seq, ncs, graphicstate):
 self.textstate = textstate.copy()
 super().render_string(self.textstate, seq, ncs, graphicstate)

 def render_char(
 self, matrix, font, fontsize, scaling, rise, cid, ncs, graphicstate
):
 try:
 text = font.to_unichr(cid)
 assert isinstance(text, str), str(type(text))
 except PDFUnicodeNotDefined:
 text = self.handle_undefined_char(font, cid)
 textwidth = font.char_width(cid)
 textdisp = font.char_disp(cid)
 item = LTStateAwareChar(
 matrix,
 font,
 fontsize,
 scaling,
 rise,
 text,
 textwidth,
 textdisp,
 ncs,
 graphicstate,
 self.textstate,
)
 self.cur_item.add(item)
 return item.adv

 def handle_undefined_char(self, font, cid):
 # log.info('undefined: %r, %r', font, cid)
 return (font.fontname, cid)

 def receive_layout(self, ltpage):
 self.result = ltpage

 def get_result(self):
 return self.result

def get_page_analysis(infile, pageno, pscript5_mode):
 rman = pdfminer.pdfinterp.PDFResourceManager(caching=True)
 if pdfminer.__version__ < '20200402':
 # Workaround for https://github.com/pdfminer/pdfminer.six/issues/395
 disable_boxes_flow = 2
 else:
 disable_boxes_flow = None
 dev = TextPositionTracker(
 rman,
 laparams=LAParams(
 all_texts=True, detect_vertical=True, boxes_flow=disable_boxes_flow
),
)
 interp = pdfminer.pdfinterp.PDFPageInterpreter(rman, dev)

 if pscript5_mode:
 patcher = patch.multiple(
 'pdfminer.pdffont.PDFType3Font',
 spec=True,
 get_ascent=PDFType3Font__PScript5_get_ascent,
 get_descent=PDFType3Font__PScript5_get_descent,
 get_height=PDFType3Font__PScript5_get_height,
)
 patcher.start()

 try:
 with Path(infile).open('rb') as f:
 page = PDFPage.get_pages(f, pagenos=[pageno], maxpages=0)
 interp.process_page(next(page))
 except PDFTextExtractionNotAllowed:
 raise EncryptedPdfError()
 finally:
 if pscript5_mode:
 patcher.stop()

 return dev.get_result()

def get_text_boxes(obj):
 for child in obj:
 if isinstance(child, (LTTextBox)):
 yield child
 else:
 try:
 yield from get_text_boxes(child)
 except TypeError:
 continue

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/pluginspec.py

© 2020 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

from abc import ABC, abstractmethod, abstractstaticmethod
from argparse import ArgumentParser, Namespace
from collections import namedtuple
from pathlib import Path
from typing import TYPE_CHECKING, AbstractSet, List, Optional

import pluggy

from ocrmypdf.helpers import Resolution

if TYPE_CHECKING:
 from PIL import Image

 from ocrmypdf._jobcontext import PageContext
 from ocrmypdf.pdfinfo import PdfInfo

hookspec = pluggy.HookspecMarker('ocrmypdf')

pylint: disable=unused-argument

@hookspec
def add_options(parser: ArgumentParser) -> None:
 """Allows the plugin to add its own command line and API arguments.

 OCRmyPDF converts command line arguments to API arguments, so adding
 arguments here will cause new arguments to be processed for API calls
 to ``ocrmypdf.ocr``, or when invoked on the command line.

 Note:
 This hook will be called from the main process, and may modify global state
 before child worker processes are forked.
 """

@hookspec
def check_options(options: Namespace) -> None:
 """Called to ask the plugin to check all of the options.

 The plugin may check if options that it added are valid.

 Warnings or other messages may be passed to the user by creating a logger
 object using ``log = logging.getLogger(__name__)`` and logging to this.

 The plugin may also modify the *options*. All objects that are in options
 must be picklable so they can be marshalled to child worker processes.

 Raises:
 ocrmypdf.exceptions.ExitCodeException: If options are not acceptable
 and the application should terminate gracefully with an informative
 message and error code.
 Note:
 This hook will be called from the main process, and may modify global state
 before child worker processes are forked.
	"""

@hookspec
def validate(pdfinfo: 'PdfInfo', options: Namespace) -> None:
 """Called to give a plugin an opportunity to review *options* and *pdfinfo*.

 options contains the "work order" to process a particular file. *pdfinfo*
 contains information about the input file obtained after loading and
 parsing. The plugin may modify the *options*. For example, you could decide
 that a certain type of file should be treated with ``options.force_ocr = True``
 based on information in its *pdfinfo*.

 Raises:
 ocrmypdf.exceptions.ExitCodeException: If options or pdfinfo are not acceptable
 and the application should terminate gracefully with an informative
 message and error code.
 Note:
 This hook will be called from the main process, and may modify global state
 before child worker processes are forked.
 """

@hookspec(firstresult=True)
def rasterize_pdf_page(
 input_file: Path,
 output_file: Path,
 raster_device: str,
 raster_dpi: Resolution,
 pageno: int,
 page_dpi: Optional[Resolution] = None,
 rotation: Optional[int] = None,
 filter_vector: bool = False,
) -> Path:
 """Rasterize one page of a PDF at resolution raster_dpi in canvas units.

 The image is sized to match the integer pixels dimensions implied by
 raster_dpi even if those numbers are noninteger. The image's DPI will
 be overridden with the values in page_dpi.

 Args:
 input_file: The PDF to rasterize.
 output_file: The desired name of the rasterized image.
 raster_device: Type of image to produce at output_file
 raster_dpi: Resolution at which to rasterize page
 pageno: Page number to rasterize (beginning at page 1)
 page_dpi: Resolution, overriding output image DPI
 rotation: Cardinal angle, clockwise, to rotate page
 filter_vector: If True, remove vector graphics objects
 Returns:
 Path: output_file if successful
 Note:
 This hook will be called from child processes. Modifying global state
 will not affect the main process or other child processes.
 Note:
 This is a :ref:`firstresult hook<firstresult>`.
 """

@hookspec(firstresult=True)
def filter_ocr_image(page: 'PageContext', image: 'Image') -> 'Image':
 """Called to filter the image before it is sent to OCR.

 This is the image that OCR sees, not what the user sees when they view the
 PDF. If ``redo_ocr`` is enabled, portions of the image will be masked so
 they are not shown to OCR. The main use of this hook is expected to be hiding
 content from OCR.

 The input image may be color, grayscale, or monochrome, and the
 output image may differ. The pixel width and height of the
 output image must be identical to the input image, or misalignment between
 the OCR text layer and visual position of the text will occur. Likewise,
 the output must be a faithful representation of the input, or alignment
 errors may occurs.

 Tesseract OCR only deals with monochrome images, and internally converts
 non-monochrome images to OCR.

 Note:
 This hook will be called from child processes. Modifying global state
 will not affect the main process or other child processes.
 Note:
 This is a :ref:`firstresult hook<firstresult>`.
 """

@hookspec(firstresult=True)
def filter_page_image(page: 'PageContext', image_filename: Path) -> Path:
 """Called to filter the whole page before it is inserted into the PDF.

 A whole page image is only produced when preprocessing command line arguments
 are issued or when ``--force-ocr`` is issued. If no whole page is image is
 produced for a given page, this function will not be called. This is not
 the image that will be shown to OCR.

 ocrmypdf will create the PDF page based on the image format used. If you
 convert the image to a JPEG, the output page will be created as a JPEG, etc.
 Note that the ocrmypdf image optimization stage may ultimately chose a
 different format.

 Note:
 This hook will be called from child processes. Modifying global state
 will not affect the main process or other child processes.
 Note:
 This is a :ref:`firstresult hook<firstresult>`.
 """

OrientationConfidence = namedtuple('OrientationConfidence', ('angle', 'confidence'))
"""Expresses an OCR engine's confidence in page rotation.

Attributes:
 angle (int): The clockwise angle (0, 90, 180, 270) that the page should be
 rotated. 0 means no rotation.
 confidence (float): How confident the OCR engine is that this the correct
 rotation. 0 is not confident, 15 is very confident. Arbitrary units.
"""

class OcrEngine(ABC):
 """A class representing an OCR engine with capabilities similar to Tesseract OCR.

 This could be used to create a plugin for another OCR engine instead of
 Tesseract OCR.
 """

 @abstractstaticmethod
 def version() -> str:
 """Returns the version of the OCR engine."""

 @abstractstaticmethod
 def creator_tag(options: Namespace) -> str:
 """Returns the creator tag to identify this software's role in creating the PDF.

 This tag will be inserted in the XMP metadata and DocumentInfo dictionary
 as appropriate. Ideally you should include the name of the OCR engine and its
 version. The text should not contain line breaks. This is to help developers
 like yourself identify the software that produced this file.

 OCRmyPDF will always prepend its name to this value.
 """

 @abstractmethod
 def __str__(self):
 """Returns name of OCR engine and version.

 This is used when OCRmyPDF wants to mention the name of the OCR engine
 to the user, usually in an error message.
 """

 @abstractstaticmethod
 def languages(options: Namespace) -> AbstractSet[str]:
 """Returns the set of all languages that are supported by the engine.

 Languages are typically given in 3-letter ISO 3166-1 codes, but actually
 can be any value understood by the OCR engine."""

 @abstractstaticmethod
 def get_orientation(input_file: Path, options: Namespace) -> OrientationConfidence:
 """Returns the orientation of the image."""

 @abstractstaticmethod
 def generate_hocr(
 input_file: Path, output_hocr: Path, output_text: Path, options: Namespace
) -> None:
 """Called to produce a hOCR file and sidecar text file."""

 @abstractstaticmethod
 def generate_pdf(
 input_file: Path, output_pdf: Path, output_text: Path, options: Namespace
) -> None:
 """Called to produce a text only PDF.

 Args:
 input_file: A page image on which to perform OCR.
 output_pdf: The expected name of the output PDF, which must be
 a single page PDF with no visible content of any kind, sized
 to the dimensions implied by the input_file's width, height
 and DPI. The image will be grafted onto the input PDF page.
 """

@hookspec(firstresult=True)
def get_ocr_engine() -> OcrEngine:
 """Returns an OcrEngine to use for processing this file.

 The OcrEngine may be instantiated multiple times, by both the main process
 and child process. As such, it must be obtain store any state in ``options``
 or some common location.

 Note:
 This is a :ref:`firstresult hook<firstresult>`.
 """

@hookspec(firstresult=True)
def generate_pdfa(
 pdf_pages: List[Path],
 pdfmark: Path,
 output_file: Path,
 compression: str,
 pdf_version: str,
 pdfa_part: str,
) -> Path:
 """Generate a PDF/A.

 This API strongly assumes a PDF/A generator with Ghostscript's semantics.

 OCRmyPDF will modify the metadata and possibly linearize the PDF/A after it
 is generated.

 Arguments:
 pdf_pages: A list of one or more filenames, will be merged into output_file.
 pdfmark: A PostScript file intended for Ghostscript with details on
 how to perform the PDF/A conversion.
 output_file: The name of the desired output file.
 compression: One of ``'jpeg'``, ``'lossless'``, ``''``. For ``'jpeg'``,
 the PDF/A generator should convert all images to JPEG encoding where
 possible. For lossless, all images should be converted to FlateEncode
 (lossless PNG). If an empty string, the PDF generator should make its
 own decisions about how to encode images.
 pdf_version: The minimum PDF version that the output file should be.
 At its own discretion, the PDF/A generator may raise the version,
 but should not lower it.
 pdfa_part: The desired PDF/A compliance level, such as ``'2B'``.

 Returns:
 Path: If successful, the hook should return ``output_file``.

 Note:
 This is a :ref:`firstresult hook<firstresult>`.
 """

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/quality.py

© 2020 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

"""Utilities to measure OCR quality"""

import re
from typing import Iterable

class OcrQualityDictionary:
 """Manages a dictionary for simple OCR quality checks."""

 def __init__(self, *, wordlist: Iterable[str]):
 """Construct a dictionary from a list of words.

 Words for which capitalization is important should be capitalized in the
 dictionary. Words that contain spaces or other punctuation will never match.
 """
 self.dictionary = set(wordlist)

 def measure_words_matched(self, ocr_text: str) -> float:
 """Check how many unique words in the OCR text match a dictionary.

 Words with mixed capitalized are only considered a match if the test word
 matches that capitalization.

 Returns:
 number of words that match / number
 """
 text = re.sub(r"[0-9_]+", ' ', ocr_text)
 text = re.sub(r'\W+', ' ', text)
 text_words_list = re.split(r'\s+', text)
 text_words = {w for w in text_words_list if len(w) >= 3}

 matches = 0
 for w in text_words:
 if w in self.dictionary or (
 w != w.lower() and w.lower() in self.dictionary
):
 matches += 1
 if matches > 0:
 hit_ratio = matches / len(text_words)
 else:
 hit_ratio = 0.0
 return hit_ratio

ocrmypdf-10.3.1+dfsg/src/ocrmypdf/subprocess.py

© 2020 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

"""Wrappers to manage subprocess calls"""

import logging
import os
import re
import shutil
import sys
from collections.abc import Mapping
from contextlib import suppress
from distutils.version import LooseVersion
from functools import lru_cache
from pathlib import Path
from subprocess import PIPE, STDOUT, CalledProcessError
from subprocess import run as subprocess_run

from ocrmypdf.exceptions import MissingDependencyError

log = logging.getLogger(__name__)

def run(args, *, env=None, **kwargs):
 """Wrapper around :py:func:`subprocess.run`

 The main purpose of this wrapper is to log subprocess output in an orderly
 fashion that indentifies the responsible subprocess. An additional
 task is that this function goes to greater lengths to find possible Windows
 locations of our dependencies when they are not on the system PATH.
 """
 if not env:
 env = os.environ

 # Search in spoof path if necessary
 program = args[0]

 if os.name == 'nt':
 args = _fix_windows_args(program, args, env)

 log.debug("Running: %s", args)
 process_log = log.getChild('subprocess.' + os.path.basename(program))
 if sys.version_info < (3, 7) and os.name == 'nt':
 # Can't use close_fds=True on Windows with Python 3.6 or older
 # https://bugs.python.org/issue19575, etc.
 kwargs['close_fds'] = False

 stderr = None
 try:
 proc = subprocess_run(args, env=env, **kwargs)
 except CalledProcessError as e:
 stderr = getattr(e, 'stderr', None)
 raise
 else:
 stderr = getattr(proc, 'stderr', None)
 finally:
 if process_log.isEnabledFor(logging.DEBUG) and stderr:
 with suppress(AttributeError, UnicodeDecodeError):
 stderr = stderr.decode('utf-8', 'replace')
 process_log.debug("stderr = %s", stderr)
 return proc

def _fix_windows_args(program, args, env):
 """Adjust our desired program and command line arguments for use on Windows"""

 if sys.version_info < (3, 8):
 # bpo-33617 - Windows needs manual Path -> str conversion
 args = [os.fspath(arg) for arg in args]
 program = os.fspath(program)

 # If we are running a .py on Windows, ensure we call it with this Python
 # (to support test suite shims)
 if program.lower().endswith('.py'):
 args = [sys.executable] + args

 paths = os.pathsep.join(os.get_exec_path(env))
 if not shutil.which(args[0], path=paths):
 # If the program we want is not on the PATH, add some interesting
 # locations in %PROGRAMFILES% to the PATH and try again
 shimmed_path = shim_paths_with_program_files(env)
 new_args0 = shutil.which(args[0], path=shimmed_path)
 if new_args0:
 args[0] = new_args0
 return args

@lru_cache(maxsize=None)
def get_version(
 program: str, *, version_arg: str = '--version', regex=r'(\d+(\.\d+)*)', env=None
):
 """Get the version of the specified program

 Arguments:
 program: The program to version check.
 version_arg: The argument needed to ask for its version, e.g. ``--version``.
 regex: A regular expression to parse the program's output and obtain the
 version.
 env: Custom ``os.environ`` in which to run program.
 """
 args_prog = [program, version_arg]
 try:
 proc = run(
 args_prog,
 close_fds=True,
 universal_newlines=True,
 stdout=PIPE,
 stderr=STDOUT,
 check=True,
 env=env,
)
 output = proc.stdout
 except FileNotFoundError as e:
 raise MissingDependencyError(
 f"Could not find program '{program}' on the PATH"
) from e
 except CalledProcessError as e:
 if e.returncode != 0:
 raise MissingDependencyError(
 f"Ran program '{program}' but it exited with an error:\n{e.output}"
) from e
 raise MissingDependencyError(
 f"Could not find program '{program}' on the PATH"
) from e
 try:
 version = re.match(regex, output.strip()).group(1)
 except AttributeError as e:
 raise MissingDependencyError(
 f"The program '{program}' did not report its version. "
 f"Message was:\n{output}"
)

 return version

def shim_paths_with_program_files(env=None):
 if not env:
 env = os.environ
 program_files = env.get('PROGRAMFILES', '')
 if not program_files:
 return env.get('PATH', '')

 def path_walker():
 for path in Path(program_files).iterdir():
 if not path.is_dir():
 continue
 if path.name.lower() == 'tesseract-ocr':
 yield path
 elif path.name.lower() == 'gs':
 yield from (p for p in path.glob('**/bin') if p.is_dir())

 paths = sorted(
 (p for p in path_walker()), key=lambda p: (p.name, p.parent.name), reverse=True
)
 paths.extend(
 Path(str_path)
 for str_path in os.get_exec_path(env)
 if Path(str_path) not in set(paths)
)
 return os.pathsep.join(str(p) for p in paths)

missing_program = '''
The program '{program}' could not be executed or was not found on your
system PATH.
'''

missing_optional_program = '''
The program '{program}' could not be executed or was not found on your
system PATH. This program is required when you use the
{required_for} arguments. You could try omitting these arguments, or install
the package.
'''

missing_recommend_program = '''
The program '{program}' could not be executed or was not found on your
system PATH. This program is recommended when using the {required_for} arguments,
but not required, so we will proceed. For best results, install the program.
'''

old_version = '''
OCRmyPDF requires '{program}' {need_version} or higher. Your system appears
to have {found_version}. Please update this program.
'''

old_version_required_for = '''
OCRmyPDF requires '{program}' {need_version} or higher when run with the
{required_for} arguments. If you omit these arguments, OCRmyPDF may be able to
proceed. For best results, install the program.
'''

osx_install_advice = '''
If you have homebrew installed, try these command to install the missing
package:
 brew install {package}
'''

linux_install_advice = '''
On systems with the aptitude package manager (Debian, Ubuntu), try these
commands:
 sudo apt-get update
 sudo apt-get install {package}

On RPM-based systems (Red Hat, Fedora), search for instructions on
installing the RPM for {program}.
'''

windows_install_advice = '''
If not already installed, install the Chocolatey package manager. Then use
a command prompt to install the missing package:
 choco install {package}
'''

def _get_platform():
 if sys.platform.startswith('freebsd'):
 return 'freebsd'
 elif sys.platform.startswith('linux'):
 return 'linux'
 elif sys.platform.startswith('win'):
 return 'windows'
 return sys.platform

def _error_trailer(program, package, **kwargs):
 if isinstance(package, Mapping):
 package = package.get(_get_platform(), program)

 if _get_platform() == 'darwin':
 log.info(osx_install_advice.format(**locals()))
 elif _get_platform() == 'linux':
 log.info(linux_install_advice.format(**locals()))
 elif _get_platform() == 'windows':
 log.info(windows_install_advice.format(**locals()))

def _error_missing_program(program, package, required_for, recommended):
 if recommended:
 log.warning(missing_recommend_program.format(**locals()))
 elif required_for:
 log.error(missing_optional_program.format(**locals()))
 else:
 log.error(missing_program.format(**locals()))
 _error_trailer(**locals())

def _error_old_version(program, package, need_version, found_version, required_for):
 if required_for:
 log.error(old_version_required_for.format(**locals()))
 else:
 log.error(old_version.format(**locals()))
 _error_trailer(**locals())

def check_external_program(
 *,
 program,
 package,
 version_checker,
 need_version,
 required_for=None,
 recommended=False,
):
 try:
 if callable(version_checker):
 found_version = version_checker()
 else:
 found_version = version_checker
 except (CalledProcessError, FileNotFoundError, MissingDependencyError):
 _error_missing_program(program, package, required_for, recommended)
 if not recommended:
 raise MissingDependencyError()
 return

 def remove_leading_v(s):
 if s.startswith('v'):
 return s[1:]
 return s

 found_version = remove_leading_v(found_version)
 need_version = remove_leading_v(need_version)

 if found_version and LooseVersion(found_version) < LooseVersion(need_version):
 _error_old_version(program, package, need_version, found_version, required_for)
 if not recommended:
 raise MissingDependencyError()

 log.debug('Found %s %s', program, found_version)

ocrmypdf-10.3.1+dfsg/tests/cache/2400dpi/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/pdf.bin

a la Waterman

4 ons linzen
3 liter water

3 uien

bloem, boter
2 kopjes melk

laurier, kruidnagel, kerrie, zout

De linzgen wassen en in -l liter kokend wa-

ter 1 dag laten weken, 2 liter water bij

de linzen voegen, zonder het water waarin

ze geweekt zijn af te gieten, De helft van
de uien bakken met laurier en Kruicdnagel.

Alle uien, kerrie en gout bij de linzen

voegen, Alles aan de kook brengen,. Van de

bloem met boter en melk een papje maken en

verder afmaken met de soep, Als de linzen

gaar Zijn is de soep klaar.

ocrmypdf-10.3.1+dfsg/tests/cache/2400dpi/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica

ocrmypdf-10.3.1+dfsg/tests/cache/2400dpi/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/2400dpi/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/txt.bin

a la Waterman

4 ons linzen

3 liter water

3 uien

bloem, boter

2 kopjes melk

laurier, kruidnagel, kerrie, zout

De linzgen wassen en in -l liter kokend wa-
ter 1 dag laten weken, 2 liter water bij
de linzen voegen, zonder het water waarin
ze geweekt zijn af te gieten, De helft van
de uien bakken met laurier en Kruicdnagel.
Alle uien, kerrie en gout bij de linzen
voegen, Alles aan de kook brengen,. Van de
bloem met boter en melk een papje maken en
verder afmaken met de soep, Als de linzen
gaar Zijn is de soep klaar.
�

ocrmypdf-10.3.1+dfsg/tests/cache/3small/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/pdf.bin

Tarnose

Bokale oa

Lehuntze

Mugerre

Milafranga Komunikabideak

BAIONA i zeettnansise —
1 Trenbideak -- ~~~

t\ Basusarri — spmsans20141004 se: . a ~

ocrmypdf-10.3.1+dfsg/tests/cache/3small/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica

ocrmypdf-10.3.1+dfsg/tests/cache/3small/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/3small/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/txt.bin

Tarnose

Bokale oa

Lehuntze

Mugerre

Milafranga Komunikabideak

BAIONA i zeettnansise —

1 Trenbideak -- ~~~

t\ Basusarri — spmsans20141004 se: . a ~
�

ocrmypdf-10.3.1+dfsg/tests/cache/3small/__-l__eng__000002_ocr.png__000002_ocr_tess__pdf__txt/pdf.bin

Covfefe is a perfectly cromulent word.

ocrmypdf-10.3.1+dfsg/tests/cache/3small/__-l__eng__000002_ocr.png__000002_ocr_tess__pdf__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica

ocrmypdf-10.3.1+dfsg/tests/cache/3small/__-l__eng__000002_ocr.png__000002_ocr_tess__pdf__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/3small/__-l__eng__000002_ocr.png__000002_ocr_tess__pdf__txt/txt.bin

Covfefe is a perfectly cromulent word.
�

ocrmypdf-10.3.1+dfsg/tests/cache/3small/__-l__eng__000003_ocr.png__000003_ocr_tess__pdf__txt/pdf.bin

Linzensoep a la Waterman

4 ons linzen
3 liter water

3 uien

bloem, boter
2 kopjes melk

laurier, kruidnagel, kerrie, zout

De linzgen wassen en in -l liter kokend wa-

ter 1 dag laten weken, 2 liter water bij
de linzen voegen, zonder het water waarin
ze geweekt zijn af te gieten, De helft van
de uien bakken met laurier en Kruicdnagel.

Alle uien, kerrie en gout bij de linzen

voegen, Alles aan de kook brengen,. Van de

bloem met boter en melk een papje maken en

verder afmaken met de soep, Als de linzen

gaar Zijn is de soep klaar.

ocrmypdf-10.3.1+dfsg/tests/cache/3small/__-l__eng__000003_ocr.png__000003_ocr_tess__pdf__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica

ocrmypdf-10.3.1+dfsg/tests/cache/3small/__-l__eng__000003_ocr.png__000003_ocr_tess__pdf__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/3small/__-l__eng__000003_ocr.png__000003_ocr_tess__pdf__txt/txt.bin

Linzensoep a la Waterman

4 ons linzen

3 liter water

3 uien

bloem, boter

2 kopjes melk

laurier, kruidnagel, kerrie, zout

De linzgen wassen en in -l liter kokend wa-
ter 1 dag laten weken, 2 liter water bij
de linzen voegen, zonder het water waarin
ze geweekt zijn af te gieten, De helft van
de uien bakken met laurier en Kruicdnagel.
Alle uien, kerrie en gout bij de linzen
voegen, Alles aan de kook brengen,. Van de
bloem met boter en melk een papje maken en
verder afmaken met de soep, Als de linzen
gaar Zijn is de soep klaar.
�

ocrmypdf-10.3.1+dfsg/tests/cache/aspect/__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt/hocr.bin

 This
 should
 be
 a
 perfect
 circle:

ocrmypdf-10.3.1+dfsg/tests/cache/aspect/__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica

ocrmypdf-10.3.1+dfsg/tests/cache/aspect/__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/aspect/__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt/txt.bin

This should be a perfect circle:
�

ocrmypdf-10.3.1+dfsg/tests/cache/aspect/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/pdf.bin

This should be a perfect circle:

ocrmypdf-10.3.1+dfsg/tests/cache/aspect/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica

ocrmypdf-10.3.1+dfsg/tests/cache/aspect/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/aspect/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/txt.bin

This should be a perfect circle:
�

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt/hocr.bin

 The
 LinnSequencer

 32
 Track
 MIDI
 Sequence
 Recorder

 The
 LinnSequencer
 is
 a
 state-of-the-art
 composition
 and
 performance
 tool
 for
 the
 professional
 musician.
 It
 is

 extremely
 powerful,
 yet
 amazingly
 simple
 to
 learn
 and
 use.
 It’s
 many
 remarkable
 features
 include:

 ¢
 Operation
 is
 similar
 to
 multi-track
 tape
 recorder
 with
 PLAY,
 STOP,
 RECORD,
 FAST

 FORWARD,
 REWIND,
 and
 LOCATE
 controls.

 e
 Each
 of
 the
 100
 sequences
 contains
 32
 simultaneous,
 polyphonic
 tracks.
 Each
 track
 may

 be
 assigned
 to
 one
 of
 16
 MIDI
 channels.
 Simultaneously
 plays
 up
 to
 16
 polyphonic

 synthesizers!

 ¢
 Ultra-fast
 3%”
 disk
 drive
 stores
 complex
 songs
 in
 seconds
 and
 holds
 over
 110,000
 notes

 per
 disk!

 ¢
 One
 or
 all
 tracks
 may
 be
 TRANSPOSED
 at
 the
 touch
 of
 a
 key.

 e
 Exclusive
 real-time
 ERASE
 function
 makes
 editing
 FAST.

 *
 Exclusive
 REPEAT
 function
 automatically
 repeats
 any
 held
 notes
 at
 a
 pre-selected

 rhythmic
 value.

 ¢
 TIMING
 CORRECTION
 works
 during
 playback
 and
 operates
 without
 ‘chopping’
 notes.

 ¢
 Optional
 SMPTE
 time
 code
 synchronization.

 ©
 Optional
 remote
 control.

 Recording
 a
 Sequence

 To
 record
 a
 sequence,
 simply
 press
 RECORD
 and
 PLAY,

 then
 play
 your
 MIDI
 keyboard
 in
 time
 to
 the
 Sequencer’s

 click
 track.
 When
 the
 sequence
 loops
 back
 around
 to
 bar
 1,

 you’
 ll
 hear
 what
 you
 played—only
 all
 timing
 errors
 will
 be

 corrected!
 (Timing
 correction
 may
 be
 adjusted
 or
 defeated).

 Any
 additional
 notes
 played
 will
 be
 added
 into
 the
 track

 —
 existing
 notes
 are
 not
 erased
 while
 recording!

 FAST
 FORWARD,
 REWIND,
 and
 LOCATE
 controls

 may
 be
 used
 at
 any
 time
 to
 quickly
 access
 any
 location
 in

 your
 sequence
 for
 spot-recording.
 To
 overdub
 a
 new
 part,

 select
 a
 different
 track
 and
 start
 recording—while
 you

 record,
 the
 first
 track
 will
 play
 in
 perfect
 sync
 (unless
 you

 MUTE
 it,
 or
 SOLO
 another
 track).
 In
 this
 way,
 up
 to
 32

 tracks
 may
 be
 overdubbed!
 All
 MIDI
 effects
 are
 recorded

 including
 pitch
 bend,
 modulation,
 velocity,
 aftertouch,

 sustain
 pedal,
 and
 program
 changes!

 Editing

 To
 erase
 a
 wrong
 note,
 simply
 hold
 ERASE
 and
 press

 the
 note
 to
 be
 erased
 just
 before
 it
 plays
 in
 the
 sequence—

 when
 played
 back,
 it
 will
 be
 gone.
 Notes
 may
 also
 be

 added,
 erased,
 or
 changed
 using
 the
 SINGLE
 STEP
 func-

 tion.
 To
 overdub
 notes
 at
 specific
 points
 within
 a
 sequence,

 Additional
 Features

 simply
 use
 LOCATE,
 FAST
 FORWARD,
 or
 REWIND
 to

 find
 the
 desired
 bar
 number,
 then
 start
 recording.

 The
 INSERT/COPY
 function
 allows
 you
 to
 move
 bars

 from
 one
 location
 to
 another—in
 the
 same
 sequence
 or
 a

 different
 one.
 For
 example,
 you
 might
 insert
 a
 copy
 of
 the

 first
 verse
 between
 the
 second
 chorus
 and
 the
 bridge.

 DELETE
 BARS
 operates
 the
 same
 way
 to
 remove

 unwanted
 sections,

 Creating
 a
 Song

 One
 way
 to
 create
 a
 song
 is
 to
 record
 each
 track
 all
 the

 way
 through
 (up
 to
 999
 bars).
 Another
 way
 is
 to
 record

 each
 basic
 section
 (verse,
 chorus,
 etc.)
 in
 individual

 sequences,
 then
 use
 the
 CREATE
 SONG
 function
 to
 “chain”

 them
 together.
 CREATE
 SONG
 will
 then
 automatically

 copy
 all
 the
 parts
 into
 a
 new
 sequence.
 If
 desired,
 you
 can

 even
 set
 the
 last
 few
 bars
 to
 repeat
 infinitely,
 for
 a
 fadeout.

 Composition
 Without
 Compromise

 The
 technology
 you
 use
 should
 never
 be
 so
 complex
 that

 it
 interferes
 with
 the
 creative
 process.
 That’s
 precisely
 why

 the
 LinnSequencer
 is
 designed
 to
 let
 you
 compose,
 record

 and
 edit
 while
 devoting
 your
 undivided
 attention
 to
 your

 music.
 See
 your
 Linn
 dealer
 today
 for
 a
 demonstration!

 *
 Simple,
 easy
 to
 learn
 operation—the
 32
 character
 LCD
 display
 clearly
 guides
 you
 through
 all
 operations.
 If
 needed,
 the

 HELP
 button
 displays
 additional
 explanations.

 *
 Non-destructive
 recording—existing
 notes
 are
 not
 erased
 while
 recording.

 ¢
 Two
 FOOTSWITCH
 INPUTS
 may
 be
 assigned
 to
 remotely
 control
 many
 of
 the
 commonly
 used
 functions,
 including

 ERASE,
 REPEAT,
 PLAY/STOP,
 or
 LOCATE.

 ¢
 Iwo
 TRIGGER
 OUTPUTS
 may
 be
 programmed
 to
 output
 pulses
 at
 any
 selected
 note
 value.

 ©
 Will
 sync
 to
 standard
 LinnDrum
 or
 Linn
 9000
 sync
 tone.

 ©
 Utilizes
 ultra
 high-speed,
 8
 MHz
 80186
 16
 bit
 computer
 internally
 for
 FAST
 operation.

 *
 TEMPO
 may
 be
 specified
 in
 BEATS-PER-MINUTE
 or
 FRAMES-PER-BEAT
 at
 24,
 25,
 or
 30
 frames
 per
 second,

 (even
 drop
 frame!)

 ¢
 TEMPO
 may
 be
 entered
 numerically,
 adjustable
 in
 tenths
 of
 a
 Beat-Per-Minute
 increments,
 or
 by
 tapping
 quarter
 notes

 on
 the
 TAP
 TEMPO
 button.

 ¢
 TEMPO
 CHANGES
 may
 be
 programmed
 into
 a
 sequence,
 with
 smooth
 transitions
 if
 desired.

 ¢
 Any
 TIME
 SIGNATURE
 may
 be
 used,
 and
 may
 be
 changed
 within
 a
 song.

 linn

 Linn
 Electronics,
 Inc.

 18720
 Oxnard
 Street,
 Tarzana,
 CA
 91356

 (818)
 708-8131
 TELEX
 #298949
 LINN
 UR

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt/txt.bin

The LinnSequencer
32 Track MIDI Sequence Recorder

The LinnSequencer is a state-of-the-art composition and performance tool for the professional musician. It is

extremely powerful, yet amazingly simple to learn and use. It’s many remarkable features include:

¢ Operation is similar to multi-track tape recorder with PLAY, STOP, RECORD, FAST
FORWARD, REWIND, and LOCATE controls.

e Each of the 100 sequences contains 32 simultaneous, polyphonic tracks. Each track may
be assigned to one of 16 MIDI channels. Simultaneously plays up to 16 polyphonic

synthesizers!

¢ Ultra-fast 3%” disk drive stores complex songs in seconds and holds over 110,000 notes

per disk!

¢ One or all tracks may be TRANSPOSED at the touch of a key.
e Exclusive real-time ERASE function makes editing FAST.
* Exclusive REPEAT function automatically repeats any held notes at a pre-selected

rhythmic value.

¢ TIMING CORRECTION works during playback and operates without ‘chopping’ notes.

¢ Optional SMPTE time code synchronization.

© Optional remote control.

Recording a Sequence

To record a sequence, simply press RECORD and PLAY,
then play your MIDI keyboard in time to the Sequencer’s
click track. When the sequence loops back around to bar 1,
you’ ll hear what you played—only all timing errors will be

corrected! (Timing correction may be adjusted or defeated).

Any additional notes played will be added into the track
— existing notes are not erased while recording!

FAST FORWARD, REWIND, and LOCATE controls
may be used at any time to quickly access any location in
your sequence for spot-recording. To overdub a new part,
select a different track and start recording—while you
record, the first track will play in perfect sync (unless you
MUTE it, or SOLO another track). In this way, up to 32
tracks may be overdubbed! All MIDI effects are recorded
including pitch bend, modulation, velocity, aftertouch,
sustain pedal, and program changes!

Editing

To erase a wrong note, simply hold ERASE and press
the note to be erased just before it plays in the sequence—
when played back, it will be gone. Notes may also be

added, erased, or changed using the SINGLE STEP func-
tion. To overdub notes at specific points within a sequence,

Additional Features

simply use LOCATE, FAST FORWARD, or REWIND to
find the desired bar number, then start recording.

The INSERT/COPY function allows you to move bars
from one location to another—in the same sequence or a
different one. For example, you might insert a copy of the
first verse between the second chorus and the bridge.
DELETE BARS operates the same way to remove
unwanted sections,

Creating a Song

One way to create a song is to record each track all the
way through (up to 999 bars). Another way is to record
each basic section (verse, chorus, etc.) in individual
sequences, then use the CREATE SONG function to “chain”
them together. CREATE SONG will then automatically
copy all the parts into a new sequence. If desired, you can
even set the last few bars to repeat infinitely, for a fadeout.

Composition Without Compromise

The technology you use should never be so complex that
it interferes with the creative process. That’s precisely why
the LinnSequencer is designed to let you compose, record
and edit while devoting your undivided attention to your
music. See your Linn dealer today for a demonstration!

* Simple, easy to learn operation—the 32 character LCD display clearly guides you through all operations. If needed, the

HELP button displays additional explanations.

* Non-destructive recording—existing notes are not erased while recording.
¢ Two FOOTSWITCH INPUTS may be assigned to remotely control many of the commonly used functions, including

ERASE, REPEAT, PLAY/STOP, or LOCATE.

¢ Iwo TRIGGER OUTPUTS may be programmed to output pulses at any selected note value.

© Will sync to standard LinnDrum or Linn 9000 sync tone.

© Utilizes ultra high-speed, 8 MHz 80186 16 bit computer internally for FAST operation.
* TEMPO may be specified in BEATS-PER-MINUTE or FRAMES-PER-BEAT at 24, 25, or 30 frames per second,

(even drop frame!)

¢ TEMPO may be entered numerically, adjustable in tenths of a Beat-Per-Minute increments, or by tapping quarter notes

on the TAP TEMPO button.

¢ TEMPO CHANGES may be programmed into a sequence, with smooth transitions if desired.
¢ Any TIME SIGNATURE may be used, and may be changed within a song.

linn
Linn Electronics, Inc.

18720 Oxnard Street, Tarzana, CA 91356
(818) 708-8131 TELEX #298949 LINN UR
�

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/pdf.bin

The LinnSequencer
32 Track MIDI Sequence Recorder

The LinnSequencer is a state-of-the-art composition and performance tool for the professional musician. It is

extremely powerful, yet amazingly simple to learn and use. It’s many remarkable features include:

¢ Operation is similar to multi-track tape recorder with PLAY, STOP, RECORD, FAST
FORWARD, REWIND, and LOCATE controls.

e Each of the 100 sequences contains 32 simultaneous, polyphonic tracks. Each track may
be assigned to one of 16 MIDI channels. Simultaneously plays up to 16 polyphonic
synthesizers!

¢ Ultra-fast 3%” disk drive stores complex songs in seconds and holds over 110,000 notes
per disk!

¢ One or all tracks may be TRANSPOSED at the touch of a key.

e Exclusive real-time ERASE function makes editing FAST.

* Exclusive REPEAT function automatically repeats any held notes at a pre-selected
rhythmic value.

¢ TIMING CORRECTION works during playback and operates without ‘chopping’ notes.

¢ Optional SMPTE time code synchronization.

© Optional remote control.

Recording a Sequence
To record a sequence, simply press RECORD and PLAY,

then play your MIDI keyboard in time to the Sequencer’s
click track. When the sequence loops back around to bar 1,
you’ ll hear what you played—only all timing errors will be
corrected! (Timing correction may be adjusted or defeated).
Any additional notes played will be added into the track
— existing notes are not erased while recording!

FAST FORWARD, REWIND, and LOCATE controls
may be used at any time to quickly access any location in
your sequence for spot-recording. To overdub a new part,
select a different track and start recording—while you
record, the first track will play in perfect sync (unless you
MUTE it, or SOLO another track). In this way, up to 32
tracks may be overdubbed! All MIDI effects are recorded
including pitch bend, modulation, velocity, aftertouch,
sustain pedal, and program changes!

Editing
To erase a wrong note, simply hold ERASE and press

the note to be erased just before it plays in the sequence—
when played back, it will be gone. Notes may also be
added, erased, or changed using the SINGLE STEP func-
tion. To overdub notes at specific points within a sequence,

Additional Features

simply use LOCATE, FAST FORWARD, or REWIND to
find the desired bar number, then start recording.

The INSERT/COPY function allows you to move bars
from one location to another—in the same sequence or a
different one. For example, you might insert a copy of the
first verse between the second chorus and the bridge.
DELETE BARS operates the same way to remove
unwanted sections,

Creating a Song
One way to create a song is to record each track all the

way through (up to 999 bars). Another way is to record
each basic section (verse, chorus, etc.) in individual
sequences, then use the CREATE SONG function to “chain”
them together. CREATE SONG will then automatically
copy all the parts into a new sequence. If desired, you can
even set the last few bars to repeat infinitely, for a fadeout.

Composition Without Compromise
The technology you use should never be so complex that

it interferes with the creative process. That’s precisely why
the LinnSequencer is designed to let you compose, record
and edit while devoting your undivided attention to your
music. See your Linn dealer today for a demonstration!

* Simple, easy to learn operation—the 32 character LCD display clearly guides you through all operations. If needed, the
HELP button displays additional explanations.

* Non-destructive recording—existing notes are not erased while recording.

¢ Two FOOTSWITCH INPUTS may be assigned to remotely control many of the commonly used functions, including
ERASE, REPEAT, PLAY/STOP, or LOCATE.

¢ Iwo TRIGGER OUTPUTS may be programmed to output pulses at any selected note value.

© Will sync to standard LinnDrum or Linn 9000 sync tone.

© Utilizes ultra high-speed, 8 MHz 80186 16 bit computer internally for FAST operation.

* TEMPO may be specified in BEATS-PER-MINUTE or FRAMES-PER-BEAT at 24, 25, or 30 frames per second,
(even drop frame!)

¢ TEMPO may be entered numerically, adjustable in tenths of a Beat-Per-Minute increments, or by tapping quarter notes
on the TAP TEMPO button.

¢ TEMPO CHANGES may be programmed into a sequence, with smooth transitions if desired.

¢ Any TIME SIGNATURE may be used, and may be changed within a song.

linn
Linn Electronics, Inc.

18720 Oxnard Street, Tarzana, CA 91356

(818) 708-8131 TELEX #298949 LINN UR

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/txt.bin

The LinnSequencer
32 Track MIDI Sequence Recorder

The LinnSequencer is a state-of-the-art composition and performance tool for the professional musician. It is

extremely powerful, yet amazingly simple to learn and use. It’s many remarkable features include:

¢ Operation is similar to multi-track tape recorder with PLAY, STOP, RECORD, FAST
FORWARD, REWIND, and LOCATE controls.

e Each of the 100 sequences contains 32 simultaneous, polyphonic tracks. Each track may
be assigned to one of 16 MIDI channels. Simultaneously plays up to 16 polyphonic

synthesizers!

¢ Ultra-fast 3%” disk drive stores complex songs in seconds and holds over 110,000 notes

per disk!

¢ One or all tracks may be TRANSPOSED at the touch of a key.
e Exclusive real-time ERASE function makes editing FAST.
* Exclusive REPEAT function automatically repeats any held notes at a pre-selected

rhythmic value.

¢ TIMING CORRECTION works during playback and operates without ‘chopping’ notes.

¢ Optional SMPTE time code synchronization.

© Optional remote control.

Recording a Sequence

To record a sequence, simply press RECORD and PLAY,
then play your MIDI keyboard in time to the Sequencer’s
click track. When the sequence loops back around to bar 1,
you’ ll hear what you played—only all timing errors will be

corrected! (Timing correction may be adjusted or defeated).

Any additional notes played will be added into the track
— existing notes are not erased while recording!

FAST FORWARD, REWIND, and LOCATE controls
may be used at any time to quickly access any location in
your sequence for spot-recording. To overdub a new part,
select a different track and start recording—while you
record, the first track will play in perfect sync (unless you
MUTE it, or SOLO another track). In this way, up to 32
tracks may be overdubbed! All MIDI effects are recorded
including pitch bend, modulation, velocity, aftertouch,
sustain pedal, and program changes!

Editing

To erase a wrong note, simply hold ERASE and press
the note to be erased just before it plays in the sequence—
when played back, it will be gone. Notes may also be

added, erased, or changed using the SINGLE STEP func-
tion. To overdub notes at specific points within a sequence,

Additional Features

simply use LOCATE, FAST FORWARD, or REWIND to
find the desired bar number, then start recording.

The INSERT/COPY function allows you to move bars
from one location to another—in the same sequence or a
different one. For example, you might insert a copy of the
first verse between the second chorus and the bridge.
DELETE BARS operates the same way to remove
unwanted sections,

Creating a Song

One way to create a song is to record each track all the
way through (up to 999 bars). Another way is to record
each basic section (verse, chorus, etc.) in individual
sequences, then use the CREATE SONG function to “chain”
them together. CREATE SONG will then automatically
copy all the parts into a new sequence. If desired, you can
even set the last few bars to repeat infinitely, for a fadeout.

Composition Without Compromise

The technology you use should never be so complex that
it interferes with the creative process. That’s precisely why
the LinnSequencer is designed to let you compose, record
and edit while devoting your undivided attention to your
music. See your Linn dealer today for a demonstration!

* Simple, easy to learn operation—the 32 character LCD display clearly guides you through all operations. If needed, the

HELP button displays additional explanations.

* Non-destructive recording—existing notes are not erased while recording.
¢ Two FOOTSWITCH INPUTS may be assigned to remotely control many of the commonly used functions, including

ERASE, REPEAT, PLAY/STOP, or LOCATE.

¢ Iwo TRIGGER OUTPUTS may be programmed to output pulses at any selected note value.

© Will sync to standard LinnDrum or Linn 9000 sync tone.

© Utilizes ultra high-speed, 8 MHz 80186 16 bit computer internally for FAST operation.
* TEMPO may be specified in BEATS-PER-MINUTE or FRAMES-PER-BEAT at 24, 25, or 30 frames per second,

(even drop frame!)

¢ TEMPO may be entered numerically, adjustable in tenths of a Beat-Per-Minute increments, or by tapping quarter notes

on the TAP TEMPO button.

¢ TEMPO CHANGES may be programmed into a sequence, with smooth transitions if desired.
¢ Any TIME SIGNATURE may be used, and may be changed within a song.

linn
Linn Electronics, Inc.

18720 Oxnard Street, Tarzana, CA 91356
(818) 708-8131 TELEX #298949 LINN UR
�

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__eng__000002_ocr.png__000002_ocr_hocr__hocr__txt/hocr.bin

 The
 LinnSequencer

 32
 Track
 MIDI
 Sequence
 Recorder

 The
 LinnSequencer
 is
 a
 state-of-the-art
 composition
 and
 performance
 tool
 for
 the
 professional
 musician.
 It
 is

 extremely
 powerful,
 yet
 amazingly
 simple
 to
 learn
 and
 use.
 It’s
 many
 remarkable
 features
 include:

 ¢
 Operation
 is
 similar
 to
 multi-track
 tape
 recorder
 with
 PLAY,
 STOP,
 RECORD,
 FAST

 FORWARD,
 REWIND,
 and
 LOCATE
 controls.

 e
 Each
 of
 the
 100
 sequences
 contains
 32
 simultaneous,
 polyphonic
 tracks.
 Each
 track
 may

 be
 assigned
 to
 one
 of
 16
 MIDI
 channels.
 Simultaneously
 plays
 up
 to
 16
 polyphonic

 synthesizers!

 ¢
 Ultra-fast
 3%”
 disk
 drive
 stores
 complex
 songs
 in
 seconds
 and
 holds
 over
 110,000
 notes

 per
 disk!

 ¢
 One
 or
 all
 tracks
 may
 be
 TRANSPOSED
 at
 the
 touch
 of
 a
 key.

 e
 Exclusive
 real-time
 ERASE
 function
 makes
 editing
 FAST.

 *
 Exclusive
 REPEAT
 function
 automatically
 repeats
 any
 held
 notes
 at
 a
 pre-selected

 rhythmic
 value.

 ¢
 TIMING
 CORRECTION
 works
 during
 playback
 and
 operates
 without
 ‘chopping’
 notes.

 ¢
 Optional
 SMPTE
 time
 code
 synchronization.

 ©
 Optional
 remote
 control.

 Recording
 a
 Sequence

 To
 record
 a
 sequence,
 simply
 press
 RECORD
 and
 PLAY,

 then
 play
 your
 MIDI
 keyboard
 in
 time
 to
 the
 Sequencer’s

 click
 track.
 When
 the
 sequence
 loops
 back
 around
 to
 bar
 1,

 you’
 ll
 hear
 what
 you
 played—only
 all
 timing
 errors
 will
 be

 corrected!
 (Timing
 correction
 may
 be
 adjusted
 or
 defeated).

 Any
 additional
 notes
 played
 will
 be
 added
 into
 the
 track

 —
 existing
 notes
 are
 not
 erased
 while
 recording!

 FAST
 FORWARD,
 REWIND,
 and
 LOCATE
 controls

 may
 be
 used
 at
 any
 time
 to
 quickly
 access
 any
 location
 in

 your
 sequence
 for
 spot-recording.
 To
 overdub
 a
 new
 part,

 select
 a
 different
 track
 and
 start
 recording—while
 you

 record,
 the
 first
 track
 will
 play
 in
 perfect
 sync
 (unless
 you

 MUTE
 it,
 or
 SOLO
 another
 track).
 In
 this
 way,
 up
 to
 32

 tracks
 may
 be
 overdubbed!
 All
 MIDI
 effects
 are
 recorded

 including
 pitch
 bend,
 modulation,
 velocity,
 aftertouch,

 sustain
 pedal,
 and
 program
 changes!

 Editing

 To
 erase
 a
 wrong
 note,
 simply
 hold
 ERASE
 and
 press

 the
 note
 to
 be
 erased
 just
 before
 it
 plays
 in
 the
 sequence—

 when
 played
 back,
 it
 will
 be
 gone.
 Notes
 may
 also
 be

 added,
 erased,
 or
 changed
 using
 the
 SINGLE
 STEP
 func-

 tion.
 To
 overdub
 notes
 at
 specific
 points
 within
 a
 sequence,

 Additional
 Features

 simply
 use
 LOCATE,
 FAST
 FORWARD,
 or
 REWIND
 to

 find
 the
 desired
 bar
 number,
 then
 start
 recording.

 The
 INSERT/COPY
 function
 allows
 you
 to
 move
 bars

 from
 one
 location
 to
 another—in
 the
 same
 sequence
 or
 a

 different
 one.
 For
 example,
 you
 might
 insert
 a
 copy
 of
 the

 first
 verse
 between
 the
 second
 chorus
 and
 the
 bridge.

 DELETE
 BARS
 operates
 the
 same
 way
 to
 remove

 unwanted
 sections,

 Creating
 a
 Song

 One
 way
 to
 create
 a
 song
 is
 to
 record
 each
 track
 all
 the

 way
 through
 (up
 to
 999
 bars).
 Another
 way
 is
 to
 record

 each
 basic
 section
 (verse,
 chorus,
 etc.)
 in
 individual

 sequences,
 then
 use
 the
 CREATE
 SONG
 function
 to
 “chain”

 them
 together.
 CREATE
 SONG
 will
 then
 automatically

 copy
 all
 the
 parts
 into
 a
 new
 sequence.
 If
 desired,
 you
 can

 even
 set
 the
 last
 few
 bars
 to
 repeat
 infinitely,
 for
 a
 fadeout.

 Composition
 Without
 Compromise

 The
 technology
 you
 use
 should
 never
 be
 so
 complex
 that

 it
 interferes
 with
 the
 creative
 process.
 That’s
 precisely
 why

 the
 LinnSequencer
 is
 designed
 to
 let
 you
 compose,
 record

 and
 edit
 while
 devoting
 your
 undivided
 attention
 to
 your

 music.
 See
 your
 Linn
 dealer
 today
 for
 a
 demonstration!

 *
 Simple,
 easy
 to
 learn
 operation—the
 32
 character
 LCD
 display
 clearly
 guides
 you
 through
 all
 operations.
 If
 needed,
 the

 HELP
 button
 displays
 additional
 explanations.

 *
 Non-destructive
 recording—existing
 notes
 are
 not
 erased
 while
 recording.

 ¢
 Two
 FOOTSWITCH
 INPUTS
 may
 be
 assigned
 to
 remotely
 control
 many
 of
 the
 commonly
 used
 functions,
 including

 ERASE,
 REPEAT,
 PLAY/STOP,
 or
 LOCATE.

 ¢
 Iwo
 TRIGGER
 OUTPUTS
 may
 be
 programmed
 to
 output
 pulses
 at
 any
 selected
 note
 value.

 ©
 Will
 sync
 to
 standard
 LinnDrum
 or
 Linn
 9000
 sync
 tone.

 ®
 Utilizes
 ultra
 high-speed,
 8
 MHz
 80186
 16
 bit
 computer
 internally
 for
 FAST
 operation.

 *
 TEMPO
 may
 be
 specified
 in
 BEATS-PER-MINUTE
 or
 FRAMES-PER-BEAT
 at
 24,
 25,
 or
 30
 frames
 per
 second,

 (even
 drop
 frame!)

 ¢
 TEMPO
 may
 be
 entered
 numerically,
 adjustable
 in
 tenths
 of
 a
 Beat-Per-Minute
 increments,
 or
 by
 tapping
 quarter
 notes

 on
 the
 TAP
 TEMPO
 button.

 ¢
 TEMPO
 CHANGES
 may
 be
 programmed
 into
 a
 sequence,
 with
 smooth
 transitions
 if
 desired.

 ¢
 Any
 TIME
 SIGNATURE
 may
 be
 used,
 and
 may
 be
 changed
 within
 a
 song.

 nn

 Linn
 Electronics,
 Inc.

 18720
 Oxnard
 Street,
 Tarzana,
 CA
 91356

 (818)
 708-8131
 TELEX
 #298949
 LINN
 UR

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__eng__000002_ocr.png__000002_ocr_hocr__hocr__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__eng__000002_ocr.png__000002_ocr_hocr__hocr__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__eng__000002_ocr.png__000002_ocr_hocr__hocr__txt/txt.bin

The LinnSequencer
32 Track MIDI Sequence Recorder

The LinnSequencer is a state-of-the-art composition and performance tool for the professional musician. It is

extremely powerful, yet amazingly simple to learn and use. It’s many remarkable features include:

¢ Operation is similar to multi-track tape recorder with PLAY, STOP, RECORD, FAST
FORWARD, REWIND, and LOCATE controls.

e Each of the 100 sequences contains 32 simultaneous, polyphonic tracks. Each track may
be assigned to one of 16 MIDI channels. Simultaneously plays up to 16 polyphonic

synthesizers!

¢ Ultra-fast 3%” disk drive stores complex songs in seconds and holds over 110,000 notes

per disk!

¢ One or all tracks may be TRANSPOSED at the touch of a key.
e Exclusive real-time ERASE function makes editing FAST.
* Exclusive REPEAT function automatically repeats any held notes at a pre-selected

rhythmic value.

¢ TIMING CORRECTION works during playback and operates without ‘chopping’ notes.

¢ Optional SMPTE time code synchronization.

© Optional remote control.

Recording a Sequence

To record a sequence, simply press RECORD and PLAY,
then play your MIDI keyboard in time to the Sequencer’s
click track. When the sequence loops back around to bar 1,
you’ ll hear what you played—only all timing errors will be

corrected! (Timing correction may be adjusted or defeated).

Any additional notes played will be added into the track
— existing notes are not erased while recording!

FAST FORWARD, REWIND, and LOCATE controls
may be used at any time to quickly access any location in
your sequence for spot-recording. To overdub a new part,
select a different track and start recording—while you
record, the first track will play in perfect sync (unless you
MUTE it, or SOLO another track). In this way, up to 32
tracks may be overdubbed! All MIDI effects are recorded
including pitch bend, modulation, velocity, aftertouch,
sustain pedal, and program changes!

Editing

To erase a wrong note, simply hold ERASE and press
the note to be erased just before it plays in the sequence—
when played back, it will be gone. Notes may also be

added, erased, or changed using the SINGLE STEP func-
tion. To overdub notes at specific points within a sequence,

Additional Features

simply use LOCATE, FAST FORWARD, or REWIND to
find the desired bar number, then start recording.

The INSERT/COPY function allows you to move bars
from one location to another—in the same sequence or a
different one. For example, you might insert a copy of the
first verse between the second chorus and the bridge.
DELETE BARS operates the same way to remove
unwanted sections,

Creating a Song

One way to create a song is to record each track all the
way through (up to 999 bars). Another way is to record
each basic section (verse, chorus, etc.) in individual
sequences, then use the CREATE SONG function to “chain”
them together. CREATE SONG will then automatically
copy all the parts into a new sequence. If desired, you can
even set the last few bars to repeat infinitely, for a fadeout.

Composition Without Compromise

The technology you use should never be so complex that
it interferes with the creative process. That’s precisely why
the LinnSequencer is designed to let you compose, record
and edit while devoting your undivided attention to your
music. See your Linn dealer today for a demonstration!

* Simple, easy to learn operation—the 32 character LCD display clearly guides you through all operations. If needed, the

HELP button displays additional explanations.

* Non-destructive recording—existing notes are not erased while recording.
¢ Two FOOTSWITCH INPUTS may be assigned to remotely control many of the commonly used functions, including

ERASE, REPEAT, PLAY/STOP, or LOCATE.

¢ Iwo TRIGGER OUTPUTS may be programmed to output pulses at any selected note value.

© Will sync to standard LinnDrum or Linn 9000 sync tone.

® Utilizes ultra high-speed, 8 MHz 80186 16 bit computer internally for FAST operation.
* TEMPO may be specified in BEATS-PER-MINUTE or FRAMES-PER-BEAT at 24, 25, or 30 frames per second,

(even drop frame!)

¢ TEMPO may be entered numerically, adjustable in tenths of a Beat-Per-Minute increments, or by tapping quarter notes

on the TAP TEMPO button.

¢ TEMPO CHANGES may be programmed into a sequence, with smooth transitions if desired.
¢ Any TIME SIGNATURE may be used, and may be changed within a song.

nn

Linn Electronics, Inc.
18720 Oxnard Street, Tarzana, CA 91356
(818) 708-8131 TELEX #298949 LINN UR
�

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__eng__000002_ocr.png__000002_ocr_tess__pdf__txt/pdf.bin

The
LinnSequencer

32
Track

M
I
D
I

Sequence

Recorder

The
LinnSequencer

is
a

state-of-the-art
composition

and
performance

tool
for

the
professional

musician.
It

is

extremely
powerful,

yet
amazingly

simple
to

learn
and

use.
It’s

many
remarkable

features
include:

¢
Operation

is
similar

to
multi-track

tape
recorder

with
P
L
A
Y
,

S
T
O
P
,

R
E
C
O
R
D
,

F
A
S
T

F
O
R
W
A
R
D
,

R
E
W
I
N
D
,

and
L
O
C
A
T
E

controls.

e
Each

of
the

100
sequences

contains
32

simultaneous,
polyphonic

tracks.
Each

track
may

be
assigned

to
one

of
16

M
I
D
I

channels.
Simultaneously

plays
up

to
16

polyphonic
synthesizers!

¢
Ultra-fast

3%”
disk

drive
stores

complex
songs

in
seconds

and
holds

over
110,000

notes
per

disk!
¢
One

or
all

tracks
may

be
T
R
A
N
S
P
O
S
E
D

at
the

touch
of

a
key.

e
Exclusive

real-time
E
R
A
S
E

function
makes

editing
FAST.

*
Exclusive

R
E
P
E
A
T

function
automatically

repeats
any

held
notes

at
a

pre-selected
rhythmic

value.
¢
T
I
M
I
N
G

C
O
R
R
E
C
T
I
O
N

works
during

playback
and

operates
without

‘chopping’
notes.

¢
Optional

S
M
P
T
E

time
code

synchronization.

©
Optional

remote
control.

Recording
a
Sequence

To
record

a
sequence,

simply
press

R
E
C
O
R
D

and
PLAY,

then
play

your
M
I
D
I

keyboard

in
time

to
the

Sequencer’s
click

track.
W
h
e
n

the
sequence

loops
back

around
to

bar
1,

y
o
u
’
 ll hear

what
you

played—only
all

timing
errors

will
be

corrected!
(Timing

correction
may

be
adjusted

or
defeated).

Any
additional

notes
played

will
be

added
into

the
track

— existing
notes

are
not

erased
while

recording!
F
A
S
T

F
O
R
W
A
R
D
,

R
E
W
I
N
D
,

and
L
O
C
A
T
E

controls
may

be
used

at
any

time
to

quickly
access

any
location

in
your

sequence
for

spot-recording.
To

overdub
a
new

part,
select

a
different

track
and

start
recording—while

you
record,

the first track
will

play
in

perfect
sync

(unless
you

M
U
T
E

it,
or

S
O
L
O

another
track).

In
this

way,
up

to
32

tracks
may

be
overdubbed!

All
M
I
D
I

effects
are

recorded
including

pitch
bend,

modulation,
velocity,

aftertouch,
sustain

pedal,
and

program
changes!

Editing
To

erase
a
wrong

note,
simply

hold
E
R
A
S
E

and
press

the
note

to
be

erased
just

before
it plays

in
the

s
e
q
u
e
n
c
e
—

when
played

back,
it

will
be

gone.
Notes

may
also

be
added,

erased,
or

changed
using

the
S
I
N
G
L
E

S
T
E
P

func-
tion.

To
overdub

notes
at

specific
points

within
a
sequence,

Additional
Features

simply
use

L
O
C
A
T
E
,

F
A
S
T

F
O
R
W
A
R
D
,

or
R
E
W
I
N
D

to
find

the
desired

bar
number,

then
start

recording.
The

I
N
S
E
R
T
/
C
O
P
Y

function
allows

you
to

move
bars

from
one

location
to

another—in
the

same
sequence

or
a

different
one.

For
example,

you
might

insert
a
copy

of
the

first
verse

between
the

second
chorus

and
the

bridge.
D
E
L
E
T
E

B
A
R
S

operates
the

same
way

to
remove

unwanted
sections,

Creating
a
Song

One
way

to
create

a
song

is
to

record
each

track
all

the
way

through
(up

to
999

bars).
Another

way
is

to
record

each
basic

section
(verse,

chorus,
etc.)

in
individual

sequences,
then

use
the

C
R
E
A
T
E

S
O
N
G

function
to

“chain”
them

together.
C
R
E
A
T
E

S
O
N
G

will
then

automatically
copy

all
the

parts
into

a
new

sequence.
If

desired,
you

can
even

set
the

last
few

bars
to

repeat
infinitely,

for
a

fadeout.

Composition
Without

C
o
m
p
r
o
m
i
s
e

The
technology

you
use

should
never

be
so

complex
that

it interferes
with

the
creative

process.
That’s

precisely
why

the
LinnSequencer

is
designed

to
let

you
compose,

record
and

edit
while

devoting
your

undivided
attention

to
your

music.
See

your
Linn

dealer
today

for
a
demonstration!

*
Simple,

easy
to

learn
operation—the

32
character

L
C
D

display
clearly

guides
you

through
all

operations.
If

needed,
the

H
E
L
P

button
displays

additional
explanations.

*
Non-destructive

recording—existing
notes

are
not

erased
while

recording.

¢
Two

F
O
O
T
S
W
I
T
C
H

I
N
P
U
T
S

may

be
assigned

to
remotely

control
many

of
the

c
o
m
m
o
n
l
y

used
functions,

including
ERASE,

REPEAT,
P
L
A
Y
/
S
T
O
P
,

or
L
O
C
A
T
E
.

¢
Iwo

T
R
I
G
G
E
R

O
U
T
P
U
T
S

may
be

p
r
o
g
r
a
m
m
e
d

to
output

pulses
at

any
selected

note
value.

©
Will

sync
to

standard
L
i
n
n
D
r
u
m

or
Linn

9000
sync

tone.

®
Utilizes

ultra
high-speed,

8
M
H
z

80186
16

bit
computer

internally
for

F
A
S
T

operation.

*
T
E
M
P
O

may
be

specified
in
B
E
A
T
S
-
P
E
R
-
M
I
N
U
T
E

or
F
R
A
M
E
S
-
P
E
R
-
B
E
A
T

at
24,

25,
or

30
frames

per
second,

(even
drop

frame!)

¢
T
E
M
P
O

may
be

entered
numerically,

adjustable
in

tenths
of

a
Beat-Per-Minute

increments,
or

by
tapping

quarter
notes

on
the

T
A
P

T
E
M
P
O

button.

¢
T
E
M
P
O

C
H
A
N
G
E
S

may
be

p
r
o
g
r
a
m
m
e
d

into
a
sequence,

with
smooth

transitions
if

desired.

¢
Any

T
I
M
E

S
I
G
N
A
T
U
R
E

may

be
used,

and
may

be
changed

within
a

song.

nn
Linn

Electronics,
Inc.

18720
Oxnard

Street,
Tarzana,

C
A

91356

(818)
708-8131

T
E
L
E
X

#298949
L
I
N
N

U
R

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__eng__000002_ocr.png__000002_ocr_tess__pdf__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__eng__000002_ocr.png__000002_ocr_tess__pdf__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__eng__000002_ocr.png__000002_ocr_tess__pdf__txt/txt.bin

The LinnSequencer
32 Track MIDI Sequence Recorder

The LinnSequencer is a state-of-the-art composition and performance tool for the professional musician. It is

extremely powerful, yet amazingly simple to learn and use. It’s many remarkable features include:

¢ Operation is similar to multi-track tape recorder with PLAY, STOP, RECORD, FAST
FORWARD, REWIND, and LOCATE controls.

e Each of the 100 sequences contains 32 simultaneous, polyphonic tracks. Each track may
be assigned to one of 16 MIDI channels. Simultaneously plays up to 16 polyphonic

synthesizers!

¢ Ultra-fast 3%” disk drive stores complex songs in seconds and holds over 110,000 notes

per disk!

¢ One or all tracks may be TRANSPOSED at the touch of a key.
e Exclusive real-time ERASE function makes editing FAST.
* Exclusive REPEAT function automatically repeats any held notes at a pre-selected

rhythmic value.

¢ TIMING CORRECTION works during playback and operates without ‘chopping’ notes.

¢ Optional SMPTE time code synchronization.

© Optional remote control.

Recording a Sequence

To record a sequence, simply press RECORD and PLAY,
then play your MIDI keyboard in time to the Sequencer’s
click track. When the sequence loops back around to bar 1,
you’ ll hear what you played—only all timing errors will be

corrected! (Timing correction may be adjusted or defeated).

Any additional notes played will be added into the track
— existing notes are not erased while recording!

FAST FORWARD, REWIND, and LOCATE controls
may be used at any time to quickly access any location in
your sequence for spot-recording. To overdub a new part,
select a different track and start recording—while you
record, the first track will play in perfect sync (unless you
MUTE it, or SOLO another track). In this way, up to 32
tracks may be overdubbed! All MIDI effects are recorded
including pitch bend, modulation, velocity, aftertouch,
sustain pedal, and program changes!

Editing

To erase a wrong note, simply hold ERASE and press
the note to be erased just before it plays in the sequence—
when played back, it will be gone. Notes may also be

added, erased, or changed using the SINGLE STEP func-
tion. To overdub notes at specific points within a sequence,

Additional Features

simply use LOCATE, FAST FORWARD, or REWIND to
find the desired bar number, then start recording.

The INSERT/COPY function allows you to move bars
from one location to another—in the same sequence or a
different one. For example, you might insert a copy of the
first verse between the second chorus and the bridge.
DELETE BARS operates the same way to remove
unwanted sections,

Creating a Song

One way to create a song is to record each track all the
way through (up to 999 bars). Another way is to record
each basic section (verse, chorus, etc.) in individual
sequences, then use the CREATE SONG function to “chain”
them together. CREATE SONG will then automatically
copy all the parts into a new sequence. If desired, you can
even set the last few bars to repeat infinitely, for a fadeout.

Composition Without Compromise

The technology you use should never be so complex that
it interferes with the creative process. That’s precisely why
the LinnSequencer is designed to let you compose, record
and edit while devoting your undivided attention to your
music. See your Linn dealer today for a demonstration!

* Simple, easy to learn operation—the 32 character LCD display clearly guides you through all operations. If needed, the

HELP button displays additional explanations.

* Non-destructive recording—existing notes are not erased while recording.
¢ Two FOOTSWITCH INPUTS may be assigned to remotely control many of the commonly used functions, including

ERASE, REPEAT, PLAY/STOP, or LOCATE.

¢ Iwo TRIGGER OUTPUTS may be programmed to output pulses at any selected note value.

© Will sync to standard LinnDrum or Linn 9000 sync tone.

® Utilizes ultra high-speed, 8 MHz 80186 16 bit computer internally for FAST operation.
* TEMPO may be specified in BEATS-PER-MINUTE or FRAMES-PER-BEAT at 24, 25, or 30 frames per second,

(even drop frame!)

¢ TEMPO may be entered numerically, adjustable in tenths of a Beat-Per-Minute increments, or by tapping quarter notes

on the TAP TEMPO button.

¢ TEMPO CHANGES may be programmed into a sequence, with smooth transitions if desired.
¢ Any TIME SIGNATURE may be used, and may be changed within a song.

nn

Linn Electronics, Inc.
18720 Oxnard Street, Tarzana, CA 91356
(818) 708-8131 TELEX #298949 LINN UR
�

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__eng__000003_ocr.png__000003_ocr_hocr__hocr__txt/hocr.bin

 2A
 NNI‘I
 6F6867#
 XATALL
 IE18-80L
 (818)

 9SEI6
 VO
 “BUBZIRY,
 “J0aNS
 PIPUXO
 OZLEI

 “Uy
 ‘soTUOMOI,q
 UUrT

 uut]

 “‘SUOS
 B
 UIJIM
 pasueyo
 oq
 ABU
 pue
 ‘posn
 oq
 AWW
 AYN
 IVNOIS
 AWLL
 AUV

 “parlsop
 Jr
 SUOTIISUBI}
 YIOOUIS
 YIM
 “BoueNbas
 eB
 OJUI
 pourtueIZOId
 9q
 ABU
 SFONWHO
 OdINAL
 e

 ‘uonng
 OdNAL
 dV
 L
 9)
 uO

 sojou
 Jayienb
 Suiddy}
 Aq
 10
 ‘syUSTIOIOUI
 oINUTIAI-J8g-Jesg
 &
 JO
 sys}
 UL
 ofquisn(pe
 ‘ATTeouIAUINU
 paiajus
 oq
 ABU
 OdINALL
 e

 (jouer
 doup
 u3a9)

 “puooes
 Jed
 souely
 O€
 10
 “SZ
 “pz
 18
 [LVAG-MAd-SHN
 VU
 10
 ALOANIWAAd-SLVAd
 U!
 patyoeds
 aq
 kewl
 OAL
 «

 ‘uoTe1odo
 [SVx
 JO}
 Aj[eusoyUT
 JoyndUIOd
 11g
 9]
 98108
 ZHI
 8g
 ‘poeds-ysry
 Bann
 soz]
 e

 "9U0}
 DUAS
 0006
 UUL]
 Jo
 wNIqUUr]
 prepue}s
 0}
 OUAS
 [ITAA
 ©

 “ONYBA
 9}OU
 poloapes
 Aue
 Je
 sas—nd
 jndyno
 07
 pewureigold
 3q
 ACW
 SL
 Ad
 LNO
 YADONAL
 OML

 "ALVOOT
 10
 GOLS/AV
 1d
 ‘LWddad
 “ASV

 SUIpNpoUr
 ‘suOTIOUN]
 posn
 A[UOUILUOS
 94]
 JO
 AUBUT
 [O1]UOD
 AJ9]OWIAI
 0}
 PousIsse
 oq
 ACUI
 ST
 AdNI
 HOLIMSLOO
 OME
 «

 “SUIPIONAI
 I[IYM
 P2sesd
 JOU
 Iv
 $3}OU
 BUTISIXO—ZUIPIOIA
 SATON.ASOP-UON

 ‘suoneurldxa
 peuoyippe
 sdeydsip
 uowng
 g1TqH

 oy]
 ‘pepsau
 JI
 ‘suoneiodo
 [ye
 yYsnosy]
 NOA
 sapins
 ApIespo
 Avfdsip
 QO]
 Joey
 Z7¢
 9y3—uoeIodo
 Urea]
 0}
 Ased
 ‘aus
 «

 jUorel]suowtap
 &
 IO}
 Aepol
 Jayeap
 uur’]
 INOA
 dag
 ‘dISHUL

 INOA
 0}
 UONUS}]¥
 PaplAIPUN
 INOA
 SUTJOASp
 ITY
 ps
 pue

 p1osai
 ‘asoduod
 no
 Jay
 0}
 pausisap
 st
 1s0uenbesuur’]
 oy)

 Aum
 Aposiooid
 $,Jeu],
 ‘SS9d0Id
 SATTBS1D
 OY}
 YIM
 SOIOJIOIUT

 yey)
 xo]dwWI0d
 Os
 dq
 JOA9U
 P[NoUsS
 osn
 NOA
 AZopOuYdE}
 oy

 ISTUMOIAUIO?)
 NOAA
 UOHISOdWIO)

 "NOSpr]
 B
 Oy
 ‘AONUTJUT
 yada
 0}
 seq
 Maz
 Se]
 BY]
 Jas
 UdAd

 uvd
 NOA
 ‘palisap
 JJ
 ‘souanbes
 Mou
 ¥B
 OVUT
 sjied
 ou]
 [Te
 Adoo

 ATesrewO
 Ne
 WI)
 [IM
 ONOS
 ALVAAO
 JeyIe80}
 wey}

 ,deyd,,
 0}
 UOTOUNJ
 ONOS
 ALVA
 ou]
 asn
 usy]
 ‘saouanbes

 JENPIAIpUt
 UI
 (“949
 ‘snJOYD
 ‘aS1OA)
 UOTIDIS
 JIseq
 Yes

 Pl0da1
 OF
 ST
 ABM
 JOuIOUY
 “(812g
 666
 01
 dn)
 ysnory)
 ABM

 dU}
 [fe
 YORI]
 YORs
 p10991
 0}
 ST
 SUOS
 B
 9789I9
 0}
 ABM
 SUG,

 SUOS
 &
 SUTVAID

 *suoT}oes
 poJUBMUN

 SAOUIOI
 0}
 ABM
 SWS
 dU}
 SoyeIodo
 SUV
 ALATAaG

 “OBPLIq
 dy}
 PUB
 SNIOY
 PUOdAS
 dT]]
 Ud9MIAQ
 SIDA
 ISI

 ay)
 Jo
 Adoo
 B
 JJasuT
 WYSE
 NOAA
 ‘afdwexs
 10.f
 ‘UO
 JUSIN]JIP

 B
 IO
 aouaNbas
 sues
 OY}
 UI—JOY
 OUP
 0}
 UOTIEIO]
 9UO
 WOT]

 $1Bq
 JAOUI
 OF
 NOA
 sMOTIe
 WOTIOUNS
 AdOO/IMASNI
 OULL

 ‘SUIPIONAI
 JIVIS
 Udy)
 “OQuINU
 eq
 porisop
 ay}
 puy

 0}
 CNIMAY
 10
 ‘CYVM
 Od
 LSWA
 “AEVOOT
 esn
 Apduns

 sainjeay
 [PUOHIPPY

 ‘gouanbas
 &
 UTYIIM
 s]UTOd
 a1y1dads
 3¥
 $9100
 QnPIOAO
 OL
 "UOT}

 -ouns
 dALLS
 ATONIS
 24)
 Suisn
 pasueyo
 Jo
 ‘pasesa
 ‘pappe

 aq
 osye
 ABUT
 S9]ON
 ‘U0
 9q
]IIM
 1
 “yoeq
 podeyd
 uayM

 —aouanbas
 oy]
 ul
 skeyd
 71
 a10J9q
 Isnf
 posers
 oq
 0}
 d]0U
 ayy

 ssaid
 pue
 ASvwug
 ploy
 Aydunis
 ‘jou
 Suomm
 &
 aseso
 OL

 sunipa

 jsesdueyo
 ureisoid
 pue
 ‘fepod
 ureysns

 ‘yonoplalje
 ‘AWOOTOA
 ‘UOTyeTNpow
 ‘pusg
 youd
 Surpnyour

 pep10del
 are
 $199JJ2
 TCTIN
 [WV
 iPeqqnpseao
 aq
 Aeur
 syoen

 Ze
 07
 dn
 ‘Kem
 sie
 Uy
 *(foeI}
 JOyOUR
 OJOS
 10
 ALLAN

 NOA
 ssofum)
 duAS
 yOaysod
 ul
 Avy
 [[IM
 Yow]
 ISI
 93
 “prooar

 NOA
 3[IYM—SUIPIOIA
 LIBIS
 PU
 YORI)
 TUdIOTJIP
 B
 JOaTas

 *y1ed
 MOU
 B
 QNPIsA0
 OL,
 “SuIps0daJ-jods
 10}
 aouanbes
 mno0k

 UI
 UOHBIO]
 Aue
 ssad0e
 ATYOIND
 0}
 owt}
 Aue
 ye
 pasn
 aq
 AvUE

 SJONUOD
 FLIVOOT
 pur
 ‘ANIMA
 ‘CYVMaYOd
 LSVd

 {SUIPIOSAI
 {IY
 posesa
 JOU
 se
 So]OU
 SuTsTXO—

 yous}
 3U}
 OUT
 poppe
 aq
 JIM
 poteyd
 sajou
 yeuonippe
 Auy

 *(povesjap
 10
 poysn{pe
 oq
 ABW
 UOTIIII0D
 BUTUTT])
 j{paqoeLI09

 2q
][IM
 S1OLIe
 Sur
 [fe
 ATUO—patey]d
 nod
 Jey
 Jedy
]],NOA

 ‘]
 req
 0]
 punose
 yoeq
 sdoo]
 sduanbas
 ay]
 Udy
 AA
 “YOu
 Yor

 §,sa0uaNbas
 at}
 O]
 SUIT)
 UI
 preogday
 [IW]
 INO
 Avy
 usy3

 AV'1d
 pue
 (YOON
 ssoid
 Ayduus
 ‘aousnbes
 &
 p1o09es
 OF,

 g0uaNbas
 &
 SUIP10I0y]

 ‘JONWOD
 s}JouNaI
 TeuONdGO
 e

 "UOTJEZIUOIYUAS
 OPOS
 UIT}
 FLAWS
 [euondo
 e

 ‘sou
 .sulddoys,
 noyyM
 sayelodo
 pue
 yoegdvyd
 ZuLINp
 S¥IOM
 NOLLOANNYOO
 ONIWILL
 e

 ‘onqea
 ory
 AY

 pojoojes-oid
 &
 ye
 sajou
 pyoy
 Aue
 syeadas
 ATTeONewWO
 Ne
 UOTOUNS
 [WAdAY
 OAISNOX
 e

 ‘LSVJ
 SUnIpS
 soyeu
 UOTOUN
 ASV
 UA
 OUlN-[eal
 SAISNIOXY
 e

 ‘Koy
 B
 JO
 YONO}
 941
 12
 CASOdSNVALL
 0g
 ABU
 Syde]
 [Te
 10
 9UC
 e

 i
 ASIP
 Jed

 S9}0U
 OOO‘OTT
 JOA
 SpfOy
 puv
 SpUOdeS
 UT
 SBUOS
 Xa[AUIOD
 So10}S
 DALIP
 YSIP
 ,
 74
 €
 ISCJ-CNIN

 jSIOZISOUJUAS

 stuoydAjod
 of
 0}
 dn
 skeyd
 A[snoourynuls
 ‘spouueYd
 [IW
 9T
 JO
 duo
 0}
 pousisse
 oq

 ABUL
 YORI]
 YOR
 ‘syous)
 oruoydAjod
 ‘snoouelnurs
 7¢
 SuTeJUOS
 ssouUaNbas
 QO]
 OY}
 JO
 YORA
 e

 ‘SJONUOS
 ATWOOT
 pur
 ‘GNIMAY
 ‘GaVM
 OA

 LSVd
 ‘GYOOde
 AOLS
 ‘AV
 Td
 YIM
 Jopsocas
 ade}
 Yowsj-N[NU
 O}
 eps
 st
 UOTLISdO
 @

 LOPNOUT
 SaINjeoy
 s[quyIeUlss
 AUB
 S.JJ
 ‘OSN
 pue
 UIes]
 0}
 o[duns
 A[suIzeUe
 JOA
 ‘PnJsomod
 APOUIOITXO

 St
 1]
 “UeIOIsNUL
 feUOIssajoid
 oY}
 10
 JOO}
 soUBULIOJIJAd
 pue
 UOTIsOduIOS
 11e-dY1-JO-9}e)s
 B
 SI
 IONUANbDaguUT]
 ay

 JOps1odady
 soUINbIS
 [GTI
 YVAL
 ZE

 Jgouanbaguury
 oy

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__eng__000003_ocr.png__000003_ocr_hocr__hocr__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__eng__000003_ocr.png__000003_ocr_hocr__hocr__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__eng__000003_ocr.png__000003_ocr_hocr__hocr__txt/txt.bin

2A NNI‘I 6F6867# XATALL IE18-80L (818)

9SEI6 VO “BUBZIRY, “J0aNS PIPUXO OZLEI
“Uy ‘soTUOMOI,q UUrT

uut]

“‘SUOS B UIJIM pasueyo oq ABU pue ‘posn oq AWW AYN IVNOIS AWLL AUV
“parlsop Jr SUOTIISUBI} YIOOUIS YIM “BoueNbas eB OJUI pourtueIZOId 9q ABU SFONWHO OdINAL e

‘uonng OdNAL dV L 9) uO

sojou Jayienb Suiddy} Aq 10 ‘syUSTIOIOUI oINUTIAI-J8g-Jesg & JO sys} UL ofquisn(pe ‘ATTeouIAUINU paiajus oq ABU OdINALL e

(jouer doup u3a9)

“puooes Jed souely O€ 10 “SZ “pz 18 [LVAG-MAd-SHN VU 10 ALOANIWAAd-SLVAd U! patyoeds aq kewl OAL «
‘uoTe1odo [SVx JO} Aj[eusoyUT JoyndUIOd 11g 9] 98108 ZHI 8g ‘poeds-ysry Bann soz] e

"9U0} DUAS 0006 UUL] Jo wNIqUUr] prepue}s 0} OUAS [ITAA ©

“ONYBA 9}OU poloapes Aue Je sas—nd jndyno 07 pewureigold 3q ACW SL Ad LNO YADONAL OML

"ALVOOT 10 GOLS/AV 1d ‘LWddad “ASV

SUIpNpoUr ‘suOTIOUN] posn A[UOUILUOS 94] JO AUBUT [O1]UOD AJ9]OWIAI 0} PousIsse oq ACUI ST AdNI HOLIMSLOO OME «
“SUIPIONAI I[IYM P2sesd JOU Iv $3}OU BUTISIXO—ZUIPIOIA SATON.ASOP-UON

‘suoneurldxa peuoyippe sdeydsip uowng g1TqH

oy] ‘pepsau JI ‘suoneiodo [ye yYsnosy] NOA sapins ApIespo Avfdsip QO] Joey Z7¢ 9y3—uoeIodo Urea] 0} Ased ‘aus «

jUorel]suowtap & IO} Aepol Jayeap uur’] INOA dag ‘dISHUL
INOA 0} UONUS}]¥ PaplAIPUN INOA SUTJOASp ITY ps pue
p1osai ‘asoduod no Jay 0} pausisap st 1s0uenbesuur’] oy)
Aum Aposiooid $,Jeu], ‘SS9d0Id SATTBS1D OY} YIM SOIOJIOIUT
yey) xo]dwWI0d Os dq JOA9U P[NoUsS osn NOA AZopOuYdE} oy

ISTUMOIAUIO?) NOAA UOHISOdWIO)

"NOSpr] B Oy ‘AONUTJUT yada 0} seq Maz Se] BY] Jas UdAd
uvd NOA ‘palisap JJ ‘souanbes Mou ¥B OVUT sjied ou] [Te Adoo
ATesrewO Ne WI) [IM ONOS ALVAAO JeyIe80} wey}
,deyd,, 0} UOTOUNJ ONOS ALVA ou] asn usy] ‘saouanbes
JENPIAIpUt UI (“949 ‘snJOYD ‘aS1OA) UOTIDIS JIseq Yes
Pl0da1 OF ST ABM JOuIOUY “(812g 666 01 dn) ysnory) ABM

dU} [fe YORI] YORs p10991 0} ST SUOS B 9789I9 0} ABM SUG,

SUOS & SUTVAID

*suoT}oes poJUBMUN

SAOUIOI 0} ABM SWS dU} SoyeIodo SUV ALATAaG

“OBPLIq dy} PUB SNIOY PUOdAS dT]] Ud9MIAQ SIDA ISI

ay) Jo Adoo B JJasuT WYSE NOAA ‘afdwexs 10.f ‘UO JUSIN]JIP

B IO aouaNbas sues OY} UI—JOY OUP 0} UOTIEIO] 9UO WOT]
$1Bq JAOUI OF NOA sMOTIe WOTIOUNS AdOO/IMASNI OULL

‘SUIPIONAI JIVIS Udy) “OQuINU eq porisop ay} puy

0} CNIMAY 10 ‘CYVM Od LSWA “AEVOOT esn Apduns

sainjeay [PUOHIPPY

‘gouanbas & UTYIIM s]UTOd a1y1dads 3¥ $9100 QnPIOAO OL "UOT}
-ouns dALLS ATONIS 24) Suisn pasueyo Jo ‘pasesa ‘pappe
aq osye ABUT S9]ON ‘U0 9q]IIM 1 “yoeq podeyd uayM
—aouanbas oy] ul skeyd 71 a10J9q Isnf posers oq 0} d]0U ayy
ssaid pue ASvwug ploy Aydunis ‘jou Suomm & aseso OL

sunipa

jsesdueyo ureisoid pue ‘fepod ureysns
‘yonoplalje ‘AWOOTOA ‘UOTyeTNpow ‘pusg youd Surpnyour
pep10del are $199JJ2 TCTIN [WV iPeqqnpseao aq Aeur syoen
Ze 07 dn ‘Kem sie Uy *(foeI} JOyOUR OJOS 10 ALLAN
NOA ssofum) duAS yOaysod ul Avy [[IM Yow] ISI 93 “prooar
NOA 3[IYM—SUIPIOIA LIBIS PU YORI) TUdIOTJIP B JOaTas
*y1ed MOU B QNPIsA0 OL, “SuIps0daJ-jods 10} aouanbes mno0k
UI UOHBIO] Aue ssad0e ATYOIND 0} owt} Aue ye pasn aq AvUE
SJONUOD FLIVOOT pur ‘ANIMA ‘CYVMaYOd LSVd
{SUIPIOSAI {IY posesa JOU se So]OU SuTsTXO—
yous} 3U} OUT poppe aq JIM poteyd sajou yeuonippe Auy

*(povesjap 10 poysn{pe oq ABW UOTIIII0D BUTUTT]) j{paqoeLI09

2q][IM S1OLIe Sur [fe ATUO—patey]d nod Jey Jedy]],NOA

‘] req 0] punose yoeq sdoo] sduanbas ay] Udy AA “YOu Yor

§,sa0uaNbas at} O] SUIT) UI preogday [IW] INO Avy usy3
AV'1d pue (YOON ssoid Ayduus ‘aousnbes & p1o09es OF,

g0uaNbas & SUIP10I0y]

‘JONWOD s}JouNaI TeuONdGO e

"UOTJEZIUOIYUAS OPOS UIT} FLAWS [euondo e

‘sou .sulddoys, noyyM sayelodo pue yoegdvyd ZuLINp S¥IOM NOLLOANNYOO ONIWILL e

‘onqea ory AY

pojoojes-oid & ye sajou pyoy Aue syeadas ATTeONewWO Ne UOTOUNS [WAdAY OAISNOX e
‘LSVJ SUnIpS soyeu UOTOUN ASV UA OUlN-[eal SAISNIOXY e
‘Koy B JO YONO} 941 12 CASOdSNVALL 0g ABU Syde] [Te 10 9UC e

i ASIP Jed

S9}0U OOO‘OTT JOA SpfOy puv SpUOdeS UT SBUOS Xa[AUIOD So10}S DALIP YSIP , 74 € ISCJ-CNIN

jSIOZISOUJUAS

stuoydAjod of 0} dn skeyd A[snoourynuls ‘spouueYd [IW 9T JO duo 0} pousisse oq
ABUL YORI] YOR ‘syous) oruoydAjod ‘snoouelnurs 7¢ SuTeJUOS ssouUaNbas QO] OY} JO YORA e

‘SJONUOS ATWOOT pur ‘GNIMAY ‘GaVM OA
LSVd ‘GYOOde AOLS ‘AV Td YIM Jopsocas ade} Yowsj-N[NU O} eps st UOTLISdO @
LOPNOUT SaINjeoy s[quyIeUlss AUB S.JJ ‘OSN pue UIes] 0} o[duns A[suIzeUe JOA ‘PnJsomod APOUIOITXO
St 1] “UeIOIsNUL feUOIssajoid oY} 10 JOO} soUBULIOJIJAd pue UOTIsOduIOS 11e-dY1-JO-9}e)s B SI IONUANbDaguUT] ay

JOps1odady soUINbIS [GTI YVAL ZE
Jgouanbaguury oy
�

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__eng__000003_ocr.png__000003_ocr_tess__pdf__txt/pdf.bin

2A NNI‘I 6F6867# XATALL IE18-80L (818)

9SEI6 VO “BUBZIRY, “J0aNS PIPUXO OZLEI
“Uy ‘soTUOMOI,q UUrT

uut]
“‘SUOS B UIJIM pasueyo oq ABU pue ‘posn oq AWW AYN IVNOIS AWLL AUV

“parlsop Jr SUOTIISUBI} YIOOUIS YIM “BoueNbas eB OJUI pourtueIZOId 9q ABU SFONWHO OdINAL e

‘uonng OdNAL dV L 9) uO
sojou Jayienb Suiddy} Aq 10 ‘syUSTIOIOUI oINUTIAI-J8g-Jesg & JO sys} UL ofquisn(pe ‘ATTeouIAUINU paiajus oq ABU OdINALL e

(jouer doup u3a9)

“puooes Jed souely O€ 10 “SZ “pz 18 [LVAG-MAd-SHN VU 10 ALOANIWAAd-SLVAd U! patyoeds aq kewl OAL «
‘uoTe1odo [SVx JO} Aj[eusoyUT JoyndUIOd 11g 9] 98108 ZHI 8g ‘poeds-ysry Bann soz] e

"9U0} DUAS 0006 UUL] Jo wNIqUUr] prepue}s 0} OUAS [ITAA ©
“ONYBA 9}OU poloapes Aue Je sas—nd jndyno 07 pewureigold 3q ACW SL Ad LNO YADONAL OML

"ALVOOT 10 GOLS/AV 1d ‘LWddad “ASV
SUIpNpoUr ‘suOTIOUN] posn A[UOUILUOS 94] JO AUBUT [O1]UOD AJ9]OWIAI 0} PousIsse oq ACUI ST AdNI HOLIMSLOO OME «

“SUIPIONAI I[IYM P2sesd JOU Iv $3}OU BUTISIXO—ZUIPIOIA SATON.ASOP-UON

‘suoneurldxa peuoyippe sdeydsip uowng g1TqH
oy] ‘pepsau JI ‘suoneiodo [ye yYsnosy] NOA sapins ApIespo Avfdsip QO] Joey Z7¢ 9y3—uoeIodo Urea] 0} Ased ‘aus «

jUorel]suowtap & IO} Aepol Jayeap uur’] INOA dag ‘dISHUL
INOA 0} UONUS}]¥ PaplAIPUN INOA SUTJOASp ITY ps pue
p1osai ‘asoduod no Jay 0} pausisap st 1s0uenbesuur’] oy)
Aum Aposiooid $,Jeu], ‘SS9d0Id SATTBS1D OY} YIM SOIOJIOIUT

yey) xo]dwWI0d Os dq JOA9U P[NoUsS osn NOA AZopOuYdE} oy

ISTUMOIAUIO?) NOAA UOHISOdWIO)

"NOSpr] B Oy ‘AONUTJUT yada 0} seq Maz Se] BY] Jas UdAd
uvd NOA ‘palisap JJ ‘souanbes Mou ¥B OVUT sjied ou] [Te Adoo

ATesrewO Ne WI) [IM ONOS ALVAAO JeyIe80} wey}
,deyd,, 0} UOTOUNJ ONOS ALVA ou] asn usy] ‘saouanbes

JENPIAIpUt UI (“949 ‘snJOYD ‘aS1OA) UOTIDIS JIseq Yes
Pl0da1 OF ST ABM JOuIOUY “(812g 666 01 dn) ysnory) ABM

dU} [fe YORI] YORs p10991 0} ST SUOS B 9789I9 0} ABM SUG,

SUOS & SUTVAID

*suoT}oes poJUBMUN
SAOUIOI 0} ABM SWS dU} SoyeIodo SUV ALATAaG

“OBPLIq dy} PUB SNIOY PUOdAS dT]] Ud9MIAQ SIDA ISI
ay) Jo Adoo B JJasuT WYSE NOAA ‘afdwexs 10.f ‘UO JUSIN]JIP
B IO aouaNbas sues OY} UI—JOY OUP 0} UOTIEIO] 9UO WOT]
$1Bq JAOUI OF NOA sMOTIe WOTIOUNS AdOO/IMASNI OULL

‘SUIPIONAI JIVIS Udy) “OQuINU eq porisop ay} puy

0} CNIMAY 10 ‘CYVM Od LSWA “AEVOOT esn Apduns

sainjeay [PUOHIPPY

‘gouanbas & UTYIIM s]UTOd a1y1dads 3¥ $9100 QnPIOAO OL "UOT}
-ouns dALLS ATONIS 24) Suisn pasueyo Jo ‘pasesa ‘pappe

aq osye ABUT S9]ON ‘U0 9q]IIM 1 “yoeq podeyd uayM
—aouanbas oy] ul skeyd 71 a10J9q Isnf posers oq 0} d]0U ayy

ssaid pue ASvwug ploy Aydunis ‘jou Suomm & aseso OL

sunipa
jsesdueyo ureisoid pue ‘fepod ureysns

‘yonoplalje ‘AWOOTOA ‘UOTyeTNpow ‘pusg youd Surpnyour
pep10del are $199JJ2 TCTIN [WV iPeqqnpseao aq Aeur syoen

Ze 07 dn ‘Kem sie Uy *(foeI} JOyOUR OJOS 10 ALLAN
NOA ssofum) duAS yOaysod ul Avy [[IM Yow] ISI 93 “prooar

NOA 3[IYM—SUIPIOIA LIBIS PU YORI) TUdIOTJIP B JOaTas
*y1ed MOU B QNPIsA0 OL, “SuIps0daJ-jods 10} aouanbes mno0k
UI UOHBIO] Aue ssad0e ATYOIND 0} owt} Aue ye pasn aq AvUE

SJONUOD FLIVOOT pur ‘ANIMA ‘CYVMaYOd LSVd
{SUIPIOSAI {IY posesa JOU se So]OU SuTsTXO—

yous} 3U} OUT poppe aq JIM poteyd sajou yeuonippe Auy
*(povesjap 10 poysn{pe oq ABW UOTIIII0D BUTUTT]) j{paqoeLI09
2q][IM S1OLIe Sur [fe ATUO—patey]d nod Jey Jedy]],NOA

‘] req 0] punose yoeq sdoo] sduanbas ay] Udy AA “YOu Yor
§,sa0uaNbas at} O] SUIT) UI preogday [IW] INO Avy usy3

AV'1d pue (YOON ssoid Ayduus ‘aousnbes & p1o09es OF,

g0uaNbas & SUIP10I0y]

‘JONWOD s}JouNaI TeuONdGO e
"UOTJEZIUOIYUAS OPOS UIT} FLAWS [euondo e

‘sou .sulddoys, noyyM sayelodo pue yoegdvyd ZuLINp S¥IOM NOLLOANNYOO ONIWILL e

‘onqea ory AY
pojoojes-oid & ye sajou pyoy Aue syeadas ATTeONewWO Ne UOTOUNS [WAdAY OAISNOX e

‘LSVJ SUnIpS soyeu UOTOUN ASV UA OUlN-[eal SAISNIOXY e

‘Koy B JO YONO} 941 12 CASOdSNVALL 0g ABU Syde] [Te 10 9UC e

i ASIP Jed
S9}0U OOO‘OTT JOA SpfOy puv SpUOdeS UT SBUOS Xa[AUIOD So10}S DALIP YSIP , 74 € ISCJ-CNIN

jSIOZISOUJUAS
stuoydAjod of 0} dn skeyd A[snoourynuls ‘spouueYd [IW 9T JO duo 0} pousisse oq

ABUL YORI] YOR ‘syous) oruoydAjod ‘snoouelnurs 7¢ SuTeJUOS ssouUaNbas QO] OY} JO YORA e

‘SJONUOS ATWOOT pur ‘GNIMAY ‘GaVM OA
LSVd ‘GYOOde AOLS ‘AV Td YIM Jopsocas ade} Yowsj-N[NU O} eps st UOTLISdO @

LOPNOUT SaINjeoy s[quyIeUlss AUB S.JJ ‘OSN pue UIes] 0} o[duns A[suIzeUe JOA ‘PnJsomod APOUIOITXO

St 1] “UeIOIsNUL feUOIssajoid oY} 10 JOO} soUBULIOJIJAd pue UOTIsOduIOS 11e-dY1-JO-9}e)s B SI IONUANbDaguUT] ay

JOps1odady soUINbIS [GTI YVAL ZE
Jgouanbaguury oy

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__eng__000003_ocr.png__000003_ocr_tess__pdf__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__eng__000003_ocr.png__000003_ocr_tess__pdf__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__eng__000003_ocr.png__000003_ocr_tess__pdf__txt/txt.bin

2A NNI‘I 6F6867# XATALL IE18-80L (818)

9SEI6 VO “BUBZIRY, “J0aNS PIPUXO OZLEI
“Uy ‘soTUOMOI,q UUrT

uut]

“‘SUOS B UIJIM pasueyo oq ABU pue ‘posn oq AWW AYN IVNOIS AWLL AUV
“parlsop Jr SUOTIISUBI} YIOOUIS YIM “BoueNbas eB OJUI pourtueIZOId 9q ABU SFONWHO OdINAL e

‘uonng OdNAL dV L 9) uO

sojou Jayienb Suiddy} Aq 10 ‘syUSTIOIOUI oINUTIAI-J8g-Jesg & JO sys} UL ofquisn(pe ‘ATTeouIAUINU paiajus oq ABU OdINALL e

(jouer doup u3a9)

“puooes Jed souely O€ 10 “SZ “pz 18 [LVAG-MAd-SHN VU 10 ALOANIWAAd-SLVAd U! patyoeds aq kewl OAL «
‘uoTe1odo [SVx JO} Aj[eusoyUT JoyndUIOd 11g 9] 98108 ZHI 8g ‘poeds-ysry Bann soz] e

"9U0} DUAS 0006 UUL] Jo wNIqUUr] prepue}s 0} OUAS [ITAA ©

“ONYBA 9}OU poloapes Aue Je sas—nd jndyno 07 pewureigold 3q ACW SL Ad LNO YADONAL OML

"ALVOOT 10 GOLS/AV 1d ‘LWddad “ASV

SUIpNpoUr ‘suOTIOUN] posn A[UOUILUOS 94] JO AUBUT [O1]UOD AJ9]OWIAI 0} PousIsse oq ACUI ST AdNI HOLIMSLOO OME «
“SUIPIONAI I[IYM P2sesd JOU Iv $3}OU BUTISIXO—ZUIPIOIA SATON.ASOP-UON

‘suoneurldxa peuoyippe sdeydsip uowng g1TqH

oy] ‘pepsau JI ‘suoneiodo [ye yYsnosy] NOA sapins ApIespo Avfdsip QO] Joey Z7¢ 9y3—uoeIodo Urea] 0} Ased ‘aus «

jUorel]suowtap & IO} Aepol Jayeap uur’] INOA dag ‘dISHUL
INOA 0} UONUS}]¥ PaplAIPUN INOA SUTJOASp ITY ps pue
p1osai ‘asoduod no Jay 0} pausisap st 1s0uenbesuur’] oy)
Aum Aposiooid $,Jeu], ‘SS9d0Id SATTBS1D OY} YIM SOIOJIOIUT
yey) xo]dwWI0d Os dq JOA9U P[NoUsS osn NOA AZopOuYdE} oy

ISTUMOIAUIO?) NOAA UOHISOdWIO)

"NOSpr] B Oy ‘AONUTJUT yada 0} seq Maz Se] BY] Jas UdAd
uvd NOA ‘palisap JJ ‘souanbes Mou ¥B OVUT sjied ou] [Te Adoo
ATesrewO Ne WI) [IM ONOS ALVAAO JeyIe80} wey}
,deyd,, 0} UOTOUNJ ONOS ALVA ou] asn usy] ‘saouanbes
JENPIAIpUt UI (“949 ‘snJOYD ‘aS1OA) UOTIDIS JIseq Yes
Pl0da1 OF ST ABM JOuIOUY “(812g 666 01 dn) ysnory) ABM

dU} [fe YORI] YORs p10991 0} ST SUOS B 9789I9 0} ABM SUG,

SUOS & SUTVAID

*suoT}oes poJUBMUN

SAOUIOI 0} ABM SWS dU} SoyeIodo SUV ALATAaG

“OBPLIq dy} PUB SNIOY PUOdAS dT]] Ud9MIAQ SIDA ISI

ay) Jo Adoo B JJasuT WYSE NOAA ‘afdwexs 10.f ‘UO JUSIN]JIP

B IO aouaNbas sues OY} UI—JOY OUP 0} UOTIEIO] 9UO WOT]
$1Bq JAOUI OF NOA sMOTIe WOTIOUNS AdOO/IMASNI OULL

‘SUIPIONAI JIVIS Udy) “OQuINU eq porisop ay} puy

0} CNIMAY 10 ‘CYVM Od LSWA “AEVOOT esn Apduns

sainjeay [PUOHIPPY

‘gouanbas & UTYIIM s]UTOd a1y1dads 3¥ $9100 QnPIOAO OL "UOT}
-ouns dALLS ATONIS 24) Suisn pasueyo Jo ‘pasesa ‘pappe
aq osye ABUT S9]ON ‘U0 9q]IIM 1 “yoeq podeyd uayM
—aouanbas oy] ul skeyd 71 a10J9q Isnf posers oq 0} d]0U ayy
ssaid pue ASvwug ploy Aydunis ‘jou Suomm & aseso OL

sunipa

jsesdueyo ureisoid pue ‘fepod ureysns
‘yonoplalje ‘AWOOTOA ‘UOTyeTNpow ‘pusg youd Surpnyour
pep10del are $199JJ2 TCTIN [WV iPeqqnpseao aq Aeur syoen
Ze 07 dn ‘Kem sie Uy *(foeI} JOyOUR OJOS 10 ALLAN
NOA ssofum) duAS yOaysod ul Avy [[IM Yow] ISI 93 “prooar
NOA 3[IYM—SUIPIOIA LIBIS PU YORI) TUdIOTJIP B JOaTas
*y1ed MOU B QNPIsA0 OL, “SuIps0daJ-jods 10} aouanbes mno0k
UI UOHBIO] Aue ssad0e ATYOIND 0} owt} Aue ye pasn aq AvUE
SJONUOD FLIVOOT pur ‘ANIMA ‘CYVMaYOd LSVd
{SUIPIOSAI {IY posesa JOU se So]OU SuTsTXO—
yous} 3U} OUT poppe aq JIM poteyd sajou yeuonippe Auy

*(povesjap 10 poysn{pe oq ABW UOTIIII0D BUTUTT]) j{paqoeLI09

2q][IM S1OLIe Sur [fe ATUO—patey]d nod Jey Jedy]],NOA

‘] req 0] punose yoeq sdoo] sduanbas ay] Udy AA “YOu Yor

§,sa0uaNbas at} O] SUIT) UI preogday [IW] INO Avy usy3
AV'1d pue (YOON ssoid Ayduus ‘aousnbes & p1o09es OF,

g0uaNbas & SUIP10I0y]

‘JONWOD s}JouNaI TeuONdGO e

"UOTJEZIUOIYUAS OPOS UIT} FLAWS [euondo e

‘sou .sulddoys, noyyM sayelodo pue yoegdvyd ZuLINp S¥IOM NOLLOANNYOO ONIWILL e

‘onqea ory AY

pojoojes-oid & ye sajou pyoy Aue syeadas ATTeONewWO Ne UOTOUNS [WAdAY OAISNOX e
‘LSVJ SUnIpS soyeu UOTOUN ASV UA OUlN-[eal SAISNIOXY e
‘Koy B JO YONO} 941 12 CASOdSNVALL 0g ABU Syde] [Te 10 9UC e

i ASIP Jed

S9}0U OOO‘OTT JOA SpfOy puv SpUOdeS UT SBUOS Xa[AUIOD So10}S DALIP YSIP , 74 € ISCJ-CNIN

jSIOZISOUJUAS

stuoydAjod of 0} dn skeyd A[snoourynuls ‘spouueYd [IW 9T JO duo 0} pousisse oq
ABUL YORI] YOR ‘syous) oruoydAjod ‘snoouelnurs 7¢ SuTeJUOS ssouUaNbas QO] OY} JO YORA e

‘SJONUOS ATWOOT pur ‘GNIMAY ‘GaVM OA
LSVd ‘GYOOde AOLS ‘AV Td YIM Jopsocas ade} Yowsj-N[NU O} eps st UOTLISdO @
LOPNOUT SaINjeoy s[quyIeUlss AUB S.JJ ‘OSN pue UIes] 0} o[duns A[suIzeUe JOA ‘PnJsomod APOUIOITXO
St 1] “UeIOIsNUL feUOIssajoid oY} 10 JOO} soUBULIOJIJAd pue UOTIsOduIOS 11e-dY1-JO-9}e)s B SI IONUANbDaguUT] ay

JOps1odady soUINbIS [GTI YVAL ZE
Jgouanbaguury oy
�

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__eng__000004_ocr.png__000004_ocr_hocr__hocr__txt/hocr.bin

 2A
 NNI‘I
 6F6867#
 XATALL
 IE18-80L
 (818)

 9SEI6
 VO
 “BUBZIRY,
 “J0aNS
 PIPUXO
 OZLEI

 “Uy
 ‘soTUOMOI,q
 UUrT

 uu

 “‘SUOS
 B
 UIJIM
 pasueyo
 oq
 ABU
 pue
 ‘posn
 oq
 AWW
 AYN
 IVNOIS
 AWLL
 AUV

 “parlsop
 Jr
 SUOTIISUBI}
 YIOOUIS
 YIM
 “BoueNbas
 eB
 OJUI
 pourtueIZOId
 9q
 ABU
 SFONWHO
 OdINAL
 e

 ‘uonng
 OdNAL
 dV
 L
 9)
 uO

 sojou
 Jayienb
 Suiddy}
 Aq
 10
 ‘syUSTIOIOUI
 oINUTIAI-J8g-Jesg
 &
 JO
 sys}
 UL
 ofquisn(pe
 ‘ATTeouIAUINU
 paiajus
 oq
 ABU
 OdINALL
 e

 (jouer
 doup
 u3a9)

 “puooes
 Jed
 souely
 O€
 10
 “SZ
 “pz
 18
 [LVAG-MAd-SHN
 VU
 10
 ALOANIWAAd-SLVAd
 U!
 patyoeds
 aq
 kewl
 OAL
 «

 ‘uoTe1odo
 [SVx
 JO}
 Aj[eusoyUT
 JoyndUIOd
 11g
 9]
 98108
 ZHI
 8g
 ‘poeds-ysry
 Bann
 soz]
 e

 "9U0}
 DUAS
 0006
 UUL]
 Jo
 wNIqUUr]
 prepue}s
 0}
 OUAS
 [ITAA
 ©

 “ONYBA
 9}OU
 poloapes
 Aue
 Je
 sas—nd
 jndyno
 07
 pewureigold
 3q
 ACW
 SL
 Ad
 LNO
 YADONAL
 OML

 "ALVOOT
 10
 GOLS/AV
 1d
 ‘LWddad
 “ASV

 SUIpNpoUr
 ‘suOTIOUN]
 posn
 A[UOUILUOS
 94]
 JO
 AUBUT
 [O1]UOD
 AJ9]OWIAI
 0}
 PousIsse
 oq
 ACUI
 ST
 AdNI
 HOLIMSLOO
 OME
 «

 “SUIPIONAI
 I[IYM
 P2sesd
 JOU
 Iv
 $3}OU
 BUTISIXO—ZUIPIOIA
 SATON.ASOP-UON

 ‘suoneurldxa
 peuoyippe
 sdeydsip
 uowng
 g1TqH

 oy]
 ‘pepsau
 JI
 ‘suoneiodo
 [ye
 yYsnosy]
 NOA
 sapins
 ApIespo
 Avfdsip
 QO]
 Joey
 Z7¢
 9y3—uoeIodo
 Urea]
 0}
 Ased
 ‘aus
 «

 jUorel]suowtap
 &
 IO}
 Aepol
 Jayeap
 uur’]
 INOA
 dag
 ‘dISHUL

 INOA
 0}
 UONUS}]¥
 PaplAIPUN
 INOA
 SUTJOASp
 ITY
 ps
 pue

 p1osai
 ‘asoduod
 no
 Jay
 0}
 pausisap
 st
 1s0uenbesuur’]
 oy)

 Aum
 Aposiooid
 $,Jeu],
 ‘SS9d0Id
 SATTBS1D
 OY}
 YIM
 SOIOJIOIUT

 yey)
 xo]dwWI0d
 Os
 dq
 JOA9U
 P[NoUsS
 osn
 NOA
 AZopOuYdE}
 oy

 ISTUMOIAUIO?)
 NOAA
 UOHISOdWIO)

 "NOSpr]
 B
 Oy
 ‘AONUTJUT
 yada
 0}
 seq
 Maz
 Se]
 BY]
 Jas
 UdAd

 uvd
 NOA
 ‘palisap
 JJ
 ‘souanbes
 Mou
 ¥B
 OVUT
 sjied
 ou]
 [Te
 Adoo

 ATesrewO
 Ne
 WI)
 [IM
 ONOS
 ALVAAO
 JeyIe80}
 wey}

 ,deyd,,
 0}
 UOTOUNJ
 ONOS
 ALVA
 ou]
 asn
 usy]
 ‘saouanbes

 JENPIAIpUt
 UI
 (“949
 ‘snJOYD
 ‘aS1OA)
 UOTIDIS
 JIseq
 Yes

 Pl0da1
 OF
 ST
 ABM
 JOuIOUY
 “(812g
 666
 01
 dn)
 ysnory)
 ABM

 dU}
 [fe
 YORI]
 YORs
 p10991
 0}
 ST
 SUOS
 B
 9789I9
 0}
 ABM
 SUG,

 SUOS
 &
 SUTVAID

 *suoT}oes
 poJUBMUN

 SAOUIOI
 0}
 ABM
 SWS
 dU}
 SoyeIodo
 SUV
 ALATAaG

 “OBPLIq
 dy}
 PUB
 SNIOY
 PUOdAS
 dT]]
 Ud9MIAQ
 SIDA
 ISI

 ay)
 Jo
 Adoo
 B
 JJasuT
 WYSE
 NOAA
 ‘afdwexs
 10.f
 ‘UO
 JUSIN]JIP

 B
 IO
 aouaNbas
 sues
 OY}
 UI—JOY
 OUP
 0}
 UOTIEIO]
 9UO
 WOT]

 $1Bq
 JAOUI
 OF
 NOA
 sMOTIe
 WOTIOUNS
 AdOO/IMASNI
 OULL

 ‘SUIPIONAI
 JIVIS
 Udy)
 “OQuINU
 eq
 porisop
 ay}
 puy

 0}
 CNIMAY
 10
 ‘CYVM
 Od
 LSWA
 “AEVOOT
 esn
 Apduns

 sainjeay
 [PUOHIPPY

 ‘gouanbas
 &
 UTYIIM
 s]UTOd
 a1y1dads
 3¥
 $9100
 QnPIOAO
 OL
 "UOT}

 -ouns
 dALLS
 ATONIS
 24)
 Suisn
 pasueyo
 Jo
 ‘pasesa
 ‘pappe

 aq
 osye
 ABUT
 S9]ON
 ‘U0
 9q
]IIM
 1
 “yoeq
 podeyd
 uayM

 —aouanbas
 oy]
 ul
 skeyd
 71
 a10J9q
 Isnf
 posers
 oq
 0}
 d]0U
 ayy

 ssaid
 pue
 ASvwug
 ploy
 Aydunis
 ‘jou
 Suomm
 &
 aseso
 OL

 sunipa

 jsesdueyo
 ureisoid
 pue
 ‘fepod
 ureysns

 ‘yonoplalje
 ‘AWOOTOA
 ‘UOTyeTNpow
 ‘pusg
 youd
 Surpnyour

 pep10del
 are
 $199JJ2
 TCTIN
 [WV
 iPeqqnpseao
 aq
 Aeur
 syoen

 Ze
 07
 dn
 ‘Kem
 sie
 Uy
 *(foeI}
 JOyOUR
 OJOS
 10
 ALLAN

 NOA
 ssofum)
 duAS
 yOaysod
 ul
 Avy
 [[IM
 Yow]
 ISI
 93
 “prooar

 NOA
 3[IYM—SUIPIOIA
 LIBIS
 PU
 YORI)
 TUdIOTJIP
 B
 JOaTas

 *y1ed
 MOU
 B
 QNPIsA0
 OL,
 “SuIps0daJ-jods
 10}
 aouanbes
 mno0k

 UI
 UOHBIO]
 Aue
 ssad0e
 ATYOIND
 0}
 owt}
 Aue
 ye
 pasn
 aq
 AvUE

 SJONUOD
 FLIVOOT
 pur
 ‘ANIMA
 ‘CYVMaYOd
 LSVd

 {SUIPIOSAI
 {IY
 posesa
 JOU
 se
 So]OU
 SuTsTXO—

 yous}
 3U}
 OUT
 poppe
 aq
 JIM
 poteyd
 sajou
 yeuonippe
 Auy

 *(povesjap
 10
 poysn{pe
 oq
 ABW
 UOTIIII0D
 BUTUTT])
 j{paqoeLI09

 2q
][IM
 S1OLIe
 Sur
 [fe
 ATUO—patey]d
 nod
 Jey
 Jedy
]],NOA

 ‘]
 req
 0]
 punose
 yoeq
 sdoo]
 sduanbas
 ay]
 Udy
 AA
 “YOu
 Yor

 §,sa0uaNbas
 at}
 O]
 SUIT)
 UI
 preogday
 [IW]
 INO
 Avy
 usy3

 AV'1d
 pue
 (YOON
 ssoid
 Ayduus
 ‘aousnbes
 &
 p1o09es
 OF,

 g0uaNbas
 &
 SUIP10I0y]

 ‘JONWOD
 s}JouNaI
 TeuONdGO
 e

 "UOTJEZIUOIYUAS
 OPOS
 UIT}
 FLAWS
 [euondo
 e

 ‘sou
 .sulddoys,
 noyyM
 sayelodo
 pue
 yoegdvyd
 ZuLINp
 S¥IOM
 NOLLOANNYOO
 ONIWILL
 e

 ‘onqea
 ory
 AY

 pojoojes-oid
 &
 ye
 sajou
 pyoy
 Aue
 syeadas
 ATTeONewWO
 Ne
 UOTOUNS
 [WAdAY
 OAISNOX
 e

 ‘LSVJ
 SUnIpS
 soyeu
 UOTOUN
 ASV
 UA
 OUlN-[eal
 SAISNIOXY
 e

 ‘Koy
 B
 JO
 YONO}
 941
 12
 CASOdSNVALL
 0g
 ABU
 Syde]
 [Te
 10
 9UC
 e

 i
 ASIP
 Jed

 S9}0U
 OOO‘OTT
 JOA
 SpfOy
 puv
 SpUOdeS
 UT
 SBUOS
 Xa[AUIOD
 So10}S
 DALIP
 YSIP
 ,
 74
 €
 ISCJ-CNIN

 jSIOZISOUJUAS

 stuoydAjod
 of
 0}
 dn
 skeyd
 A[snoourynuls
 ‘spouueYd
 [IW
 9T
 JO
 duo
 0}
 pousisse
 oq

 ABUL
 YORI]
 YOR
 ‘syous)
 oruoydAjod
 ‘snoouelnurs
 7¢
 SuTeJUOS
 ssouUaNbas
 QO]
 OY}
 JO
 YORA
 e

 ‘SJONUOS
 ATWOOT
 pur
 ‘GNIMAY
 ‘GaVM
 OA

 LSVd
 ‘GYOOde
 AOLS
 ‘AV
 Td
 YIM
 Jopsocas
 ade}
 Yowsj-N[NU
 O}
 eps
 st
 UOTLISdO
 @

 LOPNOUT
 SaINjeoy
 s[quyIeUlss
 AUB
 S.JJ
 ‘OSN
 pue
 UIes]
 0}
 o[duns
 A[suIzeUe
 JOA
 ‘PnJsomod
 APOUIOITXO

 St
 1]
 “UeIOIsNUL
 feUOIssajoid
 oY}
 10
 JOO}
 soUBULIOJIJAd
 pue
 UOTIsOduIOS
 11e-dY1-JO-9}e)s
 B
 SI
 IONUANbDaguUT]
 ay

 JOps1odady
 soUINbIS
 [GTI
 YVAL
 ZE

 Jgouanbaguury
 oy

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__eng__000004_ocr.png__000004_ocr_hocr__hocr__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__eng__000004_ocr.png__000004_ocr_hocr__hocr__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__eng__000004_ocr.png__000004_ocr_hocr__hocr__txt/txt.bin

2A NNI‘I 6F6867# XATALL IE18-80L (818)

9SEI6 VO “BUBZIRY, “J0aNS PIPUXO OZLEI
“Uy ‘soTUOMOI,q UUrT

uu

“‘SUOS B UIJIM pasueyo oq ABU pue ‘posn oq AWW AYN IVNOIS AWLL AUV
“parlsop Jr SUOTIISUBI} YIOOUIS YIM “BoueNbas eB OJUI pourtueIZOId 9q ABU SFONWHO OdINAL e

‘uonng OdNAL dV L 9) uO

sojou Jayienb Suiddy} Aq 10 ‘syUSTIOIOUI oINUTIAI-J8g-Jesg & JO sys} UL ofquisn(pe ‘ATTeouIAUINU paiajus oq ABU OdINALL e

(jouer doup u3a9)

“puooes Jed souely O€ 10 “SZ “pz 18 [LVAG-MAd-SHN VU 10 ALOANIWAAd-SLVAd U! patyoeds aq kewl OAL «
‘uoTe1odo [SVx JO} Aj[eusoyUT JoyndUIOd 11g 9] 98108 ZHI 8g ‘poeds-ysry Bann soz] e

"9U0} DUAS 0006 UUL] Jo wNIqUUr] prepue}s 0} OUAS [ITAA ©

“ONYBA 9}OU poloapes Aue Je sas—nd jndyno 07 pewureigold 3q ACW SL Ad LNO YADONAL OML

"ALVOOT 10 GOLS/AV 1d ‘LWddad “ASV

SUIpNpoUr ‘suOTIOUN] posn A[UOUILUOS 94] JO AUBUT [O1]UOD AJ9]OWIAI 0} PousIsse oq ACUI ST AdNI HOLIMSLOO OME «
“SUIPIONAI I[IYM P2sesd JOU Iv $3}OU BUTISIXO—ZUIPIOIA SATON.ASOP-UON

‘suoneurldxa peuoyippe sdeydsip uowng g1TqH

oy] ‘pepsau JI ‘suoneiodo [ye yYsnosy] NOA sapins ApIespo Avfdsip QO] Joey Z7¢ 9y3—uoeIodo Urea] 0} Ased ‘aus «

jUorel]suowtap & IO} Aepol Jayeap uur’] INOA dag ‘dISHUL
INOA 0} UONUS}]¥ PaplAIPUN INOA SUTJOASp ITY ps pue
p1osai ‘asoduod no Jay 0} pausisap st 1s0uenbesuur’] oy)
Aum Aposiooid $,Jeu], ‘SS9d0Id SATTBS1D OY} YIM SOIOJIOIUT
yey) xo]dwWI0d Os dq JOA9U P[NoUsS osn NOA AZopOuYdE} oy

ISTUMOIAUIO?) NOAA UOHISOdWIO)

"NOSpr] B Oy ‘AONUTJUT yada 0} seq Maz Se] BY] Jas UdAd
uvd NOA ‘palisap JJ ‘souanbes Mou ¥B OVUT sjied ou] [Te Adoo
ATesrewO Ne WI) [IM ONOS ALVAAO JeyIe80} wey}
,deyd,, 0} UOTOUNJ ONOS ALVA ou] asn usy] ‘saouanbes
JENPIAIpUt UI (“949 ‘snJOYD ‘aS1OA) UOTIDIS JIseq Yes
Pl0da1 OF ST ABM JOuIOUY “(812g 666 01 dn) ysnory) ABM

dU} [fe YORI] YORs p10991 0} ST SUOS B 9789I9 0} ABM SUG,

SUOS & SUTVAID

*suoT}oes poJUBMUN

SAOUIOI 0} ABM SWS dU} SoyeIodo SUV ALATAaG

“OBPLIq dy} PUB SNIOY PUOdAS dT]] Ud9MIAQ SIDA ISI

ay) Jo Adoo B JJasuT WYSE NOAA ‘afdwexs 10.f ‘UO JUSIN]JIP

B IO aouaNbas sues OY} UI—JOY OUP 0} UOTIEIO] 9UO WOT]
$1Bq JAOUI OF NOA sMOTIe WOTIOUNS AdOO/IMASNI OULL

‘SUIPIONAI JIVIS Udy) “OQuINU eq porisop ay} puy

0} CNIMAY 10 ‘CYVM Od LSWA “AEVOOT esn Apduns

sainjeay [PUOHIPPY

‘gouanbas & UTYIIM s]UTOd a1y1dads 3¥ $9100 QnPIOAO OL "UOT}
-ouns dALLS ATONIS 24) Suisn pasueyo Jo ‘pasesa ‘pappe
aq osye ABUT S9]ON ‘U0 9q]IIM 1 “yoeq podeyd uayM
—aouanbas oy] ul skeyd 71 a10J9q Isnf posers oq 0} d]0U ayy
ssaid pue ASvwug ploy Aydunis ‘jou Suomm & aseso OL

sunipa

jsesdueyo ureisoid pue ‘fepod ureysns
‘yonoplalje ‘AWOOTOA ‘UOTyeTNpow ‘pusg youd Surpnyour
pep10del are $199JJ2 TCTIN [WV iPeqqnpseao aq Aeur syoen
Ze 07 dn ‘Kem sie Uy *(foeI} JOyOUR OJOS 10 ALLAN
NOA ssofum) duAS yOaysod ul Avy [[IM Yow] ISI 93 “prooar
NOA 3[IYM—SUIPIOIA LIBIS PU YORI) TUdIOTJIP B JOaTas
*y1ed MOU B QNPIsA0 OL, “SuIps0daJ-jods 10} aouanbes mno0k
UI UOHBIO] Aue ssad0e ATYOIND 0} owt} Aue ye pasn aq AvUE
SJONUOD FLIVOOT pur ‘ANIMA ‘CYVMaYOd LSVd
{SUIPIOSAI {IY posesa JOU se So]OU SuTsTXO—
yous} 3U} OUT poppe aq JIM poteyd sajou yeuonippe Auy
*(povesjap 10 poysn{pe oq ABW UOTIIII0D BUTUTT]) j{paqoeLI09
2q][IM S1OLIe Sur [fe ATUO—patey]d nod Jey Jedy]],NOA
‘] req 0] punose yoeq sdoo] sduanbas ay] Udy AA “YOu Yor
§,sa0uaNbas at} O] SUIT) UI preogday [IW] INO Avy usy3
AV'1d pue (YOON ssoid Ayduus ‘aousnbes & p1o09es OF,

g0uaNbas & SUIP10I0y]

‘JONWOD s}JouNaI TeuONdGO e

"UOTJEZIUOIYUAS OPOS UIT} FLAWS [euondo e

‘sou .sulddoys, noyyM sayelodo pue yoegdvyd ZuLINp S¥IOM NOLLOANNYOO ONIWILL e

‘onqea ory AY

pojoojes-oid & ye sajou pyoy Aue syeadas ATTeONewWO Ne UOTOUNS [WAdAY OAISNOX e
‘LSVJ SUnIpS soyeu UOTOUN ASV UA OUlN-[eal SAISNIOXY e
‘Koy B JO YONO} 941 12 CASOdSNVALL 0g ABU Syde] [Te 10 9UC e

i ASIP Jed

S9}0U OOO‘OTT JOA SpfOy puv SpUOdeS UT SBUOS Xa[AUIOD So10}S DALIP YSIP , 74 € ISCJ-CNIN

jSIOZISOUJUAS

stuoydAjod of 0} dn skeyd A[snoourynuls ‘spouueYd [IW 9T JO duo 0} pousisse oq
ABUL YORI] YOR ‘syous) oruoydAjod ‘snoouelnurs 7¢ SuTeJUOS ssouUaNbas QO] OY} JO YORA e

‘SJONUOS ATWOOT pur ‘GNIMAY ‘GaVM OA
LSVd ‘GYOOde AOLS ‘AV Td YIM Jopsocas ade} Yowsj-N[NU O} eps st UOTLISdO @
LOPNOUT SaINjeoy s[quyIeUlss AUB S.JJ ‘OSN pue UIes] 0} o[duns A[suIzeUe JOA ‘PnJsomod APOUIOITXO
St 1] “UeIOIsNUL feUOIssajoid oY} 10 JOO} soUBULIOJIJAd pue UOTIsOduIOS 11e-dY1-JO-9}e)s B SI IONUANbDaguUT] ay

JOps1odady soUINbIS [GTI YVAL ZE
Jgouanbaguury oy
�

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__eng__000004_ocr.png__000004_ocr_tess__pdf__txt/pdf.bin

2
A

NNI‘I

6F6867#
X
A
T
A
L
L

IE18-80L
(818)

9SEI6
VO

“BUBZIRY,
“J0aNS

PIPUXO
OZLEI

“Uy
‘soTUOMOI,q

UUrT

uu
“‘SUOS

B
UIJIM

pasueyo
oq

ABU
pue

‘posn
oq

AWW
A
Y
N

I
V
N
O
I
S

A
W
L
L

AUV

“parlsop
Jr

SUOTIISUBI}
YIOOUIS

YIM
“BoueNbas

eB
OJUI

pourtueIZOId
9q

ABU
S
F
O
N
W
H
O

OdINAL
e

‘uonng
O
d
N
A
L

d
V
 L

9)
uO

sojou
Jayienb

Suiddy}
Aq

10
‘syUSTIOIOUI

oINUTIAI-J8g-Jesg
& JO

s
y
s
}

UL
ofquisn(pe

‘ATTeouIAUINU
paiajus

oq
ABU

OdINALL
e

(jouer
doup

u3a9)

“puooes
Jed

souely
O€

10
“SZ

“pz
18
[
L
V
A
G
-
M
A
d
-
S
H
N

V
U

10
A
L
O
A
N
I
W
A
A
d
-
S
L
V
A
d

U!
patyoeds

aq
kewl

O
A
L

«
‘uoTe1odo

[
S
V
x

JO}
Aj[eusoyUT

JoyndUIOd
11g

9]
98108

Z
H
I

8g
‘poeds-ysry

Bann
s
o
z
]

e

"9U0}
DUAS

0006
UUL]

Jo
wNIqUUr]

prepue}s
0}

OUAS
[ITAA

©
“ONYBA

9}OU
poloapes

Aue
Je

sas—nd
jndyno

07
pewureigold

3q
ACW

SL
Ad

L
N
O

Y
A
D
O
N
A
L

OML

"
A
L
V
O
O
T

10
G
O
L
S
/
A
V

1d

‘LWddad
“
A
S
V

SUIpNpoUr
‘suOTIOUN]

posn
A[UOUILUOS

94]
JO

AUBUT
[O1]UOD

AJ9]OWIAI
0}

PousIsse
oq

ACUI
ST

A
d
N
I

H
O
L
I
M
S
L
O
O

OME
«

“SUIPIONAI
I[IYM

P2sesd
JOU

Iv
$3}OU

BUTISIXO—ZUIPIOIA
SATON.ASOP-UON

‘suoneurldxa
peuoyippe

sdeydsip
uowng

g1TqH
oy]

‘pepsau
JI

‘suoneiodo
[ye

yYsnosy]
NOA

sapins
ApIespo

Avfdsip
Q
O
]

J
o
e
y

Z7¢
9
y
3
—
u
o
e
I
o
d
o

Urea]
0}

Ased
‘
a
u
s

«

jUorel]suowtap
&

IO}
Aepol

Jayeap
uur’]

INOA
dag

‘dISHUL
INOA

0}
UONUS}]¥

PaplAIPUN
INOA

SUTJOASp
I
T
Y

p
s

pue
p1osai

‘asoduod
n
o

Jay
0}

pausisap
st

1s0uenbesuur’]
oy)

Aum
Aposiooid

$,Jeu],
‘SS9d0Id

SATTBS1D
OY}

YIM
SOIOJIOIUT

yey)
xo]dwWI0d

Os
dq

JOA9U
P[NoUsS

osn
NOA

AZopOuYdE}
oy

ISTUMOIAUIO?)
N
O
A
A

UOHISOdWIO)

"NOSpr]
B
Oy

‘AONUTJUT
y
a
d
a

0}
seq

Maz
Se]

BY]
Jas

UdAd
uvd

NOA
‘palisap

JJ
‘souanbes

Mou
¥B

OVUT
sjied

ou]
[Te

Adoo

A
T
e
s
r
e
w
O

Ne
WI)

[IM
ONOS

A
L
V
A
A
O

JeyIe80}
wey}

,deyd,,
0}

UOTOUNJ
O
N
O
S

A
L
V
A

ou]
asn

usy]
‘saouanbes

JENPIAIpUt
UI

(“949
‘snJOYD

‘aS1OA)
UOTIDIS

JIseq
Yes

Pl0da1
OF

ST
ABM

JOuIOUY
“(812g

666
01

dn)
ysnory)

ABM
dU}

[fe
YORI]

YORs
p10991

0}
ST

SUOS
B

9789I9
0}

ABM
SUG,

SUOS
&
SUTVAID

*suoT}oes
poJUBMUN

SAOUIOI
0}

ABM
S
W
S

dU}
SoyeIodo

S
U
V

A
L
A
T
A
a
G

“OBPLIq
dy}

PUB
S
N
I
O
Y

PUOdAS

dT]]
Ud9MIAQ

SIDA
ISI

ay)
Jo

Adoo
B

JJasuT
W
Y
S
E

NOAA
‘afdwexs

10.f
‘UO

JUSIN]JIP
B

IO
aouaNbas

sues
OY}

UI—JOY
OUP

0}
UOTIEIO]

9UO
WOT]

$1Bq
JAOUI

OF
NOA

sMOTIe
WOTIOUNS

A
d
O
O
/
I
M
A
S
N
I

OULL
‘SUIPIONAI

JIVIS
Udy)

“OQuINU
eq

porisop
ay}

puy

0}
C
N
I
M
A
Y

10
‘
C
Y
V
M

O
d

L
S
W
A

“
A
E
V
O
O
T

esn
Apduns

sainjeay
[PUOHIPPY

‘gouanbas
&

UTYIIM
s]UTOd

a1y1dads
3¥

$9100
QnPIOAO

OL
"UOT}

-ouns
dALLS

A
T
O
N
I
S

24)
Suisn

pasueyo
Jo

‘pasesa
‘pappe

aq
osye

ABUT
S9]ON

‘
U
0

9q
]IIM

1
“yoeq

podeyd
uayM

—
a
o
u
a
n
b
a
s

oy]
ul

skeyd
71

a10J9q
Isnf

posers
oq

0}
d]0U

ayy
ssaid

pue
A
S
v
w
u
g

ploy
Aydunis

‘jou
Suomm

&
aseso

OL

sunipa
jsesdueyo

ureisoid
pue

‘fepod
ureysns

‘yonoplalje
‘AWOOTOA

‘UOTyeTNpow
‘pusg

youd
Surpnyour

pep10del
are

$199JJ2
TCTIN

[WV
iPeqqnpseao

aq
Aeur

syoen

Ze
07 dn

‘Kem
sie

Uy
*(foeI}

JOyOUR
OJOS

10
ALLAN

NOA
ssofum)

duAS
yOaysod

ul
Avy

[[IM
Yow]

ISI
93

“prooar
NOA

3
[
I
Y
M
—
S
U
I
P
I
O
I
A

LIBIS
P
U

YORI)
TUdIOTJIP

B
JOaTas

*y1ed
MOU

B
QNPIsA0

OL,
“SuIps0daJ-jods

10}
aouanbes

mno0k
UI

UOHBIO]
Aue

ssad0e
ATYOIND

0}
owt}

Aue
ye

pasn
aq

AvUE

SJONUOD
F
L
I
V
O
O
T

pur
‘
A
N
I
M
A

‘
C
Y
V
M
a
Y
O
d

L
S
V
d

{SUIPIOSAI
{
I
Y

posesa
JOU

se
So]OU

SuTsTXO—
yous}

3U}
OUT

poppe
aq

JIM
poteyd

sajou
yeuonippe

Auy
*(povesjap

10
poysn{pe

oq
ABW

UOTIIII0D
BUTUTT])

j{paqoeLI09
2q

][IM
S1OLIe

S
u
r

[fe
ATUO—patey]d

nod
J
e
y

Jedy
]],NOA

‘]
req

0]
punose

yoeq
sdoo]

sduanbas
ay]

Udy AA
“YOu

Y
o
r

§,sa0uaNbas
at}

O]
SUIT)

UI
preogday

[
I
W
]

I
N
O

Avy

usy3
AV'1d

pue
(
Y
O
O
N

ssoid
Ayduus

‘aousnbes
&

p1o09es
OF,

g0uaNbas
&
SUIP10I0y]

‘JONWOD
s}JouNaI

TeuONdGO
e

"UOTJEZIUOIYUAS
OPOS

UIT}
F
L
A
W
S

[euondo

e
‘sou

.sulddoys,
n
o
y
y
M

sayelodo
pue

yoegdvyd
ZuLINp

S¥IOM
N
O
L
L
O
A
N
N
Y
O
O

O
N
I
W
I
L
L

e

‘onqea
o
r
y

AY

pojoojes-oid
&

ye
sajou

pyoy
Aue

syeadas
A
T
T
e
O
N
e
w
W
O

Ne
UOTOUNS

[
W
A
d
A
Y

O
A
I
S
N
O
X

e
‘LSVJ

SUnIpS
soyeu

U
O
T
O
U
N

ASV UA

OUlN-[eal
SAISNIOXY

e
‘Koy

B JO
YONO}

941
12
C
A
S
O
d
S
N
V
A
L
L

0g
ABU

Syde]
[Te

10
9UC

e

i ASIP
Jed

S9}0U
OOO‘OTT

JOA
SpfOy

puv
SpUOdeS

UT
SBUOS

Xa[AUIOD
So10}S

DALIP
YSIP

, 74 € ISCJ-CNIN
jSIOZISOUJUAS

stuoydAjod
of

0}
dn

skeyd
A[snoourynuls

‘spouueYd
[
I
W

9T
JO

duo
0}

pousisse
oq

ABUL
YORI]

Y
O
R

‘syous)
oruoydAjod

‘snoouelnurs
7¢

SuTeJUOS
ssouUaNbas

QO]
OY}

JO
YORA

e

‘SJONUOS
ATWOOT

pur
‘GNIMAY

‘GaVM
OA

LSVd
‘GYOOde

AOLS
‘AV Td

YIM
Jopsocas

ade}
Yowsj-N[NU

O} e
p
s

st UOTLISdO
@

LOPNOUT
SaINjeoy

s[quyIeUlss
A
U
B

S.JJ
‘OSN

pue
UIes]

0}
o[duns

A[suIzeUe
JOA

‘PnJsomod
APOUIOITXO

St
1]

“UeIOIsNUL
feUOIssajoid

oY}
10

JOO}
soUBULIOJIJAd

pue
UOTIsOduIOS

11e-dY1-JO-9}e)s
B

SI
IONUANbDaguUT]

ay

JOps1odady
soUINbIS

[
G
T
I

Y
V
A
L

ZE
J
g
o
u
a
n
b
a
g
u
u
r
y

o
y

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__eng__000004_ocr.png__000004_ocr_tess__pdf__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__eng__000004_ocr.png__000004_ocr_tess__pdf__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__eng__000004_ocr.png__000004_ocr_tess__pdf__txt/txt.bin

2A NNI‘I 6F6867# XATALL IE18-80L (818)

9SEI6 VO “BUBZIRY, “J0aNS PIPUXO OZLEI
“Uy ‘soTUOMOI,q UUrT

uu

“‘SUOS B UIJIM pasueyo oq ABU pue ‘posn oq AWW AYN IVNOIS AWLL AUV
“parlsop Jr SUOTIISUBI} YIOOUIS YIM “BoueNbas eB OJUI pourtueIZOId 9q ABU SFONWHO OdINAL e

‘uonng OdNAL dV L 9) uO

sojou Jayienb Suiddy} Aq 10 ‘syUSTIOIOUI oINUTIAI-J8g-Jesg & JO sys} UL ofquisn(pe ‘ATTeouIAUINU paiajus oq ABU OdINALL e

(jouer doup u3a9)

“puooes Jed souely O€ 10 “SZ “pz 18 [LVAG-MAd-SHN VU 10 ALOANIWAAd-SLVAd U! patyoeds aq kewl OAL «
‘uoTe1odo [SVx JO} Aj[eusoyUT JoyndUIOd 11g 9] 98108 ZHI 8g ‘poeds-ysry Bann soz] e

"9U0} DUAS 0006 UUL] Jo wNIqUUr] prepue}s 0} OUAS [ITAA ©

“ONYBA 9}OU poloapes Aue Je sas—nd jndyno 07 pewureigold 3q ACW SL Ad LNO YADONAL OML

"ALVOOT 10 GOLS/AV 1d ‘LWddad “ASV

SUIpNpoUr ‘suOTIOUN] posn A[UOUILUOS 94] JO AUBUT [O1]UOD AJ9]OWIAI 0} PousIsse oq ACUI ST AdNI HOLIMSLOO OME «
“SUIPIONAI I[IYM P2sesd JOU Iv $3}OU BUTISIXO—ZUIPIOIA SATON.ASOP-UON

‘suoneurldxa peuoyippe sdeydsip uowng g1TqH

oy] ‘pepsau JI ‘suoneiodo [ye yYsnosy] NOA sapins ApIespo Avfdsip QO] Joey Z7¢ 9y3—uoeIodo Urea] 0} Ased ‘aus «

jUorel]suowtap & IO} Aepol Jayeap uur’] INOA dag ‘dISHUL
INOA 0} UONUS}]¥ PaplAIPUN INOA SUTJOASp ITY ps pue
p1osai ‘asoduod no Jay 0} pausisap st 1s0uenbesuur’] oy)
Aum Aposiooid $,Jeu], ‘SS9d0Id SATTBS1D OY} YIM SOIOJIOIUT
yey) xo]dwWI0d Os dq JOA9U P[NoUsS osn NOA AZopOuYdE} oy

ISTUMOIAUIO?) NOAA UOHISOdWIO)

"NOSpr] B Oy ‘AONUTJUT yada 0} seq Maz Se] BY] Jas UdAd
uvd NOA ‘palisap JJ ‘souanbes Mou ¥B OVUT sjied ou] [Te Adoo
ATesrewO Ne WI) [IM ONOS ALVAAO JeyIe80} wey}
,deyd,, 0} UOTOUNJ ONOS ALVA ou] asn usy] ‘saouanbes
JENPIAIpUt UI (“949 ‘snJOYD ‘aS1OA) UOTIDIS JIseq Yes
Pl0da1 OF ST ABM JOuIOUY “(812g 666 01 dn) ysnory) ABM

dU} [fe YORI] YORs p10991 0} ST SUOS B 9789I9 0} ABM SUG,

SUOS & SUTVAID

*suoT}oes poJUBMUN

SAOUIOI 0} ABM SWS dU} SoyeIodo SUV ALATAaG

“OBPLIq dy} PUB SNIOY PUOdAS dT]] Ud9MIAQ SIDA ISI

ay) Jo Adoo B JJasuT WYSE NOAA ‘afdwexs 10.f ‘UO JUSIN]JIP

B IO aouaNbas sues OY} UI—JOY OUP 0} UOTIEIO] 9UO WOT]
$1Bq JAOUI OF NOA sMOTIe WOTIOUNS AdOO/IMASNI OULL

‘SUIPIONAI JIVIS Udy) “OQuINU eq porisop ay} puy

0} CNIMAY 10 ‘CYVM Od LSWA “AEVOOT esn Apduns

sainjeay [PUOHIPPY

‘gouanbas & UTYIIM s]UTOd a1y1dads 3¥ $9100 QnPIOAO OL "UOT}
-ouns dALLS ATONIS 24) Suisn pasueyo Jo ‘pasesa ‘pappe
aq osye ABUT S9]ON ‘U0 9q]IIM 1 “yoeq podeyd uayM
—aouanbas oy] ul skeyd 71 a10J9q Isnf posers oq 0} d]0U ayy
ssaid pue ASvwug ploy Aydunis ‘jou Suomm & aseso OL

sunipa

jsesdueyo ureisoid pue ‘fepod ureysns
‘yonoplalje ‘AWOOTOA ‘UOTyeTNpow ‘pusg youd Surpnyour
pep10del are $199JJ2 TCTIN [WV iPeqqnpseao aq Aeur syoen
Ze 07 dn ‘Kem sie Uy *(foeI} JOyOUR OJOS 10 ALLAN
NOA ssofum) duAS yOaysod ul Avy [[IM Yow] ISI 93 “prooar
NOA 3[IYM—SUIPIOIA LIBIS PU YORI) TUdIOTJIP B JOaTas
*y1ed MOU B QNPIsA0 OL, “SuIps0daJ-jods 10} aouanbes mno0k
UI UOHBIO] Aue ssad0e ATYOIND 0} owt} Aue ye pasn aq AvUE
SJONUOD FLIVOOT pur ‘ANIMA ‘CYVMaYOd LSVd
{SUIPIOSAI {IY posesa JOU se So]OU SuTsTXO—
yous} 3U} OUT poppe aq JIM poteyd sajou yeuonippe Auy
*(povesjap 10 poysn{pe oq ABW UOTIIII0D BUTUTT]) j{paqoeLI09
2q][IM S1OLIe Sur [fe ATUO—patey]d nod Jey Jedy]],NOA
‘] req 0] punose yoeq sdoo] sduanbas ay] Udy AA “YOu Yor
§,sa0uaNbas at} O] SUIT) UI preogday [IW] INO Avy usy3
AV'1d pue (YOON ssoid Ayduus ‘aousnbes & p1o09es OF,

g0uaNbas & SUIP10I0y]

‘JONWOD s}JouNaI TeuONdGO e

"UOTJEZIUOIYUAS OPOS UIT} FLAWS [euondo e

‘sou .sulddoys, noyyM sayelodo pue yoegdvyd ZuLINp S¥IOM NOLLOANNYOO ONIWILL e

‘onqea ory AY

pojoojes-oid & ye sajou pyoy Aue syeadas ATTeONewWO Ne UOTOUNS [WAdAY OAISNOX e
‘LSVJ SUnIpS soyeu UOTOUN ASV UA OUlN-[eal SAISNIOXY e
‘Koy B JO YONO} 941 12 CASOdSNVALL 0g ABU Syde] [Te 10 9UC e

i ASIP Jed

S9}0U OOO‘OTT JOA SpfOy puv SpUOdeS UT SBUOS Xa[AUIOD So10}S DALIP YSIP , 74 € ISCJ-CNIN

jSIOZISOUJUAS

stuoydAjod of 0} dn skeyd A[snoourynuls ‘spouueYd [IW 9T JO duo 0} pousisse oq
ABUL YORI] YOR ‘syous) oruoydAjod ‘snoouelnurs 7¢ SuTeJUOS ssouUaNbas QO] OY} JO YORA e

‘SJONUOS ATWOOT pur ‘GNIMAY ‘GaVM OA
LSVd ‘GYOOde AOLS ‘AV Td YIM Jopsocas ade} Yowsj-N[NU O} eps st UOTLISdO @
LOPNOUT SaINjeoy s[quyIeUlss AUB S.JJ ‘OSN pue UIes] 0} o[duns A[suIzeUe JOA ‘PnJsomod APOUIOITXO
St 1] “UeIOIsNUL feUOIssajoid oY} 10 JOO} soUBULIOJIJAd pue UOTIsOduIOS 11e-dY1-JO-9}e)s B SI IONUANbDaguUT] ay

JOps1odady soUINbIS [GTI YVAL ZE
Jgouanbaguury oy
�

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__osd__--psm__0__000001_rasterize_preview.jpg__stdout/stderr.bin

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__osd__--psm__0__000001_rasterize_preview.jpg__stdout/stdout.bin

Page number: 0
Orientation in degrees: 0
Rotate: 0
Orientation confidence: 34.40
Script: Latin
Script confidence: 2.90

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__osd__--psm__0__000002_rasterize_preview.jpg__stdout/stderr.bin

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__osd__--psm__0__000002_rasterize_preview.jpg__stdout/stdout.bin

Page number: 0
Orientation in degrees: 90
Rotate: 270
Orientation confidence: 34.53
Script: Latin
Script confidence: 3.83

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__osd__--psm__0__000003_rasterize_preview.jpg__stdout/stderr.bin

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__osd__--psm__0__000003_rasterize_preview.jpg__stdout/stdout.bin

Page number: 0
Orientation in degrees: 180
Rotate: 180
Orientation confidence: 31.79
Script: Latin
Script confidence: 3.18

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__osd__--psm__0__000004_rasterize_preview.jpg__stdout/stderr.bin

ocrmypdf-10.3.1+dfsg/tests/cache/cardinal/__-l__osd__--psm__0__000004_rasterize_preview.jpg__stdout/stdout.bin

Page number: 0
Orientation in degrees: 270
Rotate: 90
Orientation confidence: 32.59
Script: Latin
Script confidence: 2.85

ocrmypdf-10.3.1+dfsg/tests/cache/ccitt/__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt/hocr.bin

 The
 LinnSequencer

 32
 Track
 MIDI
 Sequence
 Recorder

 The
 LinnSequencer
 is
 a
 state-of-the-art
 composition
 and
 performance
 tool
 for
 the
 professional
 musician.
 It
 is

 extremely
 powerful,
 yet
 amazingly
 simple
 to
 learn
 and
 use.
 It’s
 many
 remarkable
 features
 include:

 ¢
 Operation
 is
 similar
 to
 multi-track
 tape
 recorder
 with
 PLAY,
 STOP,
 RECORD,
 FAST

 FORWARD,
 REWIND,
 and
 LOCATE
 controls.

 e
 Each
 of
 the
 100
 sequences
 contains
 32
 simultaneous,
 polyphonic
 tracks.
 Each
 track
 may

 be
 assigned
 to
 one
 of
 16
 MIDI
 channels.
 Simultaneously
 plays
 up
 to
 16
 polyphonic

 synthesizers!

 ¢
 Ultra-fast
 3%”
 disk
 drive
 stores
 complex
 songs
 in
 seconds
 and
 holds
 over
 110,000
 notes

 per
 disk!

 ¢
 One
 or
 all
 tracks
 may
 be
 TRANSPOSED
 at
 the
 touch
 of
 a
 key.

 e
 Exclusive
 real-time
 ERASE
 function
 makes
 editing
 FAST.

 *
 Exclusive
 REPEAT
 function
 automatically
 repeats
 any
 held
 notes
 at
 a
 pre-selected

 rhythmic
 value.

 ¢
 TIMING
 CORRECTION
 works
 during
 playback
 and
 operates
 without
 ‘chopping’
 notes.

 ¢
 Optional
 SMPTE
 time
 code
 synchronization.

 ©
 Optional
 remote
 control.

 Recording
 a
 Sequence

 To
 record
 a
 sequence,
 simply
 press
 RECORD
 and
 PLAY,

 then
 play
 your
 MIDI
 keyboard
 in
 time
 to
 the
 Sequencer’s

 click
 track.
 When
 the
 sequence
 loops
 back
 around
 to
 bar
 1,

 you’
 ll
 hear
 what
 you
 played—only
 all
 timing
 errors
 will
 be

 corrected!
 (Timing
 correction
 may
 be
 adjusted
 or
 defeated).

 Any
 additional
 notes
 played
 will
 be
 added
 into
 the
 track

 —
 existing
 notes
 are
 not
 erased
 while
 recording!

 FAST
 FORWARD,
 REWIND,
 and
 LOCATE
 controls

 may
 be
 used
 at
 any
 time
 to
 quickly
 access
 any
 location
 in

 your
 sequence
 for
 spot-recording.
 To
 overdub
 a
 new
 part,

 select
 a
 different
 track
 and
 start
 recording—while
 you

 record,
 the
 first
 track
 will
 play
 in
 perfect
 sync
 (unless
 you

 MUTE
 it,
 or
 SOLO
 another
 track).
 In
 this
 way,
 up
 to
 32

 tracks
 may
 be
 overdubbed!
 All
 MIDI
 effects
 are
 recorded

 including
 pitch
 bend,
 modulation,
 velocity,
 aftertouch,

 sustain
 pedal,
 and
 program
 changes!

 Editing

 To
 erase
 a
 wrong
 note,
 simply
 hold
 ERASE
 and
 press

 the
 note
 to
 be
 erased
 just
 before
 it
 plays
 in
 the
 sequence—

 when
 played
 back,
 it
 will
 be
 gone.
 Notes
 may
 also
 be

 added,
 erased,
 or
 changed
 using
 the
 SINGLE
 STEP
 func-

 tion.
 To
 overdub
 notes
 at
 specific
 points
 within
 a
 sequence,

 Additional
 Features

 simply
 use
 LOCATE,
 FAST
 FORWARD,
 or
 REWIND
 to

 find
 the
 desired
 bar
 number,
 then
 start
 recording.

 The
 INSERT/COPY
 function
 allows
 you
 to
 move
 bars

 from
 one
 location
 to
 another—in
 the
 same
 sequence
 or
 a

 different
 one.
 For
 example,
 you
 might
 insert
 a
 copy
 of
 the

 first
 verse
 between
 the
 second
 chorus
 and
 the
 bridge.

 DELETE
 BARS
 operates
 the
 same
 way
 to
 remove

 unwanted
 sections,

 Creating
 a
 Song

 One
 way
 to
 create
 a
 song
 is
 to
 record
 each
 track
 all
 the

 way
 through
 (up
 to
 999
 bars).
 Another
 way
 is
 to
 record

 each
 basic
 section
 (verse,
 chorus,
 etc.)
 in
 individual

 sequences,
 then
 use
 the
 CREATE
 SONG
 function
 to
 “chain”

 them
 together.
 CREATE
 SONG
 will
 then
 automatically

 copy
 all
 the
 parts
 into
 a
 new
 sequence.
 If
 desired,
 you
 can

 even
 set
 the
 last
 few
 bars
 to
 repeat
 infinitely,
 for
 a
 fadeout.

 Composition
 Without
 Compromise

 The
 technology
 you
 use
 should
 never
 be
 so
 complex
 that

 it
 interferes
 with
 the
 creative
 process.
 That’s
 precisely
 why

 the
 LinnSequencer
 is
 designed
 to
 let
 you
 compose,
 record

 and
 edit
 while
 devoting
 your
 undivided
 attention
 to
 your

 music.
 See
 your
 Linn
 dealer
 today
 for
 a
 demonstration!

 *
 Simple,
 easy
 to
 learn
 operation—the
 32
 character
 LCD
 display
 clearly
 guides
 you
 through
 all
 operations.
 If
 needed,
 the

 HELP
 button
 displays
 additional
 explanations.

 *
 Non-destructive
 recording—existing
 notes
 are
 not
 erased
 while
 recording.

 ¢
 Two
 FOOTSWITCH
 INPUTS
 may
 be
 assigned
 to
 remotely
 control
 many
 of
 the
 commonly
 used
 functions,
 including

 ERASE,
 REPEAT,
 PLAY/STOP,
 or
 LOCATE.

 ¢
 Iwo
 TRIGGER
 OUTPUTS
 may
 be
 programmed
 to
 output
 pulses
 at
 any
 selected
 note
 value.

 ©
 Will
 sync
 to
 standard
 LinnDrum
 or
 Linn
 9000
 sync
 tone.

 ©
 Utilizes
 ultra
 high-speed,
 8
 MHz
 80186
 16
 bit
 computer
 internally
 for
 FAST
 operation.

 *
 TEMPO
 may
 be
 specified
 in
 BEATS-PER-MINUTE
 or
 FRAMES-PER-BEAT
 at
 24,
 25,
 or
 30
 frames
 per
 second,

 (even
 drop
 frame!)

 ¢
 TEMPO
 may
 be
 entered
 numerically,
 adjustable
 in
 tenths
 of
 a
 Beat-Per-Minute
 increments,
 or
 by
 tapping
 quarter
 notes

 on
 the
 TAP
 TEMPO
 button.

 ¢
 TEMPO
 CHANGES
 may
 be
 programmed
 into
 a
 sequence,
 with
 smooth
 transitions
 if
 desired.

 ¢
 Any
 TIME
 SIGNATURE
 may
 be
 used,
 and
 may
 be
 changed
 within
 a
 song.

 linn

 Linn
 Electronics,
 Inc.

 18720
 Oxnard
 Street,
 Tarzana,
 CA
 91356

 (818)
 708-8131
 TELEX
 #298949
 LINN
 UR

ocrmypdf-10.3.1+dfsg/tests/cache/ccitt/__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica

ocrmypdf-10.3.1+dfsg/tests/cache/ccitt/__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/ccitt/__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt/txt.bin

The LinnSequencer
32 Track MIDI Sequence Recorder

The LinnSequencer is a state-of-the-art composition and performance tool for the professional musician. It is

extremely powerful, yet amazingly simple to learn and use. It’s many remarkable features include:

¢ Operation is similar to multi-track tape recorder with PLAY, STOP, RECORD, FAST
FORWARD, REWIND, and LOCATE controls.

e Each of the 100 sequences contains 32 simultaneous, polyphonic tracks. Each track may
be assigned to one of 16 MIDI channels. Simultaneously plays up to 16 polyphonic

synthesizers!

¢ Ultra-fast 3%” disk drive stores complex songs in seconds and holds over 110,000 notes

per disk!

¢ One or all tracks may be TRANSPOSED at the touch of a key.
e Exclusive real-time ERASE function makes editing FAST.
* Exclusive REPEAT function automatically repeats any held notes at a pre-selected

rhythmic value.

¢ TIMING CORRECTION works during playback and operates without ‘chopping’ notes.

¢ Optional SMPTE time code synchronization.

© Optional remote control.

Recording a Sequence

To record a sequence, simply press RECORD and PLAY,
then play your MIDI keyboard in time to the Sequencer’s
click track. When the sequence loops back around to bar 1,
you’ ll hear what you played—only all timing errors will be

corrected! (Timing correction may be adjusted or defeated).

Any additional notes played will be added into the track
— existing notes are not erased while recording!

FAST FORWARD, REWIND, and LOCATE controls
may be used at any time to quickly access any location in
your sequence for spot-recording. To overdub a new part,
select a different track and start recording—while you
record, the first track will play in perfect sync (unless you
MUTE it, or SOLO another track). In this way, up to 32
tracks may be overdubbed! All MIDI effects are recorded
including pitch bend, modulation, velocity, aftertouch,
sustain pedal, and program changes!

Editing

To erase a wrong note, simply hold ERASE and press
the note to be erased just before it plays in the sequence—
when played back, it will be gone. Notes may also be

added, erased, or changed using the SINGLE STEP func-
tion. To overdub notes at specific points within a sequence,

Additional Features

simply use LOCATE, FAST FORWARD, or REWIND to
find the desired bar number, then start recording.

The INSERT/COPY function allows you to move bars
from one location to another—in the same sequence or a
different one. For example, you might insert a copy of the
first verse between the second chorus and the bridge.
DELETE BARS operates the same way to remove
unwanted sections,

Creating a Song

One way to create a song is to record each track all the
way through (up to 999 bars). Another way is to record
each basic section (verse, chorus, etc.) in individual
sequences, then use the CREATE SONG function to “chain”
them together. CREATE SONG will then automatically
copy all the parts into a new sequence. If desired, you can
even set the last few bars to repeat infinitely, for a fadeout.

Composition Without Compromise

The technology you use should never be so complex that
it interferes with the creative process. That’s precisely why
the LinnSequencer is designed to let you compose, record
and edit while devoting your undivided attention to your
music. See your Linn dealer today for a demonstration!

* Simple, easy to learn operation—the 32 character LCD display clearly guides you through all operations. If needed, the

HELP button displays additional explanations.

* Non-destructive recording—existing notes are not erased while recording.
¢ Two FOOTSWITCH INPUTS may be assigned to remotely control many of the commonly used functions, including

ERASE, REPEAT, PLAY/STOP, or LOCATE.

¢ Iwo TRIGGER OUTPUTS may be programmed to output pulses at any selected note value.

© Will sync to standard LinnDrum or Linn 9000 sync tone.

© Utilizes ultra high-speed, 8 MHz 80186 16 bit computer internally for FAST operation.
* TEMPO may be specified in BEATS-PER-MINUTE or FRAMES-PER-BEAT at 24, 25, or 30 frames per second,

(even drop frame!)

¢ TEMPO may be entered numerically, adjustable in tenths of a Beat-Per-Minute increments, or by tapping quarter notes

on the TAP TEMPO button.

¢ TEMPO CHANGES may be programmed into a sequence, with smooth transitions if desired.
¢ Any TIME SIGNATURE may be used, and may be changed within a song.

linn
Linn Electronics, Inc.

18720 Oxnard Street, Tarzana, CA 91356
(818) 708-8131 TELEX #298949 LINN UR
�

ocrmypdf-10.3.1+dfsg/tests/cache/ccitt/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/pdf.bin

The LinnSequencer
32 Track MIDI Sequence Recorder

The LinnSequencer is a state-of-the-art composition and performance tool for the professional musician. It is

extremely powerful, yet amazingly simple to learn and use. It’s many remarkable features include:

¢ Operation is similar to multi-track tape recorder with PLAY, STOP, RECORD, FAST
FORWARD, REWIND, and LOCATE controls.

e Each of the 100 sequences contains 32 simultaneous, polyphonic tracks. Each track may
be assigned to one of 16 MIDI channels. Simultaneously plays up to 16 polyphonic
synthesizers!

¢ Ultra-fast 3%” disk drive stores complex songs in seconds and holds over 110,000 notes
per disk!

¢ One or all tracks may be TRANSPOSED at the touch of a key.

e Exclusive real-time ERASE function makes editing FAST.

* Exclusive REPEAT function automatically repeats any held notes at a pre-selected
rhythmic value.

¢ TIMING CORRECTION works during playback and operates without ‘chopping’ notes.

¢ Optional SMPTE time code synchronization.

© Optional remote control.

Recording a Sequence
To record a sequence, simply press RECORD and PLAY,

then play your MIDI keyboard in time to the Sequencer’s
click track. When the sequence loops back around to bar 1,
you’ ll hear what you played—only all timing errors will be
corrected! (Timing correction may be adjusted or defeated).
Any additional notes played will be added into the track
— existing notes are not erased while recording!

FAST FORWARD, REWIND, and LOCATE controls
may be used at any time to quickly access any location in
your sequence for spot-recording. To overdub a new part,
select a different track and start recording—while you
record, the first track will play in perfect sync (unless you
MUTE it, or SOLO another track). In this way, up to 32
tracks may be overdubbed! All MIDI effects are recorded
including pitch bend, modulation, velocity, aftertouch,
sustain pedal, and program changes!

Editing
To erase a wrong note, simply hold ERASE and press

the note to be erased just before it plays in the sequence—
when played back, it will be gone. Notes may also be
added, erased, or changed using the SINGLE STEP func-
tion. To overdub notes at specific points within a sequence,

Additional Features

simply use LOCATE, FAST FORWARD, or REWIND to
find the desired bar number, then start recording.

The INSERT/COPY function allows you to move bars
from one location to another—in the same sequence or a
different one. For example, you might insert a copy of the
first verse between the second chorus and the bridge.
DELETE BARS operates the same way to remove
unwanted sections,

Creating a Song
One way to create a song is to record each track all the

way through (up to 999 bars). Another way is to record
each basic section (verse, chorus, etc.) in individual
sequences, then use the CREATE SONG function to “chain”
them together. CREATE SONG will then automatically
copy all the parts into a new sequence. If desired, you can
even set the last few bars to repeat infinitely, for a fadeout.

Composition Without Compromise
The technology you use should never be so complex that

it interferes with the creative process. That’s precisely why
the LinnSequencer is designed to let you compose, record
and edit while devoting your undivided attention to your
music. See your Linn dealer today for a demonstration!

* Simple, easy to learn operation—the 32 character LCD display clearly guides you through all operations. If needed, the
HELP button displays additional explanations.

* Non-destructive recording—existing notes are not erased while recording.

¢ Two FOOTSWITCH INPUTS may be assigned to remotely control many of the commonly used functions, including
ERASE, REPEAT, PLAY/STOP, or LOCATE.

¢ Iwo TRIGGER OUTPUTS may be programmed to output pulses at any selected note value.

© Will sync to standard LinnDrum or Linn 9000 sync tone.

© Utilizes ultra high-speed, 8 MHz 80186 16 bit computer internally for FAST operation.

* TEMPO may be specified in BEATS-PER-MINUTE or FRAMES-PER-BEAT at 24, 25, or 30 frames per second,
(even drop frame!)

¢ TEMPO may be entered numerically, adjustable in tenths of a Beat-Per-Minute increments, or by tapping quarter notes
on the TAP TEMPO button.

¢ TEMPO CHANGES may be programmed into a sequence, with smooth transitions if desired.

¢ Any TIME SIGNATURE may be used, and may be changed within a song.

linn
Linn Electronics, Inc.

18720 Oxnard Street, Tarzana, CA 91356

(818) 708-8131 TELEX #298949 LINN UR

ocrmypdf-10.3.1+dfsg/tests/cache/ccitt/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica

ocrmypdf-10.3.1+dfsg/tests/cache/ccitt/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/ccitt/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/txt.bin

The LinnSequencer
32 Track MIDI Sequence Recorder

The LinnSequencer is a state-of-the-art composition and performance tool for the professional musician. It is

extremely powerful, yet amazingly simple to learn and use. It’s many remarkable features include:

¢ Operation is similar to multi-track tape recorder with PLAY, STOP, RECORD, FAST
FORWARD, REWIND, and LOCATE controls.

e Each of the 100 sequences contains 32 simultaneous, polyphonic tracks. Each track may
be assigned to one of 16 MIDI channels. Simultaneously plays up to 16 polyphonic

synthesizers!

¢ Ultra-fast 3%” disk drive stores complex songs in seconds and holds over 110,000 notes

per disk!

¢ One or all tracks may be TRANSPOSED at the touch of a key.
e Exclusive real-time ERASE function makes editing FAST.
* Exclusive REPEAT function automatically repeats any held notes at a pre-selected

rhythmic value.

¢ TIMING CORRECTION works during playback and operates without ‘chopping’ notes.

¢ Optional SMPTE time code synchronization.

© Optional remote control.

Recording a Sequence

To record a sequence, simply press RECORD and PLAY,
then play your MIDI keyboard in time to the Sequencer’s
click track. When the sequence loops back around to bar 1,
you’ ll hear what you played—only all timing errors will be

corrected! (Timing correction may be adjusted or defeated).

Any additional notes played will be added into the track
— existing notes are not erased while recording!

FAST FORWARD, REWIND, and LOCATE controls
may be used at any time to quickly access any location in
your sequence for spot-recording. To overdub a new part,
select a different track and start recording—while you
record, the first track will play in perfect sync (unless you
MUTE it, or SOLO another track). In this way, up to 32
tracks may be overdubbed! All MIDI effects are recorded
including pitch bend, modulation, velocity, aftertouch,
sustain pedal, and program changes!

Editing

To erase a wrong note, simply hold ERASE and press
the note to be erased just before it plays in the sequence—
when played back, it will be gone. Notes may also be

added, erased, or changed using the SINGLE STEP func-
tion. To overdub notes at specific points within a sequence,

Additional Features

simply use LOCATE, FAST FORWARD, or REWIND to
find the desired bar number, then start recording.

The INSERT/COPY function allows you to move bars
from one location to another—in the same sequence or a
different one. For example, you might insert a copy of the
first verse between the second chorus and the bridge.
DELETE BARS operates the same way to remove
unwanted sections,

Creating a Song

One way to create a song is to record each track all the
way through (up to 999 bars). Another way is to record
each basic section (verse, chorus, etc.) in individual
sequences, then use the CREATE SONG function to “chain”
them together. CREATE SONG will then automatically
copy all the parts into a new sequence. If desired, you can
even set the last few bars to repeat infinitely, for a fadeout.

Composition Without Compromise

The technology you use should never be so complex that
it interferes with the creative process. That’s precisely why
the LinnSequencer is designed to let you compose, record
and edit while devoting your undivided attention to your
music. See your Linn dealer today for a demonstration!

* Simple, easy to learn operation—the 32 character LCD display clearly guides you through all operations. If needed, the

HELP button displays additional explanations.

* Non-destructive recording—existing notes are not erased while recording.
¢ Two FOOTSWITCH INPUTS may be assigned to remotely control many of the commonly used functions, including

ERASE, REPEAT, PLAY/STOP, or LOCATE.

¢ Iwo TRIGGER OUTPUTS may be programmed to output pulses at any selected note value.

© Will sync to standard LinnDrum or Linn 9000 sync tone.

© Utilizes ultra high-speed, 8 MHz 80186 16 bit computer internally for FAST operation.
* TEMPO may be specified in BEATS-PER-MINUTE or FRAMES-PER-BEAT at 24, 25, or 30 frames per second,

(even drop frame!)

¢ TEMPO may be entered numerically, adjustable in tenths of a Beat-Per-Minute increments, or by tapping quarter notes

on the TAP TEMPO button.

¢ TEMPO CHANGES may be programmed into a sequence, with smooth transitions if desired.
¢ Any TIME SIGNATURE may be used, and may be changed within a song.

linn
Linn Electronics, Inc.

18720 Oxnard Street, Tarzana, CA 91356
(818) 708-8131 TELEX #298949 LINN UR
�

ocrmypdf-10.3.1+dfsg/tests/cache/francais/__-l__deu__000001_ocr.png__000001_ocr_tess__pdf__txt/pdf.bin

Portez ce vieux whisky au juge

blond qui fume sur son Ile

interieure, a cöte de l'alcöve

ovoide, oU les büches se

consument dans l'ätre, ce qui

lui permet de penser & la

caenogenese de |'etre dont il

est question dans la cause

ambigu& entendue a MoY, dans

un capharnaüm qui, pense-t-il,

diminue ca et la la qualite de son

ceuvre.

ocrmypdf-10.3.1+dfsg/tests/cache/francais/__-l__deu__000001_ocr.png__000001_ocr_tess__pdf__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica

ocrmypdf-10.3.1+dfsg/tests/cache/francais/__-l__deu__000001_ocr.png__000001_ocr_tess__pdf__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/francais/__-l__deu__000001_ocr.png__000001_ocr_tess__pdf__txt/txt.bin

Portez ce vieux whisky au juge
blond qui fume sur son Ile
interieure, a cöte de l'alcöve
ovoide, oU les büches se
consument dans l'ätre, ce qui
lui permet de penser & la
caenogenese de |'etre dont il
est question dans la cause
ambigu& entendue a MoY, dans
un capharnaüm qui, pense-t-il,
diminue ca et la la qualite de son
ceuvre.
�

ocrmypdf-10.3.1+dfsg/tests/cache/graph_ocred/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/pdf.bin

Replacement of "creationism" with "intelligent design"

120

—@— "Creation" and "creationist"

—®@-— "Intelligent design"
and "design proponent"

W
o
r
d

co
un
t

ocrmypdf-10.3.1+dfsg/tests/cache/graph_ocred/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica

ocrmypdf-10.3.1+dfsg/tests/cache/graph_ocred/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/graph_ocred/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/txt.bin

Replacement of "creationism" with "intelligent design"

120

—@— "Creation" and "creationist"
—®@-— "Intelligent design"
and "design proponent"

Word count

�

ocrmypdf-10.3.1+dfsg/tests/cache/jbig2/__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt/hocr.bin

 41st
 CONGRESS;
 |
 SENATE.

 3d
 Session.
 }

 MESSAGE

 OF
 THE

 PRESIDENT
 OF
 THE
 UNITED
 STATES,

 COMMUNICATING

 A
 copy
 of
 regulations
 for
 the
 consular
 courts
 of
 the
 United
 States
 in
 Japan,

 decreed
 and
 issued
 by
 the
 minister
 of
 the
 United
 States
 in
 that
 country.

 January
 27,
 1871,—Read,
 referred
 to
 the
 Committee
 on
 Commerce,
 and
 ordered
 to
 be

 printed.

 To
 the
 Senate
 and
 House
 of
 Representatives
 :

 I
 transmit
 herewith,
 for
 the
 consideration
 of
 Congress,
 a
 report
 from

 the
 Secretary
 of
 State,
 and
 the
 papers
 which
 accompanied
 it,
 concern-

 ing
 regulations
 for
 the
 consular
 courts
 of
 the
 United
 States
 in
 Japan.

 U.
 8.
 GRANT.

 ‘WASHINGTON,
 January
 27,
 1871.

 DEPARTMENT
 OF
 STATE,

 .
 Washington,
 January
 26,
 1870,

 The
 Secretary
 of
 State
 has
 the
 honor
 to
 submit
 herewith,
 for
 revision

 by
 Congress,
 in
 conformity
 with
 the
 provisions
 of
 section
 6
 of
 the
 act

 approved
 22d
 of
 June,
 1860,
 a
 copy
 of
 “regulations
 for
 the
 consular

 courts
 of
 the
 United
 States
 in
 Japan,”
 decreed
 and
 issued
 by
 C.
 E.

 De
 Long,
 the
 miniater
 of
 the
 United
 States
 in
 that
 country,
 in
 Septem-

 ber,
 1870;
 and
 also
 the
 papers
 mentioned
 in
 the
 subjoined
 list,
 which,

 contain
 suggestions
 on
 the
 subject
 thereof.

 A
 copy
 of
 Article
 XXVI
 of
 the
 consular
 regulations
 is
 also
 submitted,

 and
 the
 Secretary
 of
 State
 respectfully
 suggests,
 for
 the
 consideration

 of
 Congress,
 the
 propriety
 of
 limiting
 the
 power
 of
 ministers
 to
 make

 decrees
 and
 regulation,
 in
 the
 sense
 in
 which
 it
 is
 limited
 by
 paragraph

 431
 of
 the
 article
 before
 named—that
 is,
 “to
 acts
 necessary
 to
 organize

 and
 give
 efficiency
 to
 the
 courts
 created
 by
 the
 act.”

 Respectfully
 submitted.
 .

 HAMILTON
 FISH.

 The
 PRESIDENT,

 List
 of
 accompanying
 papers.

 1,
 Regulations
 for
 the
 consular
 courts
 of
 the
 United
 States
 in
 Japan.

 2.
 Mr.
 Fish
 to
 Mr.
 De
 Long,
 September
 10,
 1870.
 .

ocrmypdf-10.3.1+dfsg/tests/cache/jbig2/__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica

ocrmypdf-10.3.1+dfsg/tests/cache/jbig2/__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/jbig2/__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt/txt.bin

41st CONGRESS; | SENATE.
3d Session. }

MESSAGE

OF THE

PRESIDENT OF THE UNITED STATES,

COMMUNICATING

A copy of regulations for the consular courts of the United States in Japan,
decreed and issued by the minister of the United States in that country.

January 27, 1871,—Read, referred to the Committee on Commerce, and ordered to be
printed.

To the Senate and House of Representatives :

I transmit herewith, for the consideration of Congress, a report from
the Secretary of State, and the papers which accompanied it, concern-
ing regulations for the consular courts of the United States in Japan.

U. 8. GRANT.

‘WASHINGTON, January 27, 1871.

DEPARTMENT OF STATE,
. Washington, January 26, 1870,

The Secretary of State has the honor to submit herewith, for revision
by Congress, in conformity with the provisions of section 6 of the act
approved 22d of June, 1860, a copy of “regulations for the consular
courts of the United States in Japan,” decreed and issued by C. E.
De Long, the miniater of the United States in that country, in Septem-
ber, 1870; and also the papers mentioned in the subjoined list, which,
contain suggestions on the subject thereof.

A copy of Article XXVI of the consular regulations is also submitted,
and the Secretary of State respectfully suggests, for the consideration
of Congress, the propriety of limiting the power of ministers to make
decrees and regulation, in the sense in which it is limited by paragraph
431 of the article before named—that is, “to acts necessary to organize
and give efficiency to the courts created by the act.”

Respectfully submitted. .

HAMILTON FISH.

The PRESIDENT,

List of accompanying papers.

1, Regulations for the consular courts of the United States in Japan.
2. Mr. Fish to Mr. De Long, September 10, 1870. .

�

ocrmypdf-10.3.1+dfsg/tests/cache/jbig2/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/pdf.bin

4ist ConGREss, } SENATE. { Ex. Doc,
3d Session. No. 25.

MESSAGE

OF THE

PRESIDENT OF THE UNITED STATES,
COMMUNICATING

A copy of regulations for the consular courts of the United States in Japan,
decreed and issued by the minister of the United States in that country.

JANUARY 27, 1871,—Read, referred to the Committee on Commerce, and ordered to be
printed.

To the Senate and House of Representatives :

I transmit herewith, for the consideration of Congress, a report from
the Secretary of State, and the papers which accompanied it, concern-
ing regulations for the consular courts of the United States in Japan.

U. 8. GRANT.
‘WASHINGTON, January 27, 1871.

DEPARTMENT OF STATE,
Washington, January 26, 1870,

The Secretary of State has the honor to submit herewith, for revision
by Congress, in conformity with the provisions of section 6 of the act
approved 22d of June, 1860, a copy of “regulations for the consular
courts of the United States in Japan,” decreed and issued by C. BE.
De Long, the minister of the United States in that country, in Septem-
ber, 1870; and also the papers mentioned in the subjoined list, which,
contain suggestions on the subject thereof.

A copy of Article XXVI of the consular regulations is also submitted,
and the Secretary of State respectfully suggests, for the consideration
of Congress, the propriety of limiting the power of ministers to make
decrees and regulation, in the sense in which it is limited by paragraph
431 of the article before named—that is, “to acts necessary to organize
and give efficiency to the courts created by the act.”

Respectfully submitted.
HAMILTON FISH.

The PRESIDENT,

List of accompanying papers.

1, Regulations for the consular courts of the United States in Japan.
2, Mr. Fish to Mr. De Long, September 10, 1870,

ocrmypdf-10.3.1+dfsg/tests/cache/jbig2/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica

ocrmypdf-10.3.1+dfsg/tests/cache/jbig2/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/jbig2/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/txt.bin

4ist ConGREss, } SENATE. { Ex. Doc,
3d Session. No. 25.

MESSAGE

OF THE

PRESIDENT OF THE UNITED STATES,

COMMUNICATING

A copy of regulations for the consular courts of the United States in Japan,
decreed and issued by the minister of the United States in that country.

JANUARY 27, 1871,—Read, referred to the Committee on Commerce, and ordered to be
printed.

To the Senate and House of Representatives :

I transmit herewith, for the consideration of Congress, a report from
the Secretary of State, and the papers which accompanied it, concern-
ing regulations for the consular courts of the United States in Japan.

U. 8. GRANT.

‘WASHINGTON, January 27, 1871.

DEPARTMENT OF STATE,
Washington, January 26, 1870,

The Secretary of State has the honor to submit herewith, for revision
by Congress, in conformity with the provisions of section 6 of the act
approved 22d of June, 1860, a copy of “regulations for the consular
courts of the United States in Japan,” decreed and issued by C. BE.
De Long, the minister of the United States in that country, in Septem-
ber, 1870; and also the papers mentioned in the subjoined list, which,
contain suggestions on the subject thereof.

A copy of Article XXVI of the consular regulations is also submitted,
and the Secretary of State respectfully suggests, for the consideration
of Congress, the propriety of limiting the power of ministers to make
decrees and regulation, in the sense in which it is limited by paragraph
431 of the article before named—that is, “to acts necessary to organize
and give efficiency to the courts created by the act.”

Respectfully submitted.

HAMILTON FISH.

The PRESIDENT,

List of accompanying papers.

1, Regulations for the consular courts of the United States in Japan.
2, Mr. Fish to Mr. De Long, September 10, 1870,

�

ocrmypdf-10.3.1+dfsg/tests/cache/lichtenstein/__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt/hocr.bin

ocrmypdf-10.3.1+dfsg/tests/cache/lichtenstein/__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica

ocrmypdf-10.3.1+dfsg/tests/cache/lichtenstein/__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/lichtenstein/__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt/txt.bin

�

ocrmypdf-10.3.1+dfsg/tests/cache/lichtenstein/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/pdf.bin

ocrmypdf-10.3.1+dfsg/tests/cache/lichtenstein/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica

ocrmypdf-10.3.1+dfsg/tests/cache/lichtenstein/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/lichtenstein/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/txt.bin

�

ocrmypdf-10.3.1+dfsg/tests/cache/manifest.jsonl

{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__deu__000001_ocr.png__000001_ocr_tess__pdf__txt", "sourcefile": "resources/francais.pdf", "args": ["-l", "deu", "-c", "textonly_pdf=1", "$TMPDIR/000001_ocr.png", "$TMPDIR/000001_ocr_tess", "pdf", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000003_ocr.png__000003_ocr_hocr__hocr__txt", "sourcefile": "resources/multipage.pdf", "args": ["-l", "eng", "$TMPDIR/000003_ocr.png", "$TMPDIR/000003_ocr_hocr", "hocr", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000004_ocr.png__000004_ocr_hocr__hocr__txt", "sourcefile": "resources/multipage.pdf", "args": ["-l", "eng", "$TMPDIR/000004_ocr.png", "$TMPDIR/000004_ocr_hocr", "hocr", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000004_ocr.png__000004_ocr_hocr__hocr__txt", "sourcefile": "resources/multipage.pdf", "args": ["-l", "eng", "$TMPDIR/000004_ocr.png", "$TMPDIR/000004_ocr_hocr", "hocr", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000004_ocr.png__000004_ocr_tess__pdf__txt", "sourcefile": "resources/multipage.pdf", "args": ["-l", "eng", "-c", "textonly_pdf=1", "$TMPDIR/000004_ocr.png", "$TMPDIR/000004_ocr_tess", "pdf", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000003_ocr.png__000003_ocr_hocr__hocr__txt", "sourcefile": "resources/multipage.pdf", "args": ["-l", "eng", "$TMPDIR/000003_ocr.png", "$TMPDIR/000003_ocr_hocr", "hocr", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000003_ocr.png__000003_ocr_tess__pdf__txt", "sourcefile": "resources/multipage.pdf", "args": ["-l", "eng", "-c", "textonly_pdf=1", "$TMPDIR/000003_ocr.png", "$TMPDIR/000003_ocr_tess", "pdf", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000004_ocr.png__000004_ocr_tess__pdf__txt", "sourcefile": "resources/multipage.pdf", "args": ["-l", "eng", "-c", "textonly_pdf=1", "$TMPDIR/000004_ocr.png", "$TMPDIR/000004_ocr_tess", "pdf", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000003_ocr.png__000003_ocr_tess__pdf__txt", "sourcefile": "resources/multipage.pdf", "args": ["-l", "eng", "-c", "textonly_pdf=1", "$TMPDIR/000003_ocr.png", "$TMPDIR/000003_ocr_tess", "pdf", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt", "sourcefile": "resources/2400dpi.pdf", "args": ["-l", "eng", "-c", "textonly_pdf=1", "$TMPDIR/000001_ocr.png", "$TMPDIR/000001_ocr_tess", "pdf", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt", "sourcefile": "resources/jbig2.pdf", "args": ["-l", "eng", "$TMPDIR/000001_ocr.png", "$TMPDIR/000001_ocr_hocr", "hocr", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt", "sourcefile": "resources/graph_ocred.pdf", "args": ["-l", "eng", "-c", "textonly_pdf=1", "$TMPDIR/000001_ocr.png", "$TMPDIR/000001_ocr_tess", "pdf", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt", "sourcefile": "resources/skew.pdf", "args": ["-l", "eng", "-c", "textonly_pdf=1", "$TMPDIR/000001_ocr.png", "$TMPDIR/000001_ocr_tess", "pdf", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt", "sourcefile": "resources/multipage.pdf", "args": ["-l", "eng", "$TMPDIR/000001_ocr.png", "$TMPDIR/000001_ocr_hocr", "hocr", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000002_ocr.png__000002_ocr_tess__pdf__txt", "sourcefile": "resources/3small.pdf", "args": ["-l", "eng", "-c", "textonly_pdf=1", "$TMPDIR/000002_ocr.png", "$TMPDIR/000002_ocr_tess", "pdf", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt", "sourcefile": "resources/multipage.pdf", "args": ["-l", "eng", "-c", "textonly_pdf=1", "$TMPDIR/000001_ocr.png", "$TMPDIR/000001_ocr_tess", "pdf", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt", "sourcefile": "resources/multipage.pdf", "args": ["-l", "eng", "-c", "textonly_pdf=1", "$TMPDIR/000001_ocr.png", "$TMPDIR/000001_ocr_tess", "pdf", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt", "sourcefile": "resources/multipage.pdf", "args": ["-l", "eng", "$TMPDIR/000001_ocr.png", "$TMPDIR/000001_ocr_hocr", "hocr", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt", "sourcefile": "resources/3small.pdf", "args": ["-l", "eng", "-c", "textonly_pdf=1", "$TMPDIR/000001_ocr.png", "$TMPDIR/000001_ocr_tess", "pdf", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000005_ocr.png__000005_ocr_hocr__hocr__txt", "sourcefile": "resources/multipage.pdf", "args": ["-l", "eng", "$TMPDIR/000005_ocr.png", "$TMPDIR/000005_ocr_hocr", "hocr", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000005_ocr.png__000005_ocr_tess__pdf__txt", "sourcefile": "resources/multipage.pdf", "args": ["-l", "eng", "-c", "textonly_pdf=1", "$TMPDIR/000005_ocr.png", "$TMPDIR/000005_ocr_tess", "pdf", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000005_ocr.png__000005_ocr_hocr__hocr__txt", "sourcefile": "resources/multipage.pdf", "args": ["-l", "eng", "$TMPDIR/000005_ocr.png", "$TMPDIR/000005_ocr_hocr", "hocr", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000005_ocr.png__000005_ocr_tess__pdf__txt", "sourcefile": "resources/multipage.pdf", "args": ["-l", "eng", "-c", "textonly_pdf=1", "$TMPDIR/000005_ocr.png", "$TMPDIR/000005_ocr_tess", "pdf", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt", "sourcefile": "resources/ccitt.pdf", "args": ["-l", "eng", "$TMPDIR/000001_ocr.png", "$TMPDIR/000001_ocr_hocr", "hocr", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt", "sourcefile": "resources/skew.pdf", "args": ["-l", "eng", "$TMPDIR/000001_ocr.png", "$TMPDIR/000001_ocr_hocr", "hocr", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt", "sourcefile": "resources/ccitt.pdf", "args": ["-l", "eng", "-c", "textonly_pdf=1", "$TMPDIR/000001_ocr.png", "$TMPDIR/000001_ocr_tess", "pdf", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000003_ocr.png__000003_ocr_tess__pdf__txt", "sourcefile": "resources/3small.pdf", "args": ["-l", "eng", "-c", "textonly_pdf=1", "$TMPDIR/000003_ocr.png", "$TMPDIR/000003_ocr_tess", "pdf", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000006_ocr.png__000006_ocr_hocr__hocr__txt", "sourcefile": "resources/multipage.pdf", "args": ["-l", "eng", "$TMPDIR/000006_ocr.png", "$TMPDIR/000006_ocr_hocr", "hocr", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000006_ocr.png__000006_ocr_hocr__hocr__txt", "sourcefile": "resources/multipage.pdf", "args": ["-l", "eng", "$TMPDIR/000006_ocr.png", "$TMPDIR/000006_ocr_hocr", "hocr", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000006_ocr.png__000006_ocr_tess__pdf__txt", "sourcefile": "resources/multipage.pdf", "args": ["-l", "eng", "-c", "textonly_pdf=1", "$TMPDIR/000006_ocr.png", "$TMPDIR/000006_ocr_tess", "pdf", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000006_ocr.png__000006_ocr_tess__pdf__txt", "sourcefile": "resources/multipage.pdf", "args": ["-l", "eng", "-c", "textonly_pdf=1", "$TMPDIR/000006_ocr.png", "$TMPDIR/000006_ocr_tess", "pdf", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt", "sourcefile": "resources/lichtenstein.pdf", "args": ["-l", "eng", "-c", "textonly_pdf=1", "$TMPDIR/000001_ocr.png", "$TMPDIR/000001_ocr_tess", "pdf", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt", "sourcefile": "resources/lichtenstein.pdf", "args": ["-l", "eng", "$TMPDIR/000001_ocr.png", "$TMPDIR/000001_ocr_hocr", "hocr", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000006_ocr.png__000006_ocr_tess__pdf__txt", "sourcefile": "resources/multipage.pdf", "args": ["-l", "eng", "-c", "textonly_pdf=1", "$TMPDIR/000006_ocr.png", "$TMPDIR/000006_ocr_tess", "pdf", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt", "sourcefile": "resources/aspect.pdf", "args": ["-l", "eng", "$TMPDIR/000001_ocr.png", "$TMPDIR/000001_ocr_hocr", "hocr", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt", "sourcefile": "resources/palette.pdf", "args": ["-l", "eng", "-c", "textonly_pdf=1", "$TMPDIR/000001_ocr.png", "$TMPDIR/000001_ocr_tess", "pdf", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__osd__--psm__0__000001_rasterize_preview.jpg__stdout", "sourcefile": "resources/cardinal.pdf", "args": ["-l", "osd", "--psm", "0", "$TMPDIR/000001_rasterize_preview.jpg", "stdout"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__osd__--psm__0__000003_rasterize_preview.jpg__stdout", "sourcefile": "resources/cardinal.pdf", "args": ["-l", "osd", "--psm", "0", "$TMPDIR/000003_rasterize_preview.jpg", "stdout"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__osd__--psm__0__000004_rasterize_preview.jpg__stdout", "sourcefile": "resources/cardinal.pdf", "args": ["-l", "osd", "--psm", "0", "$TMPDIR/000004_rasterize_preview.jpg", "stdout"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__osd__--psm__0__000002_rasterize_preview.jpg__stdout", "sourcefile": "resources/cardinal.pdf", "args": ["-l", "osd", "--psm", "0", "$TMPDIR/000002_rasterize_preview.jpg", "stdout"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt", "sourcefile": "resources/aspect.pdf", "args": ["-l", "eng", "-c", "textonly_pdf=1", "$TMPDIR/000001_ocr.png", "$TMPDIR/000001_ocr_tess", "pdf", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt", "sourcefile": "resources/jbig2.pdf", "args": ["-l", "eng", "-c", "textonly_pdf=1", "$TMPDIR/000001_ocr.png", "$TMPDIR/000001_ocr_tess", "pdf", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__osd__--psm__0__000004_rasterize_preview.jpg__stdout", "sourcefile": "resources/cardinal.pdf", "args": ["-l", "osd", "--psm", "0", "$TMPDIR/000004_rasterize_preview.jpg", "stdout"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__osd__--psm__0__000001_rasterize_preview.jpg__stdout", "sourcefile": "resources/cardinal.pdf", "args": ["-l", "osd", "--psm", "0", "$TMPDIR/000001_rasterize_preview.jpg", "stdout"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__osd__--psm__0__000003_rasterize_preview.jpg__stdout", "sourcefile": "resources/cardinal.pdf", "args": ["-l", "osd", "--psm", "0", "$TMPDIR/000003_rasterize_preview.jpg", "stdout"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__osd__--psm__0__000002_rasterize_preview.jpg__stdout", "sourcefile": "resources/cardinal.pdf", "args": ["-l", "osd", "--psm", "0", "$TMPDIR/000002_rasterize_preview.jpg", "stdout"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt", "sourcefile": "resources/palette.pdf", "args": ["-l", "eng", "$TMPDIR/000001_ocr.png", "$TMPDIR/000001_ocr_hocr", "hocr", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt", "sourcefile": "resources/palette.pdf", "args": ["-l", "eng", "$TMPDIR/000001_ocr.png", "$TMPDIR/000001_ocr_hocr", "hocr", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__--psm__7__000001_ocr.png__000001_ocr_hocr__hocr__txt", "sourcefile": "resources/skew.pdf", "args": ["-l", "eng", "--psm", "7", "$TMPDIR/000001_ocr.png", "$TMPDIR/000001_ocr_hocr", "hocr", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt", "sourcefile": "resources/cardinal.pdf", "args": ["-l", "eng", "$TMPDIR/000001_ocr.png", "$TMPDIR/000001_ocr_hocr", "hocr", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000002_ocr.png__000002_ocr_hocr__hocr__txt", "sourcefile": "resources/cardinal.pdf", "args": ["-l", "eng", "$TMPDIR/000002_ocr.png", "$TMPDIR/000002_ocr_hocr", "hocr", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt", "sourcefile": "resources/cardinal.pdf", "args": ["-l", "eng", "-c", "textonly_pdf=1", "$TMPDIR/000001_ocr.png", "$TMPDIR/000001_ocr_tess", "pdf", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000002_ocr.png__000002_ocr_tess__pdf__txt", "sourcefile": "resources/cardinal.pdf", "args": ["-l", "eng", "-c", "textonly_pdf=1", "$TMPDIR/000002_ocr.png", "$TMPDIR/000002_ocr_tess", "pdf", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt", "sourcefile": "resources/cardinal.pdf", "args": ["-l", "eng", "-c", "textonly_pdf=1", "$TMPDIR/000001_ocr.png", "$TMPDIR/000001_ocr_tess", "pdf", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000003_ocr.png__000003_ocr_hocr__hocr__txt", "sourcefile": "resources/cardinal.pdf", "args": ["-l", "eng", "$TMPDIR/000003_ocr.png", "$TMPDIR/000003_ocr_hocr", "hocr", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000004_ocr.png__000004_ocr_hocr__hocr__txt", "sourcefile": "resources/cardinal.pdf", "args": ["-l", "eng", "$TMPDIR/000004_ocr.png", "$TMPDIR/000004_ocr_hocr", "hocr", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__--psm__7__000001_ocr.png__000001_ocr_tess__pdf__txt", "sourcefile": "resources/skew.pdf", "args": ["-l", "eng", "--psm", "7", "-c", "textonly_pdf=1", "$TMPDIR/000001_ocr.png", "$TMPDIR/000001_ocr_tess", "pdf", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000002_ocr.png__000002_ocr_tess__pdf__txt", "sourcefile": "resources/cardinal.pdf", "args": ["-l", "eng", "-c", "textonly_pdf=1", "$TMPDIR/000002_ocr.png", "$TMPDIR/000002_ocr_tess", "pdf", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000003_ocr.png__000003_ocr_tess__pdf__txt", "sourcefile": "resources/cardinal.pdf", "args": ["-l", "eng", "-c", "textonly_pdf=1", "$TMPDIR/000003_ocr.png", "$TMPDIR/000003_ocr_tess", "pdf", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000004_ocr.png__000004_ocr_tess__pdf__txt", "sourcefile": "resources/cardinal.pdf", "args": ["-l", "eng", "-c", "textonly_pdf=1", "$TMPDIR/000004_ocr.png", "$TMPDIR/000004_ocr_tess", "pdf", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000003_ocr.png__000003_ocr_tess__pdf__txt", "sourcefile": "resources/cardinal.pdf", "args": ["-l", "eng", "-c", "textonly_pdf=1", "$TMPDIR/000003_ocr.png", "$TMPDIR/000003_ocr_tess", "pdf", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000004_ocr.png__000004_ocr_tess__pdf__txt", "sourcefile": "resources/cardinal.pdf", "args": ["-l", "eng", "-c", "textonly_pdf=1", "$TMPDIR/000004_ocr.png", "$TMPDIR/000004_ocr_tess", "pdf", "txt"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__osd__--psm__0__000001_rasterize_preview.jpg__stdout", "sourcefile": "resources/poster.pdf", "args": ["-l", "osd", "--psm", "0", "$TMPDIR/000001_rasterize_preview.jpg", "stdout"]}
{"tesseract_version": "4.1.1", "platform": "Darwin-18.7.0-x86_64-i386-64bit", "python": "3.7.7", "argv_slug": "__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt", "sourcefile": "resources/poster.pdf", "args": ["-l", "eng", "-c", "textonly_pdf=1", "$TMPDIR/000001_ocr.png", "$TMPDIR/000001_ocr_tess", "pdf", "txt"]}

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt/hocr.bin

 THEY
 TIP-TOED
 ALONG.

 ee
 .

 Se
 We
 went
 tip-toeing
 along
 a
 path
 amongst

 the
 trees
 back
 towards
 the
 end
 of
 the

 widow’s
 garden,
 stooping
 down
 so
 as

 the
 branches
 wouldn’t
 scrape
 our
 heads.

 When
 we
 was
 passing
 by
 the
 kitchen

 I
 fell
 over
 a
 root
 and
 made
 a
 noise.

 We
 scrouched
 down
 and
 laid
 still.

 Miss
 Watson’s
 big
 nigger,
 named

 Jim,
 was
 setting
 in
 the
 kitchen
 door
 ;

 we
 could
 see
 him
 pretty
 clear,
 because

 there
 was
 a
 light
 behind
 him.
 He

 got
 up
 and
 stretched
 his
 neck
 out

 about
 a
 minute,
 listening.
 Then
 he

 says,

 “Who
 dah?”

 He
 listened
 some
 more;
 then
 he

 come
 tip-toeing
 down
 and_
 stood

 right
 between
 us;
 we
 could
 a
 touched

 him,
 nearly.
 Well,
 likely
 it
 was
 min-

 utes
 and
 minutes
 that
 there
 warn’t
 a

 sound,
 and
 we
 all
 there
 so
 close

 together.
 There
 was
 a
 place
 on
 my

 ankle
 that
 got
 to
 itching;
 but
 I

 dasn’t
 scratch
 it;
 and
 then
 my
 ear
 begun
 to
 itch;
 and
 next
 my
 back,
 right
 be-

 tween
 my
 shoulders.
 Seemed
 like
 I’d
 die
 if
 I
 couldn’t
 scratch.
 Well,
 I’ve

 noticed
 that
 thing
 plenty
 of
 times
 since.

 Tf
 you
 are
 with
 the
 quality,
 or
 at
 a

 funeral,
 or
 trying
 to
 go
 to
 sleep
 when
 you
 ain’t
 sleepy—if
 you
 are
 anywheres

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica
Detected 60 diacritics

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt/txt.bin

THEY TIP-TOED ALONG.

ee .
Se We went tip-toeing along a path amongst

the trees back towards the end of the
widow’s garden, stooping down so as
the branches wouldn’t scrape our heads.
When we was passing by the kitchen
I fell over a root and made a noise.
We scrouched down and laid still.
Miss Watson’s big nigger, named
Jim, was setting in the kitchen door ;
we could see him pretty clear, because
there was a light behind him. He
got up and stretched his neck out
about a minute, listening. Then he
says,

“Who dah?”

He listened some more; then he
come tip-toeing down and_ stood
right between us; we could a touched
him, nearly. Well, likely it was min-
utes and minutes that there warn’t a
sound, and we all there so close
together. There was a place on my
ankle that got to itching; but I

dasn’t scratch it; and then my ear begun to itch; and next my back, right be-
tween my shoulders. Seemed like I’d die if I couldn’t scratch. Well, I’ve

noticed that thing plenty of times since.

Tf you are with the quality, or at a

funeral, or trying to go to sleep when you ain’t sleepy—if you are anywheres
�

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/pdf.bin

THEY TIP-TOED ALONG.

ee .

Se We went tip-toeing along a path amongst

the trees back towards the end of the

widow’s garden, stooping down so as

the branches wouldn’t scrape our heads.

When we was passing by the kitchen

I fell over a root and made a noise.

We scrouched down and laid still.

Miss Watson’s big nigger, named

Jim, was setting in the kitchen door ;

we could see him pretty clear, because

there was a light behind him. He

got up and stretched his neck out

about a minute, listening. Then he

says,

“Who dah?”

He listened some more; then he

come tip-toeing down and_ stood

right between us; we could a touched

him, nearly. Well, likely it was min-

utes and minutes that there warn’t a

sound, and we all there so close

together. There was a place on my

ankle that got to itching; but I

dasn’t scratch it; and then my ear begun to itch; and next my back, right be-

tween my shoulders. Seemed like I’d die if I couldn’t scratch. Well, I’ve

noticed that thing plenty of times since. Tf you are with the quality, or at a

funeral, or trying to go to sleep when you ain’t sleepy—if you are anywheres

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica
Detected 60 diacritics

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/txt.bin

THEY TIP-TOED ALONG.

ee .
Se We went tip-toeing along a path amongst

the trees back towards the end of the
widow’s garden, stooping down so as
the branches wouldn’t scrape our heads.
When we was passing by the kitchen
I fell over a root and made a noise.
We scrouched down and laid still.
Miss Watson’s big nigger, named
Jim, was setting in the kitchen door ;
we could see him pretty clear, because
there was a light behind him. He
got up and stretched his neck out
about a minute, listening. Then he
says,

“Who dah?”

He listened some more; then he
come tip-toeing down and_ stood
right between us; we could a touched
him, nearly. Well, likely it was min-
utes and minutes that there warn’t a
sound, and we all there so close
together. There was a place on my
ankle that got to itching; but I

dasn’t scratch it; and then my ear begun to itch; and next my back, right be-
tween my shoulders. Seemed like I’d die if I couldn’t scratch. Well, I’ve

noticed that thing plenty of times since.

Tf you are with the quality, or at a

funeral, or trying to go to sleep when you ain’t sleepy—if you are anywheres
�

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000003_ocr.png__000003_ocr_hocr__hocr__txt/hocr.bin

 Replacement
 of
 "creationism"
 with
 "intelligent
 design"

 120

 100
 -

 Cc
 80

 >

 5

 5
 607
 —@—
 "Creation"
 and
 "creationist"

 5
 —@—
 "Intelligent
 design"

 =
 and
 "design
 proponent"

 40
 -

 20
 -

 —@—
 —@®

 0
 e—
 T
 T
 T
 '
 w
 °

 gp)
 ee)
 0
 oN
 g\
 gD)
 op)

 oO
 NC)
 NC)
 LN
 eo
 N
 N

 S
 os
 o*
 vs
 ws
 os
 os

 cs)
 Re
 ss
 &
 ow
 x
 &
 s?

 ge
 ee
 Oo
 ss
 Ss
 Ne
 qs

 G
 %
 S
 S
 ©
 S

 Ros
 %
 se
 se
 oe
 AN

 Ss
 3s
 S
 Ss
 Ss
 Ss
 Ss

 ow?
 \O
 Xo)
 R
 g
 g
 Q

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000003_ocr.png__000003_ocr_hocr__hocr__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000003_ocr.png__000003_ocr_hocr__hocr__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000003_ocr.png__000003_ocr_hocr__hocr__txt/txt.bin

Replacement of "creationism" with "intelligent design"

120
100 -
Cc 80
>
5
5 607 —@— "Creation" and "creationist"
5 —@— "Intelligent design"
= and "design proponent"
40 -
20 -
—@— —@®
0 e— T T T ' w °
gp) ee) 0 oN g\ gD) op)
oO NC) NC) LN eo N N
S os o* vs ws os os
cs) Re ss & ow x & s?
ge ee Oo ss Ss Ne qs
G % S S © S
Ros % se se oe AN
Ss 3s S Ss Ss Ss Ss
ow? \O Xo) R g g Q
�

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000003_ocr.png__000003_ocr_tess__pdf__txt/pdf.bin

Replacement of "creationism" with "intelligent design"

120

100 -

Cc 80

>

5
5 607 —@— "Creation" and "creationist"

5 —@— "Intelligent design"

= and "design proponent"
40 -

20 -

—@— —@®

0 e— T T T ' w °

gp) ee) 0 oN g\ gD) op)
oO NC) NC) LN eo N N

S os o* vs ws os os cs) Re ss & ow x & s?
ge ee Oo ss Ss Ne qs

G % S S © S Ros % se se oe AN
Ss 3s S Ss Ss Ss Ss ow? \O Xo) R g g Q

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000003_ocr.png__000003_ocr_tess__pdf__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000003_ocr.png__000003_ocr_tess__pdf__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000003_ocr.png__000003_ocr_tess__pdf__txt/txt.bin

Replacement of "creationism" with "intelligent design"

120
100 -
Cc 80
>
5
5 607 —@— "Creation" and "creationist"
5 —@— "Intelligent design"
= and "design proponent"
40 -
20 -
—@— —@®
0 e— T T T ' w °
gp) ee) 0 oN g\ gD) op)
oO NC) NC) LN eo N N
S os o* vs ws os os
cs) Re ss & ow x & s?
ge ee Oo ss Ss Ne qs
G % S S © S
Ros % se se oe AN
Ss 3s S Ss Ss Ss Ss
ow? \O Xo) R g g Q
�

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000004_ocr.png__000004_ocr_hocr__hocr__txt/hocr.bin

 Replacement
 of
 "creationism"
 with
 "intelligent
 design"

 120

 100
 4

 =
 80

 —

 S

 _
 6047
 —@—
 "Creation"
 and
 "creationist"

 5
 —@—
 "Intelligent
 design"

 and
 "design
 proponent"

 S
 «4

 20
 -

 0
 oe
 I
 T
 T
 T
 T
 ©

 3)
 ©)
 Ay
 Ay
 Ay
 9
 o>)

 ee
 ow
 oe
 oe
 Cs
 Cs
 eS

 RQ
 Q
 R
 R
 XR
 Q
 R

 &
 es
 o
 a
 al
 &
 eo

 3
 e
 oe
 we
 a?
 i)
 as?

 3
 4?
 3
 &
 oe
 &
 &

 oe
 ww
 6
 e
 Qe
 Qe
 Qe

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000004_ocr.png__000004_ocr_hocr__hocr__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000004_ocr.png__000004_ocr_hocr__hocr__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000004_ocr.png__000004_ocr_hocr__hocr__txt/txt.bin

Replacement of "creationism" with "intelligent design"

120
100 4
= 80
—
S
_ 6047 —@— "Creation" and "creationist"
5 —@— "Intelligent design"
and "design proponent"
S «4
20 -
0 oe I T T T T ©
3) ©) Ay Ay Ay 9 o>)
ee ow oe oe Cs Cs eS
RQ Q R R XR Q R
& es o a al & eo
3 e oe we a? i) as?
3 4? 3 & oe & &
oe ww 6 e Qe Qe Qe
�

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000004_ocr.png__000004_ocr_tess__pdf__txt/pdf.bin

Replacement of "creationism" with "intelligent design"

120

100 4

= 80

—

S
_ 6047 —@— "Creation" and "creationist"

5 —@— "Intelligent design"
and "design proponent"

S «4

20 -

0 oe I T T T T ©

3) ©) Ay Ay Ay 9 o>)
ee ow oe oe Cs Cs eS RQ Q R R XR Q R & es o a al & eo

3 e oe we a? i) as?

3 4? 3 & oe & &
oe ww 6 e Qe Qe Qe

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000004_ocr.png__000004_ocr_tess__pdf__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000004_ocr.png__000004_ocr_tess__pdf__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000004_ocr.png__000004_ocr_tess__pdf__txt/txt.bin

Replacement of "creationism" with "intelligent design"

120
100 4
= 80
—
S
_ 6047 —@— "Creation" and "creationist"
5 —@— "Intelligent design"
and "design proponent"
S «4
20 -
0 oe I T T T T ©
3) ©) Ay Ay Ay 9 o>)
ee ow oe oe Cs Cs eS
RQ Q R R XR Q R
& es o a al & eo
3 e oe we a? i) as?
3 4? 3 & oe & &
oe ww 6 e Qe Qe Qe
�

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000005_ocr.png__000005_ocr_hocr__hocr__txt/hocr.bin

 with
 a
 plain
 face,
 on
 the
 throne
 of
 England;

 there
 were
 a
 king
 with
 a
 large
 jaw
 and
 a
 queen

 with
 a
 fair
 face,
 on
 the
 throne
 of
 France.
 In
 both

 countries
 it
 was
 clearer
 than
 crystal
 to
 the
 lords

 of
 the
 State
 preserves
 of
 loaves
 and
 fishes,
 that

 things
 in
 general
 were
 settled
 for
 ever.

 It
 was
 the
 year
 of
 Our
 Lord
 one
 thousand

 seven
 hundred
 and
 seventy-five.
 Spiritual
 reve-

 lations
 were
 conceded
 to
 England
 at
 that

 favoured
 period,
 as
 at
 this,
 Mrs.
 Southcott
 had

 recently
 attained
 her
 five-and-twentieth
 blessed

 birthday,
 of
 whom
 a
 prophetic
 private
 in
 the
 Life

 Guards
 had
 heralded
 the
 sublime
 appearance
 by

 announcing
 that
 arrangements
 were
 made
 for
 the

 swallowing
 up
 of
 London
 and
 Westminster.

 Even
 the
 Cock-lane
 ghost
 had
 been
 laid
 only
 a

 round
 dozen
 of
 years,
 after
 rapping
 out
 its
 mes-

 sages,
 as
 the
 spirits
 of
 this
 very
 year
 last
 past

 (supematurally
 deficient
 in
 originality)
 rapped

 out
 theirs.
 Mere
 messages
 in
 the
 earthly
 order
 of

 events
 had
 lately
 come
 to
 the
 English
 Crown
 and

 People,
 from
 a
 congress
 of
 British
 subjects
 in

 America:
 which,
 strange
 to
 relate,
 have
 proved

 more
 important
 to
 the
 human
 race
 than
 any
 com-

 munications
 yet
 received
 through
 any
 of
 the

 chickens
 of
 the
 Cock-lane
 brood.

 France,
 less
 favoured
 on
 the
 whole
 as
 to
 mat-

 ters
 spiritual
 than
 her
 sister
 of
 the
 shield
 and
 tri-

 dent,
 rolled
 with
 exceeding
 smoothness
 down

 hill,
 making
 paper
 money
 and
 spending
 it.
 Under

 the
 guidance
 of
 her
 Christian
 pastors,
 she
 enter-

 tained
 herself,
 besides,
 with
 such
 humane

 achievements
 as
 sentencing
 a
 youth
 to
 have
 his

 hands
 cut
 off,
 his
 tongue
 torn
 out
 with
 pincers,

 and
 his
 body
 burned
 alive,
 because
 he
 had
 not

 kneeled
 down
 in
 the
 rain
 to
 do
 honour
 to
 a
 dirty

 procession
 of
 monks
 which
 passed
 within
 his

 view,
 at
 a
 distance
 of
 some
 fifty
 or
 sixty
 yards.
 It

 is
 likely
 enough
 that,
 rooted
 in
 the
 woods
 of

 France
 and
 Norway,
 there
 were
 growing
 trees,

 when
 that
 sufferer
 was
 put
 to
 death,
 already

 marked
 by
 the
 Woodman,
 Fate,
 to
 come
 down

 and
 be
 sawn
 into
 boards,
 to
 make
 a
 certain
 mov-

 able
 framework
 with
 a
 sack
 and
 a
 knife
 in
 it,
 ter-

 rible
 in
 history.
 It
 is
 likely
 enough
 that
 in
 the

 rough
 outhouses
 of
 some
 tillers
 of
 the
 heavy

 lands
 adjacent
 to
 Paris,
 there
 were
 sheltered

 from
 the
 weather
 that
 very
 day,
 rude
 carts,

 bespattered
 with
 rustic
 mire,
 snuffed
 about
 by

 pigs,
 and
 roosted
 in
 by
 poultry,
 which
 the

 Farmer,
 Death,
 had
 already
 set
 apart
 to
 be
 his

 tumbrils
 of
 the
 Revolution.
 But
 that
 Woodman

 and
 that
 Farmer,
 though
 they
 work
 unceasingly,

 work
 silently,
 and
 no
 one
 heard
 them
 as
 they

 went
 about
 with
 muffled
 tread:
 the
 rather,
 foras-

 much
 as
 to
 entertain
 any
 suspicion
 that
 they

 were
 awake,
 was
 to
 be
 atheistical
 and
 traitorous.

 In
 England,
 there
 was
 scarcely
 an
 amount
 of

 order
 and
 protection
 to
 justify
 much
 national

 boasting.
 Daring
 burglaries
 by
 armed
 men,
 and

 highway
 robberies,
 took
 place
 in
 the
 capital

 itself
 every
 night;
 families
 were
 publicly
 cau-

 tioned
 not
 to
 go
 out
 of
 town
 without
 removing

 their
 furniture
 to
 upholsterers'
 warehouses
 for

 security;
 the
 highwayman
 in
 the
 dark
 was
 a
 City

 tradesman
 in
 the
 light,
 and,
 being
 recognised
 and

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000005_ocr.png__000005_ocr_hocr__hocr__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000005_ocr.png__000005_ocr_hocr__hocr__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000005_ocr.png__000005_ocr_hocr__hocr__txt/txt.bin

with a plain face, on the throne of England;
there were a king with a large jaw and a queen
with a fair face, on the throne of France. In both
countries it was clearer than crystal to the lords
of the State preserves of loaves and fishes, that
things in general were settled for ever.

It was the year of Our Lord one thousand
seven hundred and seventy-five. Spiritual reve-
lations were conceded to England at that
favoured period, as at this, Mrs. Southcott had
recently attained her five-and-twentieth blessed
birthday, of whom a prophetic private in the Life
Guards had heralded the sublime appearance by
announcing that arrangements were made for the
swallowing up of London and Westminster.
Even the Cock-lane ghost had been laid only a
round dozen of years, after rapping out its mes-
sages, as the spirits of this very year last past
(supematurally deficient in originality) rapped
out theirs. Mere messages in the earthly order of
events had lately come to the English Crown and
People, from a congress of British subjects in
America: which, strange to relate, have proved
more important to the human race than any com-
munications yet received through any of the
chickens of the Cock-lane brood.

France, less favoured on the whole as to mat-
ters spiritual than her sister of the shield and tri-
dent, rolled with exceeding smoothness down
hill, making paper money and spending it. Under
the guidance of her Christian pastors, she enter-
tained herself, besides, with such humane
achievements as sentencing a youth to have his

hands cut off, his tongue torn out with pincers,
and his body burned alive, because he had not
kneeled down in the rain to do honour to a dirty
procession of monks which passed within his
view, at a distance of some fifty or sixty yards. It
is likely enough that, rooted in the woods of
France and Norway, there were growing trees,
when that sufferer was put to death, already
marked by the Woodman, Fate, to come down
and be sawn into boards, to make a certain mov-
able framework with a sack and a knife in it, ter-
rible in history. It is likely enough that in the
rough outhouses of some tillers of the heavy
lands adjacent to Paris, there were sheltered
from the weather that very day, rude carts,
bespattered with rustic mire, snuffed about by
pigs, and roosted in by poultry, which the
Farmer, Death, had already set apart to be his
tumbrils of the Revolution. But that Woodman
and that Farmer, though they work unceasingly,
work silently, and no one heard them as they
went about with muffled tread: the rather, foras-
much as to entertain any suspicion that they
were awake, was to be atheistical and traitorous.

In England, there was scarcely an amount of
order and protection to justify much national
boasting. Daring burglaries by armed men, and
highway robberies, took place in the capital
itself every night; families were publicly cau-
tioned not to go out of town without removing
their furniture to upholsterers' warehouses for
security; the highwayman in the dark was a City
tradesman in the light, and, being recognised and
�

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000005_ocr.png__000005_ocr_tess__pdf__txt/pdf.bin

with a plain face, on the throne of England;

there were a king with a large jaw and a queen

with a fair face, on the throne of France. In both

countries it was clearer than crystal to the lords

of the State preserves of loaves and fishes, that

things in general were settled for ever.

It was the year of Our Lord one thousand

seven hundred and seventy-five. Spiritual reve-

lations were conceded to England at that

favoured period, as at this, Mrs. Southcott had
recently attained her five-and-twentieth blessed

birthday, of whom a prophetic private in the Life

Guards had heralded the sublime appearance by

announcing that arrangements were made for the

swallowing up of London and Westminster.

Even the Cock-lane ghost had been laid only a

round dozen of years, after rapping out its mes-

sages, as the spirits of this very year last past

(supematurally deficient in originality) rapped

out theirs. Mere messages in the earthly order of

events had lately come to the English Crown and

People, from a congress of British subjects in

America: which, strange to relate, have proved

more important to the human race than any com-

munications yet received through any of the

chickens of the Cock-lane brood.

France, less favoured on the whole as to mat-

ters spiritual than her sister of the shield and tri-

dent, rolled with exceeding smoothness down

hill, making paper money and spending it. Under

the guidance of her Christian pastors, she enter-

tained herself, besides, with such humane

achievements as sentencing a youth to have his

hands cut off, his tongue torn out with pincers,

and his body burned alive, because he had not

kneeled down in the rain to do honour to a dirty

procession of monks which passed within his

view, at a distance of some fifty or sixty yards. It

is likely enough that, rooted in the woods of

France and Norway, there were growing trees,

when that sufferer was put to death, already

marked by the Woodman, Fate, to come down

and be sawn into boards, to make a certain mov-

able framework with a sack and a knife in it, ter-

rible in history. It is likely enough that in the

rough outhouses of some tillers of the heavy

lands adjacent to Paris, there were sheltered

from the weather that very day, rude carts,

bespattered with rustic mire, snuffed about by

pigs, and roosted in by poultry, which the

Farmer, Death, had already set apart to be his

tumbrils of the Revolution. But that Woodman

and that Farmer, though they work unceasingly,

work silently, and no one heard them as they

went about with muffled tread: the rather, foras-

much as to entertain any suspicion that they

were awake, was to be atheistical and traitorous.

In England, there was scarcely an amount of

order and protection to justify much national

boasting. Daring burglaries by armed men, and

highway robberies, took place in the capital

itself every night; families were publicly cau-

tioned not to go out of town without removing

their furniture to upholsterers' warehouses for

security; the highwayman in the dark was a City

tradesman in the light, and, being recognised and

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000005_ocr.png__000005_ocr_tess__pdf__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000005_ocr.png__000005_ocr_tess__pdf__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000005_ocr.png__000005_ocr_tess__pdf__txt/txt.bin

with a plain face, on the throne of England;
there were a king with a large jaw and a queen
with a fair face, on the throne of France. In both
countries it was clearer than crystal to the lords
of the State preserves of loaves and fishes, that
things in general were settled for ever.

It was the year of Our Lord one thousand
seven hundred and seventy-five. Spiritual reve-
lations were conceded to England at that
favoured period, as at this, Mrs. Southcott had
recently attained her five-and-twentieth blessed
birthday, of whom a prophetic private in the Life
Guards had heralded the sublime appearance by
announcing that arrangements were made for the
swallowing up of London and Westminster.
Even the Cock-lane ghost had been laid only a
round dozen of years, after rapping out its mes-
sages, as the spirits of this very year last past
(supematurally deficient in originality) rapped
out theirs. Mere messages in the earthly order of
events had lately come to the English Crown and
People, from a congress of British subjects in
America: which, strange to relate, have proved
more important to the human race than any com-
munications yet received through any of the
chickens of the Cock-lane brood.

France, less favoured on the whole as to mat-
ters spiritual than her sister of the shield and tri-
dent, rolled with exceeding smoothness down
hill, making paper money and spending it. Under
the guidance of her Christian pastors, she enter-
tained herself, besides, with such humane
achievements as sentencing a youth to have his

hands cut off, his tongue torn out with pincers,
and his body burned alive, because he had not
kneeled down in the rain to do honour to a dirty
procession of monks which passed within his
view, at a distance of some fifty or sixty yards. It
is likely enough that, rooted in the woods of
France and Norway, there were growing trees,
when that sufferer was put to death, already
marked by the Woodman, Fate, to come down
and be sawn into boards, to make a certain mov-
able framework with a sack and a knife in it, ter-
rible in history. It is likely enough that in the
rough outhouses of some tillers of the heavy
lands adjacent to Paris, there were sheltered
from the weather that very day, rude carts,
bespattered with rustic mire, snuffed about by
pigs, and roosted in by poultry, which the
Farmer, Death, had already set apart to be his
tumbrils of the Revolution. But that Woodman
and that Farmer, though they work unceasingly,
work silently, and no one heard them as they
went about with muffled tread: the rather, foras-
much as to entertain any suspicion that they
were awake, was to be atheistical and traitorous.

In England, there was scarcely an amount of
order and protection to justify much national
boasting. Daring burglaries by armed men, and
highway robberies, took place in the capital
itself every night; families were publicly cau-
tioned not to go out of town without removing
their furniture to upholsterers' warehouses for
security; the highwayman in the dark was a City
tradesman in the light, and, being recognised and
�

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000006_ocr.png__000006_ocr_hocr__hocr__txt/hocr.bin

 with
 a
 plain
 face,
 on
 the
 throne
 of
 England;

 there
 were
 a
 king
 with
 a
 large
 jaw
 and
 a
 queen

 with
 a
 fair
 face,
 on
 the
 throne
 of
 France.
 In
 both

 countries
 it
 was
 clearer
 than
 crystal
 to
 the
 lords

 of
 the
 State
 preserves
 of
 loaves
 and
 fishes,
 that

 things
 in
 general
 were
 settled
 for
 ever.

 It
 was
 the
 year
 of
 Our
 Lord
 one
 thousand

 seven
 hundred
 and
 seventy-five.
 Spiritual
 reve-

 lations
 were
 conceded
 to
 England
 at
 that

 favoured
 period,
 as
 at
 this.
 Mrs.
 Southcott
 had

 recently
 attained
 her
 five-and-twentieth
 blessed

 birthday,
 of
 whom
 a
 prophetic
 private
 in
 the
 Life

 Guards
 had
 heralded
 the
 sublime
 appearance
 by

 announcing
 that
 arrangements
 were
 made
 for
 the

 swallowing
 up
 of
 London
 and
 Westminster.

 Even
 the
 Cock-lane
 ghost
 had
 been
 laid
 only
 a

 round
 dozen
 of
 years,
 after
 rapping
 out
 its
 mes-

 sages,
 as
 the
 spirits
 of
 this
 very
 year
 last
 past

 (supernaturally
 deficient
 in
 originality)
 rapped

 out
 theirs.
 Mere
 messages
 in
 the
 earthly
 order
 of

 events
 had
 lately
 come
 to
 the
 English
 Crown
 and

 People,
 from
 a
 congress
 of
 British
 subjects
 in

 America:
 which,
 strange
 to
 relate,
 have
 proved

 more
 important
 to
 the
 human
 race
 than
 any
 com-

 munications
 yet
 received
 through
 any
 of
 the

 chickens
 of
 the
 Cock-lane
 brood.

 France,
 less
 favoured
 on
 the
 whole
 as
 to
 mat-

 ters
 spiritual
 than
 her
 sister
 of
 the
 shield
 and
 tri-

 dent,
 rolled
 with
 exceeding
 smoothness
 down

 hill,
 making
 paper
 money
 and
 spending
 it.
 Under

 the
 guidance
 of
 her
 Christian
 pastors,
 she
 enter-

 tained
 herself,
 besides,
 with
 such
 humane

 achievements
 as
 sentencing
 a
 youth
 to
 have
 his

 hands
 cut
 off,
 his
 tongue
 torn
 out
 with
 pincers,

 and
 his
 body
 burned
 alive,
 because
 he
 had
 not

 kneeled
 down
 in
 the
 rain
 to
 do
 honour
 to
 a
 dirty

 procession
 of
 monks
 which
 passed
 within
 his

 view,
 at
 a
 distance
 of
 some
 fifty
 or
 sixty
 yards.
 It

 is
 likely
 enough
 that,
 rooted
 in
 the
 woods
 of

 France
 and
 Norway,
 there
 were
 growing
 trees,

 when
 that
 sufferer
 was
 put
 to
 death,
 already

 marked
 by
 the
 Woodman,
 Fate,
 to
 come
 down

 and
 be
 sawn
 into
 boards,
 to
 make
 a
 certain
 mov-

 able
 framework
 with
 a
 sack
 and
 a
 knife
 in
 it,
 ter-

 rible
 in
 history.
 It
 is
 likely
 enough
 that
 in
 the

 rough
 outhouses
 of
 some
 tillers
 of
 the
 heavy

 lands
 adjacent
 to
 Paris,
 there
 were
 sheltered

 from
 the
 weather
 that
 very
 day,
 rude
 carts,

 bespattered
 with
 rustic
 mire,
 snuffed
 about
 by

 pigs,
 and
 roosted
 in
 by
 poultry,
 which
 the

 Farmer,
 Death,
 had
 already
 set
 apart
 to
 be
 his

 tumbrils
 of
 the
 Revolution.
 But
 that
 Woodman

 and
 that
 Farmer,
 though
 they
 work
 unceasingly,

 work
 silently,
 and
 no
 one
 heard
 them
 as
 they

 went
 about
 with
 muffled
 tread:
 the
 rather,
 foras-

 much
 as
 to
 entertain
 any
 suspicion
 that
 they

 were
 awake,
 was
 to
 be
 atheistical
 and
 traitorous.

 In
 England,
 there
 was
 scarcely
 an
 amount
 of

 order
 and
 protection
 to
 justify
 much
 national

 boasting.
 Daring
 burglaries
 by
 armed
 men,
 and

 highway
 robberies,
 took
 place
 in
 the
 capital

 itself
 every
 night;
 families
 were
 publicly
 cau-

 tioned
 not
 to
 go
 out
 of
 town
 without
 removing

 their
 furniture
 to
 upholsterers'
 warehouses
 for

 security;
 the
 highwayman
 in
 the
 dark
 was
 a
 City

 tradesman
 in
 the
 light,
 and,
 being
 recognised
 and

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000006_ocr.png__000006_ocr_hocr__hocr__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000006_ocr.png__000006_ocr_hocr__hocr__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000006_ocr.png__000006_ocr_hocr__hocr__txt/txt.bin

with a plain face, on the throne of England;
there were a king with a large jaw and a queen
with a fair face, on the throne of France. In both
countries it was clearer than crystal to the lords
of the State preserves of loaves and fishes, that
things in general were settled for ever.

It was the year of Our Lord one thousand
seven hundred and seventy-five. Spiritual reve-
lations were conceded to England at that
favoured period, as at this. Mrs. Southcott had
recently attained her five-and-twentieth blessed
birthday, of whom a prophetic private in the Life
Guards had heralded the sublime appearance by
announcing that arrangements were made for the
swallowing up of London and Westminster.
Even the Cock-lane ghost had been laid only a
round dozen of years, after rapping out its mes-
sages, as the spirits of this very year last past
(supernaturally deficient in originality) rapped
out theirs. Mere messages in the earthly order of
events had lately come to the English Crown and
People, from a congress of British subjects in
America: which, strange to relate, have proved
more important to the human race than any com-
munications yet received through any of the
chickens of the Cock-lane brood.

France, less favoured on the whole as to mat-
ters spiritual than her sister of the shield and tri-
dent, rolled with exceeding smoothness down
hill, making paper money and spending it. Under
the guidance of her Christian pastors, she enter-
tained herself, besides, with such humane
achievements as sentencing a youth to have his

hands cut off, his tongue torn out with pincers,
and his body burned alive, because he had not
kneeled down in the rain to do honour to a dirty
procession of monks which passed within his
view, at a distance of some fifty or sixty yards. It
is likely enough that, rooted in the woods of
France and Norway, there were growing trees,
when that sufferer was put to death, already
marked by the Woodman, Fate, to come down
and be sawn into boards, to make a certain mov-
able framework with a sack and a knife in it, ter-
rible in history. It is likely enough that in the
rough outhouses of some tillers of the heavy
lands adjacent to Paris, there were sheltered
from the weather that very day, rude carts,
bespattered with rustic mire, snuffed about by
pigs, and roosted in by poultry, which the
Farmer, Death, had already set apart to be his
tumbrils of the Revolution. But that Woodman
and that Farmer, though they work unceasingly,
work silently, and no one heard them as they
went about with muffled tread: the rather, foras-
much as to entertain any suspicion that they
were awake, was to be atheistical and traitorous.

In England, there was scarcely an amount of
order and protection to justify much national
boasting. Daring burglaries by armed men, and
highway robberies, took place in the capital
itself every night; families were publicly cau-
tioned not to go out of town without removing
their furniture to upholsterers' warehouses for
security; the highwayman in the dark was a City
tradesman in the light, and, being recognised and
�

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000006_ocr.png__000006_ocr_tess__pdf__txt/pdf.bin

with a plain face, on the throne of England;

there were a king with a large jaw and a queen

with a fair face, on the throne of France. In both

countries it was clearer than crystal to the lords

of the State preserves of loaves and fishes, that

things in general were settled for ever.

It was the year of Our Lord one thousand

seven hundred and seventy-five. Spiritual reve-

lations were conceded to England at that

favoured period, as at this. Mrs. Southcott had

recently attained her five-and-twentieth blessed

birthday, of whom a prophetic private in the Life

Guards had heralded the sublime appearance by

announcing that arrangements were made for the

swallowing up of London and Westminster.

Even the Cock-lane ghost had been laid only a

round dozen of years, after rapping out its mes-

sages, as the spirits of this very year last past

(supernaturally deficient in originality) rapped

out theirs. Mere messages in the earthly order of

events had lately come to the English Crown and

People, from a congress of British subjects in

America: which, strange to relate, have proved

more important to the human race than any com-

munications yet received through any of the

chickens of the Cock-lane brood.

France, less favoured on the whole as to mat-

ters spiritual than her sister of the shield and tri-

dent, rolled with exceeding smoothness down

hill, making paper money and spending it. Under

the guidance of her Christian pastors, she enter-

tained herself, besides, with such humane

achievements as sentencing a youth to have his

hands cut off, his tongue torn out with pincers,

and his body burned alive, because he had not

kneeled down in the rain to do honour to a dirty

procession of monks which passed within his

view, at a distance of some fifty or sixty yards. It

is likely enough that, rooted in the woods of

France and Norway, there were growing trees,

when that sufferer was put to death, already

marked by the Woodman, Fate, to come down

and be sawn into boards, to make a certain mov-

able framework with a sack and a knife in it, ter-

tible in history. It is likely enough that in the

tough outhouses of some tillers of the heavy

lands adjacent to Paris, there were sheltered

from the weather that very day, rude carts,

bespattered with rustic mire, snuffed about by

pigs, and roosted in by poultry, which the

Farmer, Death, had already set apart to be his

tumbrils of the Revolution. But that Woodman

and that Farmer, though they work unceasingly,

work silently, and no one heard them as they

went about with muffled tread: the rather, foras-

much as to entertain any suspicion that they

were awake, was to be atheistical and traitorous.

In England, there was scarcely an amount of

order and protection to justify much national

boasting. Daring burglaries by armed men, and

highway robberies, took place in the capital

itself every night; families were publicly cau-

tioned not to go out of town without removing

their furniture to upholsterers' warehouses for

security; the highwayman in the dark was a City

tradesman in the light, and, being recognised and

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000006_ocr.png__000006_ocr_tess__pdf__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000006_ocr.png__000006_ocr_tess__pdf__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/multipage/__-l__eng__000006_ocr.png__000006_ocr_tess__pdf__txt/txt.bin

with a plain face, on the throne of England;
there were a king with a large jaw and a queen
with a fair face, on the throne of France. In both
countries it was clearer than crystal to the lords
of the State preserves of loaves and fishes, that
things in general were settled for ever.

It was the year of Our Lord one thousand
seven hundred and seventy-five. Spiritual reve-
lations were conceded to England at that
favoured period, as at this. Mrs. Southcott had
recently attained her five-and-twentieth blessed
birthday, of whom a prophetic private in the Life
Guards had heralded the sublime appearance by
announcing that arrangements were made for the
swallowing up of London and Westminster.
Even the Cock-lane ghost had been laid only a
round dozen of years, after rapping out its mes-
sages, as the spirits of this very year last past
(supernaturally deficient in originality) rapped
out theirs. Mere messages in the earthly order of
events had lately come to the English Crown and
People, from a congress of British subjects in
America: which, strange to relate, have proved
more important to the human race than any com-
munications yet received through any of the
chickens of the Cock-lane brood.

France, less favoured on the whole as to mat-
ters spiritual than her sister of the shield and tri-
dent, rolled with exceeding smoothness down
hill, making paper money and spending it. Under
the guidance of her Christian pastors, she enter-
tained herself, besides, with such humane
achievements as sentencing a youth to have his

hands cut off, his tongue torn out with pincers,
and his body burned alive, because he had not
kneeled down in the rain to do honour to a dirty
procession of monks which passed within his
view, at a distance of some fifty or sixty yards. It
is likely enough that, rooted in the woods of
France and Norway, there were growing trees,
when that sufferer was put to death, already
marked by the Woodman, Fate, to come down
and be sawn into boards, to make a certain mov-
able framework with a sack and a knife in it, ter-
tible in history. It is likely enough that in the
tough outhouses of some tillers of the heavy
lands adjacent to Paris, there were sheltered
from the weather that very day, rude carts,
bespattered with rustic mire, snuffed about by
pigs, and roosted in by poultry, which the
Farmer, Death, had already set apart to be his
tumbrils of the Revolution. But that Woodman
and that Farmer, though they work unceasingly,
work silently, and no one heard them as they
went about with muffled tread: the rather, foras-
much as to entertain any suspicion that they
were awake, was to be atheistical and traitorous.

In England, there was scarcely an amount of
order and protection to justify much national
boasting. Daring burglaries by armed men, and
highway robberies, took place in the capital
itself every night; families were publicly cau-
tioned not to go out of town without removing
their furniture to upholsterers' warehouses for
security; the highwayman in the dark was a City
tradesman in the light, and, being recognised and
�

ocrmypdf-10.3.1+dfsg/tests/cache/palette/__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt/hocr.bin

 41st
 CONGRESS,
 }
 SENATE.

 3d
 Session.

 MESSAGE

 OF
 THE

 PRESIDENT
 OF
 THE
 UNITED
 STATES

 A
 copy
 of
 regulations
 for
 the
 consular
 courts
 of
 the
 United
 States
 in
 Japan,

 decreed
 and
 issued
 by
 the
 minister
 of
 the
 United
 States
 in
 that
 country.

 Janvary
 27,
 1871—Read,
 referred
 to
 the
 Committee
 on
 Commerce,
 and
 ordered
 to
 be

 printed,

 To
 the
 Senate
 and
 House
 of
 Representatives
 :

 I
 transmit
 herewith,
 for
 the
 consideration
 of
 Congress,
 a
 report
 from

 the
 Secretary
 of
 State,
 and
 the
 papers
 which
 accompanied
 it,
 concern-

 ing
 regulations
 for
 the
 consular
 courts
 of
 the
 United
 States
 in
 Ja

 U.
 8.
 GRAN

 WASHINGTON,
 January
 27,
 1871.

 DEPARTMENT
 OF
 STATE,

 Washington,
 January
 26,
 1870.

 The
 Secretary
 of
 State
 has
 the
 honor
 to
 submit
 herewith,
 for
 revision

 by
 Congress,
 in
 conformity
 with
 the
 provisions
 of
 section
 6
 of
 the
 act

 approved
 22d
 of
 June,
 1860,
 a
 copy
 of
 “regulations
 for
 the
 consular

 courts
 of
 the
 United
 States
 in
 Japan,”
 decreed
 and
 issued
 by
 C.
 E.

 De
 Long,
 the
 minister
 of
 the
 United
 States
 in
 that
 country,
 in
 Septem-

 ber,
 1870;
 and
 also
 the
 papers
 mentioned
 in
 the
 subjoined
 list,
 which

 contain
 suggestions
 on
 the
 subject
 thereof.
 :

 A
 copy
 of
 Art
 XVI
 of
 the
 consist
 regulations
 so
 Submitted,

 and
 the
 Secretary
 of
 r
 i
 ly
 ,
 for
 the
 consideration

 of
 ministers
 to
 make

 ion,
 in
 the
 sense
 in
 which
 it
 is
 limited
 by
 paragraph

 431
 of
 the
 e
 be:
 fore
 named—that
 is,
 “
 to
 acts
 necessary
 to
 organize

 and
 give
 efficiency
 to
 the
 courts
 created
 by
 the
 act.”

 Respectful
 submitted.

 HAMILTON
 FISH.

 The
 PRESIDENT.

 List
 of
 accompanying
 papers.

 1.
 Regulations
 for
 the
 consular
 courts
 of
 the
 United
 States
 in
 Japan.

 2.
 Mr.
 Fish
 to
 Mr.
 De
 Long,
 September
 10,
 1870,

ocrmypdf-10.3.1+dfsg/tests/cache/palette/__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica
Detected 180 diacritics

ocrmypdf-10.3.1+dfsg/tests/cache/palette/__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/palette/__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt/txt.bin

41st CONGRESS, } SENATE.
3d Session.

MESSAGE

OF THE

PRESIDENT OF THE UNITED STATES

A copy of regulations for the consular courts of the United States in Japan,
decreed and issued by the minister of the United States in that country.

Janvary 27, 1871—Read, referred to the Committee on Commerce, and ordered to be
printed,

To the Senate and House of Representatives :

I transmit herewith, for the consideration of Congress, a report from
the Secretary of State, and the papers which accompanied it, concern-
ing regulations for the consular courts of the United States in Ja

U. 8. GRAN

WASHINGTON, January 27, 1871.

DEPARTMENT OF STATE,
Washington, January 26, 1870.
The Secretary of State has the honor to submit herewith, for revision
by Congress, in conformity with the provisions of section 6 of the act
approved 22d of June, 1860, a copy of “regulations for the consular
courts of the United States in Japan,” decreed and issued by C. E.
De Long, the minister of the United States in that country, in Septem-
ber, 1870; and also the papers mentioned in the subjoined list, which
contain suggestions on the subject thereof. :
A copy of Art XVI of the consist regulations so Submitted,
and the Secretary of r i ly , for the consideration
of ministers to make
ion, in the sense in which it is limited by paragraph
431 of the e be: fore named—that is, “ to acts necessary to organize
and give efficiency to the courts created by the act.”
Respectful submitted.
HAMILTON FISH.
The PRESIDENT.

List of accompanying papers.

1. Regulations for the consular courts of the United States in Japan.
2. Mr. Fish to Mr. De Long, September 10, 1870,

�

ocrmypdf-10.3.1+dfsg/tests/cache/palette/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/pdf.bin

41st CONGRESS, } SENATE.
3d Session.

MESSAGE

OF THE

PRESIDENT OF THE UNITED STATES

A copy of regulations for the consular courts of the United States in Japan,
decreed and issued by the minister of the United States in that country.

Janvary 27, 1871—Read, referred to the Committee on Commerce, and ordered to be
printed,

To the Senate and House of Representatives :

I transmit herewith, for the consideration of Congress, a report from
the Secretary of State, and the papers which accompanied it, concern-
ing regulations for the consular courts of the United States in Ja

U. 8. GRAN
WASHINGTON, January 27, 1871.

DEPARTMENT OF STATE,
Washington, January 26, 1870.

The Secretary of State has the honor to submit herewith, for revision
by Congress, in conformity with the provisions of section 6 of the act
approved 22d of June, 1860, a copy of “regulations for the consular
courts of the United States in Japan,” decreed and issued by C. E.
De Long, the minister of the United States in that country, in Septem-
ber, 1870; and also the papers mentioned in the subjoined list, which
contain suggestions on the subject thereof. :

A copy of Art XVI of the consist regulations so Submitted,
and the Secretary of r i ly , for the consideration

of ministers to make
ion, in the sense in which it is limited by paragraph

431 of the e be: fore named—that is, “ to acts necessary to organize
and give efficiency to the courts created by the act.”

Respectful submitted.
HAMILTON FISH.

The PRESIDENT.

List of accompanying papers.

1. Regulations for the consular courts of the United States in Japan.
2. Mr. Fish to Mr. De Long, September 10, 1870,

ocrmypdf-10.3.1+dfsg/tests/cache/palette/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica
Detected 180 diacritics

ocrmypdf-10.3.1+dfsg/tests/cache/palette/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/palette/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/txt.bin

41st CONGRESS, } SENATE.
3d Session.

MESSAGE

OF THE

PRESIDENT OF THE UNITED STATES

A copy of regulations for the consular courts of the United States in Japan,
decreed and issued by the minister of the United States in that country.

Janvary 27, 1871—Read, referred to the Committee on Commerce, and ordered to be
printed,

To the Senate and House of Representatives :

I transmit herewith, for the consideration of Congress, a report from
the Secretary of State, and the papers which accompanied it, concern-
ing regulations for the consular courts of the United States in Ja

U. 8. GRAN

WASHINGTON, January 27, 1871.

DEPARTMENT OF STATE,
Washington, January 26, 1870.
The Secretary of State has the honor to submit herewith, for revision
by Congress, in conformity with the provisions of section 6 of the act
approved 22d of June, 1860, a copy of “regulations for the consular
courts of the United States in Japan,” decreed and issued by C. E.
De Long, the minister of the United States in that country, in Septem-
ber, 1870; and also the papers mentioned in the subjoined list, which
contain suggestions on the subject thereof. :
A copy of Art XVI of the consist regulations so Submitted,
and the Secretary of r i ly , for the consideration
of ministers to make
ion, in the sense in which it is limited by paragraph
431 of the e be: fore named—that is, “ to acts necessary to organize
and give efficiency to the courts created by the act.”
Respectful submitted.
HAMILTON FISH.
The PRESIDENT.

List of accompanying papers.

1. Regulations for the consular courts of the United States in Japan.
2. Mr. Fish to Mr. De Long, September 10, 1870,

�

ocrmypdf-10.3.1+dfsg/tests/cache/poster/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/pdf.bin

The LinnSequencer
32 Track MIDI Sequence Recorder

The LinnSequencer is a state-of-the-art composition and performance tool for the professional musician. It is

extremely powerful, yet amazingly simple to learn and use. It’s many remarkable features include:

© Operation is similar to multi-track tape recorder with PLAY, STOP, RECORD, FAST
FORWARD, REWIND, and LOCATE controls.

e Each of the 100 sequences contains 32 simultaneous, polyphonic tracks. Each track may
be assigned to one of 16 MIDI channels. Simultaneously plays up to 16 polyphonic
synthesizers!

¢ Ultra-fast 3!” disk drive stores complex songs in seconds and holds over 110,000 notes
per disk!

¢ One or all tracks may be TRANSPOSED at the touch of a key.
e Exclusive real-time ERASE function makes editing FAST.

e Exclusive REPEAT function automatically repeats any held notes at a pre-selected
rhythmic value.

¢ TIMING CORRECTION works during playback and operates without ‘chopping’ notes.

¢ Optional SMPTE time code synchronization.

¢ Optional remote control.

Recording a Sequence
To record a sequence, simply press RECORD and PLAY,

then play your MIDI keyboard in time to the Sequencer’s
click track. When the sequence loops back around to bar 1,
you’ ll hear what you played—only all timing errors will be
corrected! (Timing correction may be adjusted or defeated).
Any additional notes played will be added into the track
—existing notes are not erased while recording!

FAST FORWARD, REWIND, and LOCATE controls
may be used at any time to quickly access any location in
your sequence for spot-recording. To overdub a new part,
select a different track and start recording—while you
record, the first track will play in perfect sync (unless you
MUTE it, or SOLO another track). In this way, up to 32
tracks may be overdubbed! All MIDI effects are recorded
including pitch bend, modulation, velocity, aftertouch,
sustain pedal, and program changes!

Editing
To erase a wrong note, simply hold ERASE and press

the note to be erased just before it plays in the sequence—
when played back, it will be gone. Notes may also be
added, erased, or changed using the SINGLE STEP func-
tion. To overdub notes at specific points within a sequence,

Additional Features

simply use LOCATE, FAST FORWARD, or REWIND to
find the desired bar number, then start recording.

The INSERT/COPY function allows you to move bars
from one location to another—in the same sequence or a
different one. For example, you might insert a copy of the
first verse between the second chorus and the bridge.
DELETE BARS operates the same way to remove
unwanted sections.

Creating a Song
One way to create a song is to record each track all the

way through (up to 999 bars). Another way is to record
each basic section (verse, chorus, etc.) in individual
sequences, then use the CREATE SONG function to “chain”
them together. CREATE SONG will then automatically
copy all the parts into a new sequence. If desired, you can
even set the last few bars to repeat infinitely, for a fadeout.

Composition Without Compromise
The technology you use should never be so complex that

it interferes with the creative process. That’s precisely why
the LinnSequencer is designed to let you compose, record
and edit while devoting your undivided attention to your
music. See your Linn dealer today for a demonstration!

¢ Simple, easy to learn operation—the 32 character LCD display clearly guides you through all operations. If needed, the
HELP button displays additional explanations.

® Non-destructive recording—existing notes are not erased while recording.

© Two FOOTSWITCH INPUTS may be assigned to remotely control many of the commonly used functions, including
ERASE, REPEAT, PLAY/STOP, or LOCATE.

¢ Two TRIGGER OUTPUTS may be programmed to output pulses at any selected note value.

e Will sync to standard LinnDrum or Linn 9000 sync tone.

© Utilizes ultra high-speed, 8 MHz 80186 16 bit computer internally for FAST operation.

¢ TEMPO may be specified in BEATS-PER-MINUTE or FRAMES-PER-BEAT at 24, 25, or 30 frames per second,
(even drop frame!)

¢ TEMPO may be entered numerically, adjustable in tenths of a Beat-Per-Minute increments, or by tapping quarter notes
on the TAP TEMPO button.

e TEMPO CHANGES may be programmed into a sequence, with smooth transitions if desired.

e Any TIME SIGNATURE may be used, and may be changed within a song.

linn
Linn Electronics, Inc.

18720 Oxnard Street, Tarzana, CA 91356

(818) 708-8131 TELEX #298949 LINN UR

ocrmypdf-10.3.1+dfsg/tests/cache/poster/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica
Warning: Invalid resolution 10 dpi. Using 70 instead.
Estimating resolution as 328

ocrmypdf-10.3.1+dfsg/tests/cache/poster/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/poster/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/txt.bin

The LinnSequencer
32 Track MIDI Sequence Recorder

The LinnSequencer is a state-of-the-art composition and performance tool for the professional musician. It is

extremely powerful, yet amazingly simple to learn and use. It’s many remarkable features include:

© Operation is similar to multi-track tape recorder with PLAY, STOP, RECORD, FAST
FORWARD, REWIND, and LOCATE controls.

e Each of the 100 sequences contains 32 simultaneous, polyphonic tracks. Each track may
be assigned to one of 16 MIDI channels. Simultaneously plays up to 16 polyphonic

synthesizers!

¢ Ultra-fast 3!” disk drive stores complex songs in seconds and holds over 110,000 notes

per disk!

¢ One or all tracks may be TRANSPOSED at the touch of a key.
e Exclusive real-time ERASE function makes editing FAST.
e Exclusive REPEAT function automatically repeats any held notes at a pre-selected

rhythmic value.

¢ TIMING CORRECTION works during playback and operates without ‘chopping’ notes.

¢ Optional SMPTE time code synchronization.

¢ Optional remote control.

Recording a Sequence

To record a sequence, simply press RECORD and PLAY,
then play your MIDI keyboard in time to the Sequencer’s
click track. When the sequence loops back around to bar 1,
you’ ll hear what you played—only all timing errors will be
corrected! (Timing correction may be adjusted or defeated).
Any additional notes played will be added into the track
—existing notes are not erased while recording!

FAST FORWARD, REWIND, and LOCATE controls
may be used at any time to quickly access any location in
your sequence for spot-recording. To overdub a new part,
select a different track and start recording—while you
record, the first track will play in perfect sync (unless you
MUTE it, or SOLO another track). In this way, up to 32
tracks may be overdubbed! All MIDI effects are recorded
including pitch bend, modulation, velocity, aftertouch,
sustain pedal, and program changes!

Editing

To erase a wrong note, simply hold ERASE and press
the note to be erased just before it plays in the sequence—
when played back, it will be gone. Notes may also be

added, erased, or changed using the SINGLE STEP func-
tion. To overdub notes at specific points within a sequence,

Additional Features

simply use LOCATE, FAST FORWARD, or REWIND to
find the desired bar number, then start recording.

The INSERT/COPY function allows you to move bars
from one location to another—in the same sequence or a
different one. For example, you might insert a copy of the
first verse between the second chorus and the bridge.
DELETE BARS operates the same way to remove
unwanted sections.

Creating a Song

One way to create a song is to record each track all the
way through (up to 999 bars). Another way is to record
each basic section (verse, chorus, etc.) in individual
sequences, then use the CREATE SONG function to “chain”
them together. CREATE SONG will then automatically
copy all the parts into a new sequence. If desired, you can
even set the last few bars to repeat infinitely, for a fadeout.

Composition Without Compromise

The technology you use should never be so complex that
it interferes with the creative process. That’s precisely why
the LinnSequencer is designed to let you compose, record
and edit while devoting your undivided attention to your
music. See your Linn dealer today for a demonstration!

¢ Simple, easy to learn operation—the 32 character LCD display clearly guides you through all operations. If needed, the

HELP button displays additional explanations.

® Non-destructive recording—existing notes are not erased while recording.
© Two FOOTSWITCH INPUTS may be assigned to remotely control many of the commonly used functions, including

ERASE, REPEAT, PLAY/STOP, or LOCATE.

¢ Two TRIGGER OUTPUTS may be programmed to output pulses at any selected note value.

e Will sync to standard LinnDrum or Linn 9000 sync tone.

© Utilizes ultra high-speed, 8 MHz 80186 16 bit computer internally for FAST operation.
¢ TEMPO may be specified in BEATS-PER-MINUTE or FRAMES-PER-BEAT at 24, 25, or 30 frames per second,

(even drop frame!)

¢ TEMPO may be entered numerically, adjustable in tenths of a Beat-Per-Minute increments, or by tapping quarter notes

on the TAP TEMPO button.

e TEMPO CHANGES may be programmed into a sequence, with smooth transitions if desired.
e Any TIME SIGNATURE may be used, and may be changed within a song.

linn
Linn Electronics, Inc.

18720 Oxnard Street, Tarzana, CA 91356
(818) 708-8131 TELEX #298949 LINN UR
�

ocrmypdf-10.3.1+dfsg/tests/cache/poster/__-l__osd__--psm__0__000001_rasterize_preview.jpg__stdout/stderr.bin

Warning: Invalid resolution 10 dpi. Using 70 instead.
Estimating resolution as 328
Warning. Invalid resolution 10 dpi. Using 70 instead.

ocrmypdf-10.3.1+dfsg/tests/cache/poster/__-l__osd__--psm__0__000001_rasterize_preview.jpg__stdout/stdout.bin

Page number: 0
Orientation in degrees: 0
Rotate: 0
Orientation confidence: 32.36
Script: Latin
Script confidence: 4.54

ocrmypdf-10.3.1+dfsg/tests/cache/skew/__-l__eng__--psm__7__000001_ocr.png__000001_ocr_hocr__hocr__txt/hocr.bin

ocrmypdf-10.3.1+dfsg/tests/cache/skew/__-l__eng__--psm__7__000001_ocr.png__000001_ocr_hocr__hocr__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica

ocrmypdf-10.3.1+dfsg/tests/cache/skew/__-l__eng__--psm__7__000001_ocr.png__000001_ocr_hocr__hocr__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/skew/__-l__eng__--psm__7__000001_ocr.png__000001_ocr_hocr__hocr__txt/txt.bin

�

ocrmypdf-10.3.1+dfsg/tests/cache/skew/__-l__eng__--psm__7__000001_ocr.png__000001_ocr_tess__pdf__txt/pdf.bin

ocrmypdf-10.3.1+dfsg/tests/cache/skew/__-l__eng__--psm__7__000001_ocr.png__000001_ocr_tess__pdf__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica

ocrmypdf-10.3.1+dfsg/tests/cache/skew/__-l__eng__--psm__7__000001_ocr.png__000001_ocr_tess__pdf__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/skew/__-l__eng__--psm__7__000001_ocr.png__000001_ocr_tess__pdf__txt/txt.bin

�

ocrmypdf-10.3.1+dfsg/tests/cache/skew/__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt/hocr.bin

 The
 LinnSequencer

 32
 Track
 MIDI
 Sequence
 Recorder

 The
 LinnSequencer
 is
 a
 state-of-the-art
 composition
 and
 performance
 tool
 for
 the
 professional
 musician.
 It
 is

 extremely
 powerful,
 yet
 amazingly
 simple
 to
 learn
 and
 use.
 It
 ’s
 many
 remarkable
 features
 include:

 *
 Operation
 is
 similar
 to
 multi-track
 tape
 recorder
 with
 PLAY,
 STOP,
 RECORD,
 FAST

 FORWARD,
 REWIND,
 and
 LOCATE
 controls,

 ©
 Each
 of
 the
 100
 sequences
 contains
 32
 simultaneous,
 polyphonic
 tracks.
 Each
 track
 may

 be
 assigned
 to
 one
 of
 16
 MIDI
 channels.
 Simultaneously
 plays
 up
 to
 16
 polyphonic

 synthesizers!

 *
 Ultra-fast
 314"
 disk
 drive
 stores
 complex
 songs
 in
 seconds
 and
 holds
 over
 110,000
 notes

 per
 disk!

 *
 One
 or
 all
 tracks
 may
 be
 TRANSPOSED
 at
 the
 touch
 of
 a
 key.

 ¢
 Exclusive
 real-time
 ERASE
 function
 makes
 editing
 FAST,

 *
 Exclusive
 REPEAT
 function
 automatically
 repeats
 any
 held
 notes
 at
 a
 pre-selected

 rhythmic
 value.

 *
 TIMING
 CORRECTION
 works
 during
 playback
 and
 operates
 without
 ‘chopping’
 notes,

 ¢
 Optional
 SMPTE
 time
 code
 synchronization.

 *
 Optional
 remote
 control.

 Recording
 a
 Sequence
 simply
 use
 LOCATE,
 FAST
 FORWARD,
 or
 REWIND
 to

 To
 record
 a
 sequence,
 simply
 press
 RECORD
 and
 PL
 AY,
 _
 find
 the
 desired
 bar
 number,
 then
 Start
 recording.

 then
 play
 your
 MIDI
 keyboard
 in
 time
 to
 the
 Sequencer’s
 The
 INSERT/COPY
 function
 allows
 you
 to
 move
 bars

 click
 track,
 When
 the
 sequence
 loops
 back
 around
 to
 bar
 1,
 from
 one
 location
 to
 another—in
 the
 same
 sequence
 or
 a

 you'll
 hear
 what
 you
 played—only
 all
 timing
 errors
 will
 be
 _different
 one.
 For
 example,
 you
 might
 insert
 a
 copy
 of
 the

 corrected!
 (Timing
 correction
 may
 be
 adjusted
 or
 defeated),
 _
 first
 verse
 between
 the
 second
 chorus
 and
 the
 bridge.

 Any
 additional
 notes
 played
 will
 be
 added
 into
 the
 track
 DELETE
 BARS
 operates
 the
 same
 way
 to
 remove

 —existing
 notes
 are
 not
 erased
 while
 recording!
 unwanted
 sections,

 FAST
 FORWARD,
 REWIND,
 and
 LOCATE
 controls
 .

 may
 be
 used
 at
 any
 time
 to
 quickly
 access
 any
 location
 in
 Creating
 a
 Song

 your
 sequence
 for
 spot-recording.
 To
 overdub
 a
 new
 part,
 One
 way
 to
 create
 a
 song
 is
 to
 record
 each
 track
 all
 the

 select
 a
 different
 track
 and
 start
 recording—while
 you
 way
 through
 (up
 to
 999
 bars),
 Another
 way
 is
 to
 record

 record,
 the
 first
 track
 will
 play
 in
 perfect
 sync
 (unless
 you
 each
 basic
 section
 (verse,
 chorus,
 etc.)
 in
 individual

 MUTE
 it,
 or
 SOLO
 another
 track).
 In
 this
 way,
 up
 to
 32
 sequences,
 then
 use
 the
 CREATE
 SONG
 function
 to
 “chain”

 tracks
 may
 be
 overdubbed!
 All
 MIDI
 effects
 are
 recorded
 them
 together.
 CREATE
 SONG
 will
 then
 automatically

 including
 pitch
 bend,
 modulation,
 velocity,
 aftertouch,
 Copy
 all
 the
 parts
 into
 a
 new
 sequence.
 If
 desir
 ed,
 you
 can

 sustain
 pedal,
 and
 program
 changes!
 even
 set
 the
 last
 few
 bars
 to
 repeat
 infinitely,
 for
 a
 fadeout.

 Editing
 Composition
 Without
 Compromise

 To
 erase
 a
 wrong
 note,
 simply
 hold
 ERASE
 and
 press
 The
 technology
 you
 use
 should
 never
 be
 so
 complex
 that

 the
 note
 to
 be
 erased
 just
 before
 it
 plays
 in
 the
 sequence—
 it
 interferes
 with
 the
 creative
 process.
 That’s
 precisely
 why

 when
 played
 back,
 it
 will
 be
 gone.
 Notes
 may
 also
 be
 the
 LinnSequencer
 is
 designed
 to
 let
 you
 compose,
 record

 added,
 erased,
 or
 changed
 using
 the
 SINGLE
 STEP
 func-
 and
 edit
 while
 devoting
 your
 undivided
 attention
 to
 your

 tion.
 To
 overdub
 notes
 at
 specific
 points
 within
 a
 Sequence,
 —
 music.
 See
 your
 Linn
 dealer
 today
 for
 a
 demonstration!

 Additional
 Features

 *
 Simple,
 easy
 to
 learn
 operation—the
 32
 character
 LCD
 display
 clearly
 guides
 you
 through
 all
 operations,
 If
 needed,
 the

 HELP
 button
 displays
 additional
 explanations,

 *
 Non-destructive
 recording—existing
 notes
 are
 not
 erased
 while
 recording.

 *
 Two
 FOOTSWITCH
 INPUTS
 may
 be
 assigned
 to
 remotely
 control
 many
 of
 the
 commonly
 used
 functions,
 including

 ERASE,
 REPEAT,
 PLAY/
 STOP,
 or
 LOCATE,

 *
 Two
 TRIGGER
 OUTPUTS
 may
 be
 programmed
 to
 output
 pulses
 at
 any
 selected
 note
 value.

 ©
 Will
 sync
 to
 standard
 LinnDrum
 or
 Linn
 9000
 sync
 tone,

 *
 Utilizes
 ultra
 high-speed,
 8
 MHz
 80186
 16
 bit
 computer
 internally
 for
 FAST
 operation.

 *
 TEMPO
 may
 be
 specified
 in
 BEATS-PER-MINUTE
 or
 FRAMES-PER-BEAT
 at
 24,
 25,
 or
 30
 frames
 per
 second,

 (even
 drop
 frame!)

 *
 TEMPO
 may
 be
 entered
 numerically,
 adjustable
 in
 tenths
 of
 a
 Beat-Per-Minute
 increments,
 or
 by
 tapping
 quarter
 notes

 on
 the
 TAP
 TEMPO
 button.

 *
 TEMPO
 CHANGES
 may
 be
 programmed
 into
 a
 sequence,
 with
 smooth
 transitions
 if
 desired.

 «
 Any
 TIME
 SIGNATURE
 may
 be
 used,
 and
 may
 be
 changed
 within
 a
 song.

 linn

 Linn
 Electronics,
 Inc.

 18720
 Oxnard
 Street,
 Tarzana,
 CA
 91356

 (818)
 708-8131
 TELEX
 #298949
 LINN
 UR

ocrmypdf-10.3.1+dfsg/tests/cache/skew/__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica

ocrmypdf-10.3.1+dfsg/tests/cache/skew/__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/skew/__-l__eng__000001_ocr.png__000001_ocr_hocr__hocr__txt/txt.bin

The LinnSequencer
32 Track MIDI Sequence Recorder

The LinnSequencer is a state-of-the-art composition and performance tool for the professional musician. It is
extremely powerful, yet amazingly simple to learn and use. It ’s many remarkable features include:

* Operation is similar to multi-track tape recorder with PLAY, STOP, RECORD, FAST
FORWARD, REWIND, and LOCATE controls,

© Each of the 100 sequences contains 32 simultaneous, polyphonic tracks. Each track may
be assigned to one of 16 MIDI channels. Simultaneously plays up to 16 polyphonic
synthesizers!

* Ultra-fast 314" disk drive stores complex songs in seconds and holds over 110,000 notes
per disk!

* One or all tracks may be TRANSPOSED at the touch of a key.
¢ Exclusive real-time ERASE function makes editing FAST,

* Exclusive REPEAT function automatically repeats any held notes at a pre-selected
rhythmic value.

* TIMING CORRECTION works during playback and operates without ‘chopping’ notes,
¢ Optional SMPTE time code synchronization.
* Optional remote control.

Recording a Sequence simply use LOCATE, FAST FORWARD, or REWIND to
To record a sequence, simply press RECORD and PL AY, _ find the desired bar number, then Start recording.
then play your MIDI keyboard in time to the Sequencer’s The INSERT/COPY function allows you to move bars

click track, When the sequence loops back around to bar 1, from one location to another—in the same sequence or a
you'll hear what you played—only all timing errors will be _different one. For example, you might insert a copy of the
corrected! (Timing correction may be adjusted or defeated), _ first verse between the second chorus and the bridge.
Any additional notes played will be added into the track DELETE BARS operates the same way to remove
—existing notes are not erased while recording! unwanted sections,

FAST FORWARD, REWIND, and LOCATE controls .
may be used at any time to quickly access any location in Creating a Song

your sequence for spot-recording. To overdub a new part, One way to create a song is to record each track all the
select a different track and start recording—while you way through (up to 999 bars), Another way is to record
record, the first track will play in perfect sync (unless you each basic section (verse, chorus, etc.) in individual

MUTE it, or SOLO another track). In this way, up to 32 sequences, then use the CREATE SONG function to “chain”
tracks may be overdubbed! All MIDI effects are recorded them together. CREATE SONG will then automatically

including pitch bend, modulation, velocity, aftertouch, Copy all the parts into a new sequence. If desir ed, you can
sustain pedal, and program changes! even set the last few bars to repeat infinitely, for a fadeout.
Editing Composition Without Compromise

To erase a wrong note, simply hold ERASE and press The technology you use should never be so complex that
the note to be erased just before it plays in the sequence— it interferes with the creative process. That’s precisely why
when played back, it will be gone. Notes may also be the LinnSequencer is designed to let you compose, record

added, erased, or changed using the SINGLE STEP func- and edit while devoting your undivided attention to your
tion. To overdub notes at specific points within a Sequence, — music. See your Linn dealer today for a demonstration!

Additional Features

* Simple, easy to learn operation—the 32 character LCD display clearly guides you through all operations, If needed, the
HELP button displays additional explanations,

* Non-destructive recording—existing notes are not erased while recording.

* Two FOOTSWITCH INPUTS may be assigned to remotely control many of the commonly used functions, including
ERASE, REPEAT, PLAY/ STOP, or LOCATE,

* Two TRIGGER OUTPUTS may be programmed to output pulses at any selected note value.
© Will sync to standard LinnDrum or Linn 9000 sync tone,
* Utilizes ultra high-speed, 8 MHz 80186 16 bit computer internally for FAST operation.

* TEMPO may be specified in BEATS-PER-MINUTE or FRAMES-PER-BEAT at 24, 25, or 30 frames per second,
(even drop frame!)

* TEMPO may be entered numerically, adjustable in tenths of a Beat-Per-Minute increments, or by tapping quarter notes
on the TAP TEMPO button.

* TEMPO CHANGES may be programmed into a sequence, with smooth transitions if desired.

« Any TIME SIGNATURE may be used, and may be changed within a song.
linn

Linn Electronics, Inc.
18720 Oxnard Street, Tarzana, CA 91356
(818) 708-8131 TELEX #298949 LINN UR
�

ocrmypdf-10.3.1+dfsg/tests/cache/skew/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/pdf.bin

The LinnSequencer
32 Track MIDI Sequence Recorder

The LinnSequencer is a state-of-the-art composition and performance tool for the professional musician. It is extremely powerful, yet amazingly simple to learn and use. It ’s many remarkable features include: * Operation is similar to multi-track tape recorder with PLAY, STOP, RECORD, FAST FORWARD, REWIND, and LOCATE controls,
© Each of the 100 sequences contains 32 simultaneous, polyphonic tracks. Each track may be assigned to one of 16 MIDI channels. Simultaneously plays up to 16 polyphonic synthesizers!
* Ultra-fast 314" disk drive stores complex songs in seconds and holds over 110,000 notes per disk!
* One or all tracks may be TRANSPOSED at the touch of a key. ¢ Exclusive real-time ERASE function makes editing FAST, * Exclusive REPEAT function automatically repeats any held notes at a pre-selected rhythmic value.
* TIMING CORRECTION works during playback and operates without ‘chopping’ notes, ¢ Optional SMPTE time code synchronization.
* Optional remote control.

Recording a Sequence simply use LOCATE, FAST FORWARD, or REWIND to To record a sequence, simply press RECORD and PL AY, _ find the desired bar number, then Start recording. then play your MIDI keyboard in time to the Sequencer’s The INSERT/COPY function allows you to move bars click track, When the sequence loops back around to bar 1, from one location to another—in the same sequence or a
you'll hear what you played—only all timing errors will be _different one. For example, you might insert a copy of the corrected! (Timing correction may be adjusted or defeated), _ first verse between the second chorus and the bridge.
Any additional notes played will be added into the track DELETE BARS operates the same way to remove —existing notes are not erased while recording! unwanted sections, FAST FORWARD, REWIND, and LOCATE controls . may be used at any time to quickly access any location in Creating a Song your sequence for spot-recording. To overdub a new part, One way to create a song is to record each track all the select a different track and start recording—while you way through (up to 999 bars), Another way is to record record, the first track will play in perfect sync (unless you each basic section (verse, chorus, etc.) in individual
MUTE it, or SOLO another track). In this way, up to 32 sequences, then use the CREATE SONG function to “chain”
tracks may be overdubbed! All MIDI effects are recorded them together. CREATE SONG will then automatically including pitch bend, modulation, velocity, aftertouch, Copy all the parts into a new sequence. If desir ed, you can
sustain pedal, and program changes! even set the last few bars to repeat infinitely, for a fadeout. Editing

Composition Without Compromise To erase a wrong note, simply hold ERASE and press The technology you use should never be so complex that
the note to be erased just before it plays in the sequence— it interferes with the creative process. That’s precisely why
when played back, it will be gone. Notes may also be the LinnSequencer is designed to let you compose, record
added, erased, or changed using the SINGLE STEP func- and edit while devoting your undivided attention to your
tion. To overdub notes at specific points within a Sequence, — music. See your Linn dealer today for a demonstration!
Additional Features
* Simple, easy to learn operation—the 32 character LCD display clearly guides you through all operations, If needed, the
HELP button displays additional explanations,

* Non-destructive recording—existing notes are not erased while recording. * Two FOOTSWITCH INPUTS may be assigned to remotely control many of the commonly used functions, including
ERASE, REPEAT, PLAY/ STOP, or LOCATE,

* Two TRIGGER OUTPUTS may be programmed to output pulses at any selected note value. © Will sync to standard LinnDrum or Linn 9000 sync tone,
* Utilizes ultra high-speed, 8 MHz 80186 16 bit computer internally for FAST operation. * TEMPO may be specified in BEATS-PER-MINUTE or FRAMES-PER-BEAT at 24, 25, or 30 frames per second,
(even drop frame!)

* TEMPO may be entered numerically, adjustable in tenths of a Beat-Per-Minute increments, or by tapping quarter notes
on the TAP TEMPO button.

* TEMPO CHANGES may be programmed into a sequence, with smooth transitions if desired. « Any TIME SIGNATURE may be used, and may be changed within a song.

linn
Linn Electronics, Inc.
18720 Oxnard Street, Tarzana, CA 91356
(818) 708-8131 TELEX #298949 LINN UR

ocrmypdf-10.3.1+dfsg/tests/cache/skew/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/stderr.bin

Tesseract Open Source OCR Engine v4.1.1 with Leptonica

ocrmypdf-10.3.1+dfsg/tests/cache/skew/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/stdout.bin

ocrmypdf-10.3.1+dfsg/tests/cache/skew/__-l__eng__000001_ocr.png__000001_ocr_tess__pdf__txt/txt.bin

The LinnSequencer
32 Track MIDI Sequence Recorder

The LinnSequencer is a state-of-the-art composition and performance tool for the professional musician. It is
extremely powerful, yet amazingly simple to learn and use. It ’s many remarkable features include:

* Operation is similar to multi-track tape recorder with PLAY, STOP, RECORD, FAST
FORWARD, REWIND, and LOCATE controls,

© Each of the 100 sequences contains 32 simultaneous, polyphonic tracks. Each track may
be assigned to one of 16 MIDI channels. Simultaneously plays up to 16 polyphonic
synthesizers!

* Ultra-fast 314" disk drive stores complex songs in seconds and holds over 110,000 notes
per disk!

* One or all tracks may be TRANSPOSED at the touch of a key.
¢ Exclusive real-time ERASE function makes editing FAST,

* Exclusive REPEAT function automatically repeats any held notes at a pre-selected
rhythmic value.

* TIMING CORRECTION works during playback and operates without ‘chopping’ notes,
¢ Optional SMPTE time code synchronization.
* Optional remote control.

Recording a Sequence simply use LOCATE, FAST FORWARD, or REWIND to
To record a sequence, simply press RECORD and PL AY, _ find the desired bar number, then Start recording.
then play your MIDI keyboard in time to the Sequencer’s The INSERT/COPY function allows you to move bars

click track, When the sequence loops back around to bar 1, from one location to another—in the same sequence or a
you'll hear what you played—only all timing errors will be _different one. For example, you might insert a copy of the
corrected! (Timing correction may be adjusted or defeated), _ first verse between the second chorus and the bridge.
Any additional notes played will be added into the track DELETE BARS operates the same way to remove
—existing notes are not erased while recording! unwanted sections,

FAST FORWARD, REWIND, and LOCATE controls .
may be used at any time to quickly access any location in Creating a Song

your sequence for spot-recording. To overdub a new part, One way to create a song is to record each track all the
select a different track and start recording—while you way through (up to 999 bars), Another way is to record
record, the first track will play in perfect sync (unless you each basic section (verse, chorus, etc.) in individual

MUTE it, or SOLO another track). In this way, up to 32 sequences, then use the CREATE SONG function to “chain”
tracks may be overdubbed! All MIDI effects are recorded them together. CREATE SONG will then automatically

including pitch bend, modulation, velocity, aftertouch, Copy all the parts into a new sequence. If desir ed, you can
sustain pedal, and program changes! even set the last few bars to repeat infinitely, for a fadeout.
Editing Composition Without Compromise

To erase a wrong note, simply hold ERASE and press The technology you use should never be so complex that
the note to be erased just before it plays in the sequence— it interferes with the creative process. That’s precisely why
when played back, it will be gone. Notes may also be the LinnSequencer is designed to let you compose, record

added, erased, or changed using the SINGLE STEP func- and edit while devoting your undivided attention to your
tion. To overdub notes at specific points within a Sequence, — music. See your Linn dealer today for a demonstration!

Additional Features

* Simple, easy to learn operation—the 32 character LCD display clearly guides you through all operations, If needed, the
HELP button displays additional explanations,

* Non-destructive recording—existing notes are not erased while recording.

* Two FOOTSWITCH INPUTS may be assigned to remotely control many of the commonly used functions, including
ERASE, REPEAT, PLAY/ STOP, or LOCATE,

* Two TRIGGER OUTPUTS may be programmed to output pulses at any selected note value.
© Will sync to standard LinnDrum or Linn 9000 sync tone,
* Utilizes ultra high-speed, 8 MHz 80186 16 bit computer internally for FAST operation.

* TEMPO may be specified in BEATS-PER-MINUTE or FRAMES-PER-BEAT at 24, 25, or 30 frames per second,
(even drop frame!)

* TEMPO may be entered numerically, adjustable in tenths of a Beat-Per-Minute increments, or by tapping quarter notes
on the TAP TEMPO button.

* TEMPO CHANGES may be programmed into a sequence, with smooth transitions if desired.

« Any TIME SIGNATURE may be used, and may be changed within a song.
linn

Linn Electronics, Inc.
18720 Oxnard Street, Tarzana, CA 91356
(818) 708-8131 TELEX #298949 LINN UR
�

ocrmypdf-10.3.1+dfsg/tests/conftest.py

© 2017 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import os
import platform
import sys
from pathlib import Path
from subprocess import PIPE, run

import pytest

from ocrmypdf import api, pdfinfo
from ocrmypdf._exec import unpaper
from ocrmypdf._plugin_manager import get_parser_options_plugins

pytest_plugins = ['helpers_namespace']

pylint: disable=E1101
pytest.helpers is dynamic so it confuses pylint

if sys.version_info < (3, 5):
 print("Requires Python 3.5+")
 sys.exit(1)

@pytest.helpers.register
def is_linux():
 return platform.system() == 'Linux'

@pytest.helpers.register
def is_macos():
 return platform.system() == 'Darwin'

@pytest.helpers.register
def running_in_docker():
 # Docker creates a file named /.dockerenv (newer versions) or
 # /.dockerinit (older) -- this is undocumented, not an offical test
 return Path('/.dockerenv').exists() or Path('/.dockerinit').exists()

@pytest.helpers.register
def running_in_travis():
 return os.environ.get('TRAVIS') == 'true'

@pytest.helpers.register
def have_unpaper():
 try:
 unpaper.version()
 except Exception: # pylint: disable=broad-except
 return False
 return True

TESTS_ROOT = Path(__file__).parent.resolve()
PROJECT_ROOT = TESTS_ROOT
OCRMYPDF = [sys.executable, '-m', 'ocrmypdf']

@pytest.fixture
def resources():
 return Path(TESTS_ROOT) / 'resources'

@pytest.fixture
def ocrmypdf_exec():
 return OCRMYPDF

@pytest.fixture(scope="function")
def outdir(tmp_path):
 return tmp_path

@pytest.fixture(scope="function")
def outpdf(tmp_path):
 return tmp_path / 'out.pdf'

@pytest.fixture(scope="function")
def no_outpdf(tmp_path):
 """This just documents the fact that a test is not expected to produce
 output. Unfortunately an assertion failure inside a test fixture produces
 an error rather than a test failure, so no testing is done. It's up to
 the test to confirm that no output file was created."""
 return tmp_path / 'no_output.pdf'

@pytest.helpers.register
def check_ocrmypdf(input_file, output_file, *args):
 """Run ocrmypdf and confirmed that a valid file was created"""
 args = [str(input_file), str(output_file)] + [
 str(arg) for arg in args if arg is not None
]

 _parser, options, plugin_manager = get_parser_options_plugins(args=args)
 api.check_options(options, plugin_manager)
 result = api.run_pipeline(options, plugin_manager=plugin_manager, api=True)

 assert result == 0
 assert output_file.exists(), "Output file not created"
 assert output_file.stat().st_size > 100, "PDF too small or empty"

 return output_file

@pytest.helpers.register
def run_ocrmypdf_api(input_file, output_file, *args):
 """Run ocrmypdf via API and let caller deal with results

 Does not currently have a way to manipulate the PATH except for Tesseract.
 """

 args = [str(input_file), str(output_file)] + [
 str(arg) for arg in args if arg is not None
]
 _parser, options, plugin_manager = get_parser_options_plugins(args=args)

 api.check_options(options, plugin_manager)
 return api.run_pipeline(options, plugin_manager=None, api=False)

@pytest.helpers.register
def run_ocrmypdf(input_file, output_file, *args, universal_newlines=True):
 "Run ocrmypdf and let caller deal with results"

 p_args = (
 OCRMYPDF
 + [str(arg) for arg in args if arg is not None]
 + [str(input_file), str(output_file)]
)

 # Tell subprocess where to find coverage.py configuration
 # This has no unless except when coverage is running
 # Details: https://coverage.readthedocs.io/en/coverage-5.0/subprocess.html
 coverage_rc = Path(__file__).parent.parent / '.coveragerc'
 env = os.environ.copy()
 if coverage_rc.exists():
 env['COVERAGE_PROCESS_START'] = os.fspath(coverage_rc)
 elif not running_in_docker():
 assert False, "could not find .coveragerc"

 p = run(
 p_args,
 stdout=PIPE,
 stderr=PIPE,
 universal_newlines=universal_newlines,
 env=env,
 check=False,
)
 # print(p.stderr)
 return p, p.stdout, p.stderr

@pytest.helpers.register
def first_page_dimensions(pdf):
 info = pdfinfo.PdfInfo(pdf)
 page0 = info[0]
 return (page0.width_inches, page0.height_inches)

def pytest_addoption(parser):
 parser.addoption(
 "--runslow",
 action="store_true",
 default=False,
 help=(
 "run slow tests only useful for development (unlikely to be "
 "useful for downstream packagers)"
),
)

def pytest_collection_modifyitems(config, items):
 if config.getoption("--runslow"):
 # --runslow given in cli: do not skip slow tests
 return
 skip_slow = pytest.mark.skip(reason="need --runslow option to run")
 for item in items:
 if "slow" in item.keywords:
 item.add_marker(skip_slow)

ocrmypdf-10.3.1+dfsg/tests/plugins/gs_feature_elision.py

© 2020 James R. Barlow: github.com/jbarlow83
#
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
#
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

from unittest.mock import patch

from ocrmypdf import hookimpl
from ocrmypdf.builtin_plugins import ghostscript
from ocrmypdf.subprocess import run

elision_warning = """GPL Ghostscript 9.20: Setting Overprint Mode to 1
not permitted in PDF/A-2, overprint mode not set"""

def run_append_stderr(*args, **kwargs):
 proc = run(*args, **kwargs)
 proc.stderr = b'\n'.join([proc.stderr, elision_warning.encode('utf-8')])
 return proc

@hookimpl
def generate_pdfa(pdf_pages, pdfmark, output_file, compression, pdf_version, pdfa_part):
 with patch('ocrmypdf._exec.ghostscript.run', new=run_append_stderr):
 ghostscript.generate_pdfa(
 pdf_pages=pdf_pages,
 pdfmark=pdfmark,
 output_file=output_file,
 compression=compression,
 pdf_version=pdf_version,
 pdfa_part=pdfa_part,
)
 return output_file

ocrmypdf-10.3.1+dfsg/tests/plugins/gs_pdfa_failure.py

© 2020 James R. Barlow: github.com/jbarlow83
#
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
#
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

from unittest.mock import patch

from ocrmypdf import hookimpl
from ocrmypdf.builtin_plugins import ghostscript
from ocrmypdf.subprocess import run

def run_rig_args(args, **kwargs):
 # Remove the two arguments that tell ghostscript to create a PDF/A
 # Does not remove the Postscript definition file - not necessary
 # to cause PDF/A creation failure
 new_args = [
 arg for arg in args if not arg.startswith('-dPDFA') and not arg.endswith('.ps')
]
 proc = run(new_args, **kwargs)
 return proc

@hookimpl
def generate_pdfa(pdf_pages, pdfmark, output_file, compression, pdf_version, pdfa_part):
 with patch('ocrmypdf._exec.ghostscript.run', new=run_rig_args):
 ghostscript.generate_pdfa(
 pdf_pages=pdf_pages,
 pdfmark=pdfmark,
 output_file=output_file,
 compression=compression,
 pdf_version=pdf_version,
 pdfa_part=pdfa_part,
)
 return output_file

ocrmypdf-10.3.1+dfsg/tests/plugins/gs_raster_failure.py

© 2020 James R. Barlow: github.com/jbarlow83
#
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
#
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

from pathlib import Path
from subprocess import CalledProcessError
from unittest.mock import patch

from ocrmypdf import hookimpl
from ocrmypdf.builtin_plugins import ghostscript

def raise_gs_fail(*args, **kwargs):
 raise CalledProcessError(
 1, 'gs', output=b"", stderr=b"ERROR: Ghost story archive not found"
)

@hookimpl
def rasterize_pdf_page(
 input_file,
 output_file,
 raster_device,
 raster_dpi,
 pageno,
 page_dpi=None,
 rotation=None,
 filter_vector=False,
) -> Path:
 with patch('ocrmypdf._exec.ghostscript.run', new=raise_gs_fail):
 ghostscript.rasterize_pdf_page(
 input_file=input_file,
 output_file=output_file,
 raster_device=raster_device,
 raster_dpi=raster_dpi,
 pageno=pageno,
 page_dpi=page_dpi,
 rotation=rotation,
 filter_vector=filter_vector,
)
 return output_file

ocrmypdf-10.3.1+dfsg/tests/plugins/gs_render_failure.py

© 2020 James R. Barlow: github.com/jbarlow83
#
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
#
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

from subprocess import CalledProcessError
from unittest.mock import patch

from ocrmypdf import hookimpl
from ocrmypdf.builtin_plugins import ghostscript

def raise_gs_fail(*args, **kwargs):
 raise CalledProcessError(
 1, 'gs', output=b"", stderr=b"ERROR: Casper is not a friendly ghost"
)

@hookimpl
def generate_pdfa(pdf_pages, pdfmark, output_file, compression, pdf_version, pdfa_part):
 with patch('ocrmypdf._exec.ghostscript.run', new=raise_gs_fail):
 ghostscript.generate_pdfa(
 pdf_pages=pdf_pages,
 pdfmark=pdfmark,
 output_file=output_file,
 compression=compression,
 pdf_version=pdf_version,
 pdfa_part=pdfa_part,
)
 return output_file

ocrmypdf-10.3.1+dfsg/tests/plugins/tesseract_badutf8.py

© 2020 James R. Barlow: github.com/jbarlow83
#
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
#
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

"""Tesseract bad utf8

In some cases, some versions of Tesseract can output binary gibberish or data
that is not UTF-8 compatible, so we are forced to check that we can convert it
and present it to the user.
"""

from subprocess import CalledProcessError
from unittest.mock import patch

from ocrmypdf import hookimpl
from ocrmypdf.builtin_plugins.tesseract_ocr import TesseractOcrEngine

def bad_utf8(*args, **kwargs):
 raise CalledProcessError(
 1,
 'tesseract',
 output=b'\x96\xb3\x8c\xf8\x82\xc8UTF-8\x0a', # "Invalid UTF-8" in Shift JIS
 stderr=b"",
)

class BadUtf8OcrEngine(TesseractOcrEngine):
 @staticmethod
 def generate_hocr(input_file, output_hocr, output_text, options):
 with patch('ocrmypdf._exec.tesseract.run', new=bad_utf8):
 TesseractOcrEngine.generate_hocr(
 input_file, output_hocr, output_text, options
)

 @staticmethod
 def generate_pdf(input_file, output_pdf, output_text, options):
 with patch('ocrmypdf._exec.tesseract.run', new=bad_utf8):
 TesseractOcrEngine.generate_pdf(
 input_file, output_pdf, output_text, options
)

@hookimpl
def get_ocr_engine():
 return BadUtf8OcrEngine()

ocrmypdf-10.3.1+dfsg/tests/plugins/tesseract_big_image_error.py

© 2020 James R. Barlow: github.com/jbarlow83
#
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
#
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

from subprocess import CalledProcessError
from unittest.mock import patch

from ocrmypdf import hookimpl
from ocrmypdf.builtin_plugins.tesseract_ocr import TesseractOcrEngine

def raise_size_exception(*args, **kwargs):
 raise CalledProcessError(
 1,
 'tesseract',
 output=b"Image too large: (33830, 14959)\nError during processing.",
 stderr=b"",
)

class BigImageErrorOcrEngine(TesseractOcrEngine):
 @staticmethod
 def get_orientation(input_file, options):
 with patch('ocrmypdf._exec.tesseract.run', new=raise_size_exception):
 return TesseractOcrEngine.get_orientation(input_file, options)

 @staticmethod
 def generate_hocr(input_file, output_hocr, output_text, options):
 with patch('ocrmypdf._exec.tesseract.run', new=raise_size_exception):
 TesseractOcrEngine.generate_hocr(
 input_file, output_hocr, output_text, options
)

 @staticmethod
 def generate_pdf(input_file, output_pdf, output_text, options):
 with patch('ocrmypdf._exec.tesseract.run', new=raise_size_exception):
 TesseractOcrEngine.generate_pdf(
 input_file, output_pdf, output_text, options
)

@hookimpl
def get_ocr_engine():
 return BigImageErrorOcrEngine()

ocrmypdf-10.3.1+dfsg/tests/plugins/tesseract_cache.py

© 2020 James R. Barlow: github.com/jbarlow83
#
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
#
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

"""Cache output of tesseract to speed up test suite

The cache is keyed by by the input test file The input arguments are slugged
into a hideous filename that more or less represents them literally. Joined
together, this becomes the name of the cache folder. A few name files like
stdout, stderr, hocr, pdf, describe the output to reproduce.

Changes to tests/resources/ or image processing algorithms don't trigger a
cache miss. By design, an input image that varies according to platform
differences (e.g. JPEG decoders are allowed to produce differing outputs,
and in practice they do) will still be a cache hit. By design, an
invocation of tesseract with the same parameters from a different test case
will be a hit. It's fragile.

The tests/cache/manifest.jsonl is a JSON lines file that contains
information about the system that produced the results used when cache was
generated. This mainly a log to answer questions about how the files
were produced.

Certain operations are not cached and routed to Tesseract OCR directly.

Assumes Tesseract 4.0.0-alpha or higher.

"""

import argparse
import json
import logging
import platform
import re
import shutil
from functools import partial
from pathlib import Path
from subprocess import PIPE, CalledProcessError, CompletedProcess
from unittest.mock import patch

from ocrmypdf import hookimpl
from ocrmypdf.builtin_plugins.tesseract_ocr import TesseractOcrEngine
from ocrmypdf.subprocess import run

log = logging.getLogger(__name__)

TESTS_ROOT = Path(__file__).resolve().parent.parent
CACHE_ROOT = TESTS_ROOT / 'cache'

parser = argparse.ArgumentParser(
 prog='tesseract-cache', description='cache output of tesseract'
)
parser.add_argument('-l', '--language', action='append')
parser.add_argument('imagename')
parser.add_argument('outputbase')
parser.add_argument('configfiles', nargs='*')
parser.add_argument('--user-words', type=str)
parser.add_argument('--user-patterns', type=str)
parser.add_argument('-c', action='append')
parser.add_argument('--psm', type=int)
parser.add_argument('--oem', type=int)

def get_cache_folder(source_pdf, run_args, parsed_args):
 def slugs():
 yield '' # so we don't start with a '-' which makes rm difficult
 for arg in run_args[1:]:
 if arg == parsed_args.imagename:
 yield Path(parsed_args.imagename).name
 elif arg == parsed_args.outputbase:
 yield Path(parsed_args.outputbase).name
 elif arg == '-c' or arg.startswith('textonly'):
 pass
 else:
 yield arg

 argv_slug = '__'.join(slugs())
 argv_slug = argv_slug.replace('/', '___')

 return Path(CACHE_ROOT) / Path(source_pdf).stem / argv_slug

def cached_run(options, run_args, **run_kwargs):
 run_args = [str(arg) for arg in run_args] # flatten PosixPaths
 args = parser.parse_args(run_args[1:])

 if args.imagename in ('stdin', '-'):
 return run(run_args, **run_kwargs)

 source_file = options.input_file
 cache_folder = get_cache_folder(source_file, run_args, args)
 cache_folder.mkdir(parents=True, exist_ok=True)

 log.debug(f"Using Tesseract cache {cache_folder}")

 if (cache_folder / 'stderr.bin').exists():
 log.debug("Cache HIT")

 # Replicate stdout/err
 if args.outputbase != 'stdout':
 if not args.configfiles:
 args.configfiles.append('txt')
 for configfile in args.configfiles:
 # cp cache -> output
 tessfile = args.outputbase + '.' + configfile
 shutil.copy(str(cache_folder / configfile) + '.bin', tessfile)
 return CompletedProcess(
 args=run_args,
 returncode=0,
 stdout=(cache_folder / 'stdout.bin').read_bytes(),
 stderr=(cache_folder / 'stderr.bin').read_bytes(),
)

 log.debug("Cache MISS")

 cache_kwargs = {
 k: v for k, v in run_kwargs.items() if k not in ('stdout', 'stderr')
 }
 assert cache_kwargs['check']
 try:
 p = run(run_args, stdout=PIPE, stderr=PIPE, **cache_kwargs)
 except CalledProcessError as e:
 log.exception(e)
 raise # Pass exception onward

 # Update cache
 (cache_folder / 'stdout.bin').write_bytes(p.stdout)
 (cache_folder / 'stderr.bin').write_bytes(p.stderr)

 if args.outputbase != 'stdout':
 if not args.configfiles:
 args.configfiles.append('txt')

 for configfile in args.configfiles:
 if configfile not in ('hocr', 'pdf', 'txt'):
 continue
 # cp pwd/{outputbase}.{configfile} -> {cache}/{configfile}
 tessfile = args.outputbase + '.' + configfile
 shutil.copy(tessfile, str(cache_folder / configfile) + '.bin')

 manifest = {}
 manifest['tesseract_version'] = TesseractOcrEngine.version().replace('\n', ' ')
 manifest['platform'] = platform.platform()
 manifest['python'] = platform.python_version()
 manifest['argv_slug'] = cache_folder.name
 manifest['sourcefile'] = str(Path(source_file).relative_to(TESTS_ROOT))

 def clean_sys_argv():
 for arg in run_args[1:]:
 yield re.sub(r'.*/com.github.ocrmypdf[^/]+[/](.*)', r'$TMPDIR/\1', arg)

 manifest['args'] = list(clean_sys_argv())
 with (Path(CACHE_ROOT) / 'manifest.jsonl').open('a') as f:
 json.dump(manifest, f)
 f.write('\n')
 f.flush()
 return p

class CacheOcrEngine(TesseractOcrEngine):
 @staticmethod
 def get_orientation(input_file, options):
 with patch('ocrmypdf._exec.tesseract.run', new=partial(cached_run, options)):
 return TesseractOcrEngine.get_orientation(input_file, options)

 @staticmethod
 def generate_hocr(input_file, output_hocr, output_text, options):
 with patch('ocrmypdf._exec.tesseract.run', new=partial(cached_run, options)):
 TesseractOcrEngine.generate_hocr(
 input_file, output_hocr, output_text, options
)

 @staticmethod
 def generate_pdf(input_file, output_pdf, output_text, options):
 with patch('ocrmypdf._exec.tesseract.run', new=partial(cached_run, options)):
 TesseractOcrEngine.generate_pdf(
 input_file, output_pdf, output_text, options
)

@hookimpl
def get_ocr_engine():
 return CacheOcrEngine()

ocrmypdf-10.3.1+dfsg/tests/plugins/tesseract_crash.py

© 2020 James R. Barlow: github.com/jbarlow83
#
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
#
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

import signal
from subprocess import CalledProcessError
from unittest.mock import patch

from ocrmypdf import hookimpl
from ocrmypdf.builtin_plugins.tesseract_ocr import TesseractOcrEngine

def raise_crash(*args, **kwargs):
 raise CalledProcessError(
 128 + signal.SIGABRT,
 'tesseract',
 output=b"",
 stderr=b"libc++abi.dylib: terminating with uncaught exception of type "
 + b"std::bad_alloc: std::bad_alloc",
)

class CrashOcrEngine(TesseractOcrEngine):
 @staticmethod
 def get_orientation(input_file, options):
 with patch('ocrmypdf._exec.tesseract.run', new=raise_crash):
 return TesseractOcrEngine.get_orientation(input_file, options)

 @staticmethod
 def generate_hocr(input_file, output_hocr, output_text, options):
 with patch('ocrmypdf._exec.tesseract.run', new=raise_crash):
 TesseractOcrEngine.generate_hocr(
 input_file, output_hocr, output_text, options
)

 @staticmethod
 def generate_pdf(input_file, output_pdf, output_text, options):
 with patch('ocrmypdf._exec.tesseract.run', new=raise_crash):
 TesseractOcrEngine.generate_pdf(
 input_file, output_pdf, output_text, options
)

@hookimpl
def get_ocr_engine():
 return CrashOcrEngine()

ocrmypdf-10.3.1+dfsg/tests/plugins/tesseract_noop.py

© 2020 James R. Barlow: github.com/jbarlow83
#
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
#
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

"""Tesseract no-op plugin

To quickly run tests where getting OCR output is not necessary.

In 'hocr' mode, create a .hocr file that specifies no text found.

In 'pdf' mode, convert the image to PDF using another program.

In orientation check mode, report the orientation is upright.
"""

import pikepdf
from PIL import Image

from ocrmypdf import OcrEngine, OrientationConfidence, hookimpl

HOCR_TEMPLATE = '''

 '''

class NoopOcrEngine(OcrEngine):
 @staticmethod
 def version():
 return '4.0.0'

 @staticmethod
 def creator_tag(options):
 tag = '-PDF' if options.pdf_renderer == 'sandwich' else ''
 return f"NO-OP {tag} {NoopOcrEngine.version()}"

 def __str__(self):
 return f"NO-OP {NoopOcrEngine.version()}"

 @staticmethod
 def languages(options):
 return {'eng'}

 @staticmethod
 def get_orientation(input_file, options):
 return OrientationConfidence(angle=0, confidence=0.0)

 @staticmethod
 def generate_hocr(input_file, output_hocr, output_text, options):
 with Image.open(input_file) as im, open(
 output_hocr, 'w', encoding='utf-8'
) as f:
 w, h = im.size
 f.write(HOCR_TEMPLATE.format(str(w), str(h)))
 with open(output_text, 'w') as f:
 f.write('')

 @staticmethod
 def generate_pdf(input_file, output_pdf, output_text, options):
 with Image.open(input_file) as im:
 dpi = im.info['dpi']
 pagesize = im.size[0] / dpi[0], im.size[1] / dpi[1]
 ptsize = pagesize[0] * 72, pagesize[1] * 72
 pdf = pikepdf.new()
 pdf.add_blank_page(page_size=ptsize)
 pdf.save(output_pdf, static_id=True)
 output_text.write_text('')

@hookimpl
def get_ocr_engine():
 return NoopOcrEngine()

ocrmypdf-10.3.1+dfsg/tests/resources/2400dpi.pdf

ocrmypdf-10.3.1+dfsg/tests/resources/3small.pdf

ocrmypdf-10.3.1+dfsg/tests/resources/README.rst

These test files are used in OCRmyPDF's test suite. They do not necessarily produce OCR results
at all and are not meant as examples of OCR output. Some are even invalid PDFs that might
crash certain PDF viewers.

Files derived from free sources
===============================

These test resources come from free sources, under either public domain or Creative Commons licenses.
In some cases they were converted from one image format to another without other changes.

.. list-table::
 :widths: 20 50 30
 :header-rows: 1

 * - File
 - Source
 - License
 * - c02-22.pdf
 - `Project Gutenberg`_, Adventures of Huckleberry Finn, page 22
 - Public Domain
 * - congress.jpg
 - `US Congressional Records`_
 - Public Domain
 * - graph.pdf
 - `Wikimedia: Pandas text analysis.png`_
 - Public Domain
 * - lichtenstein.pdf
 - `Wikimedia: JPEG2000 Lichtenstein`_
 - Creative Commons BY-SA 3.0
 * - linn.png, linn.pdf, linn.txt
 - `Wikimedia: LinnSequencer`_
 - Creative Commons BY-SA 3.0
 * - typewriter.png, 2400dpi.pdf
 - `Wikimedia: Triumph typewrtier text Linzensoep`_
 - Creative Commons BY-SA 2.5
 * - baiona.png
 - `Wikimedia: Baionako udalerri mugakideak`_
 - Creative Commons BY-SA 4.0
 * - enron1.pdf
 - EnronData.org
 - Creative Commons BY 3.0

Files generated for this project
================================

The following test resources were crafted specifically for this project, and are
licensed under the specified license.

.. list-table::
 :widths: 20 40 15 15 10
 :header-rows: 1

 * - File
 - Purpose
 - Contributor
 - Copyright Holder
 - License
 * - aspect.pdf
 - test image with 200 x 100 DPI resolution
 - @jbarlow83
 - @jbarlow83
 - CC-BY-SA 4.0
 * - blank.pdf
 - blank PDF generated by Adobe Illustrator CC 17, containing a lot of application-specific metadata/bloat
 - @jbarlow83
 - @jbarlow83
 - CC-BY-SA 4.0
 * - cmyk.pdf
 - a CMYK image created in Photoshop
 - @jbarlow83
 - @jbarlow83
 - CC-BY-SA 4.0
 * - crom.png
 - test for non-dictionary words
 - @jbarlow83
 - @jbarlow83
 - CC-BY-SA 4.0
 * - enormous.pdf
 - very large PDF page
 - @jbarlow83
 - @jbarlow83
 - CC-BY-SA 4.0
 * - epson.pdf
 - a linearized PDF containing some unusual indirect objects, created by an Epson printer; printout of a Wikipedia article (CC-BY-SA)
 - @lowesjam
 - Wikipedia authors
 - CC-BY-SA 3.0
 * - formxobject.pdf
 - hand-crafted PDF containing an image inside a Form XObject
 - @jbarlow83
 - @jbarlow83
 - CC-BY-SA 4.0
 * - francais.pdf
 - a page containing French accents (diacritics)
 - @jbarlow83
 - @jbarlow83
 - CC-BY-SA 4.0
 * - hugemono.pdf
 - large monochrome 35000x35000 image in JBIG2 encoding
 - @jbarlow83
 - @jbarlow83
 - CC-BY-SA 4.0
 * - invalid.pdf
 - a PDF file header followed by EOF marker
 - @jbarlow83
 - @jbarlow83
 - CC-BY-SA 4.0
 * - kcs.pdf
 - PDF file generated by Kodak Capture Desktop Software 1.2; has invalid table of contents
 - @jbarlow83
 - @jbarlow83
 - CC-BY-SA 4.0
 * - livecycle.pdf
 - a minimal PDF that claims to use dynamic XFA forms
 - @jbarlow83
 - @jbarlow83
 - CC-BY-SA 4.0
 * - masks.pdf
 - file containing explicit masks and a stencil mask drawn without a proper transformation matrix; printout of a German Wikipedia article (CC-BY-SA)
 - @supergrobi
 - Wikipedia authors
 - CC-BY-SA 3.0
 * - missing_docinfo.pdf
 - PDF file with no /DocumentInfo section
 - @jbarlow83
 - @jbarlow83
 - CC-BY-SA 4.0
 * - overlay.pdf
 - PDF file generated by PDFPen pro that triggered content stream parse errors
 - @maxandersen
 - @maxandersen
 - CC-BY-SA 4.0
 * - negzero.pdf
 - copy of formxobject.pdf with token that qpdf doesn't like
 - @jbarlow83
 - @jbarlow83
 - CC-BY-SA 4.0
 * - no_contents.pdf
 - synthetic PDF with a blank page that has no /Contents entry
 - @jbarlow83
 - @jbarlow83
 - CC-BY-SA 4.0
 * - truetype_font_nomapping.pdf
 - example of a PDF with an embedded subsetted TrueType font with no Unicode mapping
 - @jbarlow83
 - @jbarlow83
 - CC-BY-SA 4.0
 * - trivial.pdf
 - smallest possible valid PDF-1.3 with all required fields
 - @jbarlow83
 - @jbarlow83
 - CC-BY-SA 4.0
 * - type3_font_nomapping.pdf
 - example of a PDF with an embedded subsetted TrueType font with no Unicode mapping
 - @jbarlow83
 - @jbarlow83
 - CC-BY-SA 4.0
 * - vector.pdf
 - a PDF with vector art and text rendered as curves with no fonts
 - @Catscratch
 - @Catscratch
 - CC-BY-SA 4.0

Assemblies
==========

These test resources are assemblies or derivatives from other previously mentioned files, released under the same license terms as their input files.

- baiona_gray.png (from baiona.png, grayscale version)
- baiona_colormapped.png (from baiona.png, palette version)
- baiona_alpha.png (from baiona.png, RGB+A version)
- cardinal.pdf (four cardinal directions, baked-in rotated copies of linn.png)
- ccitt.pdf (linn.png, converted to CCITT encoding)
- encrypted_algo4.pdf (congress.jpg, encrypted with algorithm 4 - not supported by PyPDF2)
- graph_ocred.pdf (from graph.pdf)
- jbig2.pdf (congress.jpg, converted to JBIG2 encoding)
- multipage.pdf (from several other files)
- palette.pdf (congress.jpg, converted to a 256-color palette)
- poster.pdf (from linn.png)
- rotated_skew.pdf (a /Rotate'd and skewed document from linn.png)
- skew-encrypted.pdf (skew.pdf with encryption - access supported by PyPDF2, password is "password")
- skew.pdf (from linn.png, skew simulated by adjusting the transformation matrix)
- toc.pdf (from formxobject.pdf, trivial.pdf)

.. _`Wikimedia: LinnSequencer`: https://upload.wikimedia.org/wikipedia/en/b/b7/LinnSequencer_hardware_MIDI_sequencer_brochure_page_2_300dpi.jpg

.. _`Project Gutenberg`: https://www.gutenberg.org/files/76/76-h/76-h.htm#c2

.. _`US Congressional Records`: http://www.baxleystamps.com/litho/meiji/courts_1871.jpg

.. _`Wikimedia: Pandas text analysis.png`: https://en.wikipedia.org/wiki/File:Pandas_text_analysis.png

.. _`Wikimedia: JPEG2000 Lichtenstein`: https://en.wikipedia.org/wiki/JPEG_2000#/media/File:Jpeg2000_2-level_wavelet_transform-lichtenstein.png

.. _`Linux (Wikipedia Article)`: https://de.wikipedia.org/wiki/Linux

.. _`Wikimedia: Triumph typewrtier text Linzensoep`: https://commons.wikimedia.org/wiki/File:Triumph.typewriter_text_Linzensoep.gif

.. _`Wikimedia: Baionako udalerri mugakideak`: https://commons.wikimedia.org/wiki/File:Baionako_udalerri_mugakideak.png

ocrmypdf-10.3.1+dfsg/tests/resources/acroform.pdf

			Check Box4: Off

ocrmypdf-10.3.1+dfsg/tests/resources/aspect.pdf

ocrmypdf-10.3.1+dfsg/tests/resources/baiona.png

ocrmypdf-10.3.1+dfsg/tests/resources/baiona_alpha.png

ocrmypdf-10.3.1+dfsg/tests/resources/baiona_cmyk.jpg

ocrmypdf-10.3.1+dfsg/tests/resources/baiona_colormapped.png

ocrmypdf-10.3.1+dfsg/tests/resources/baiona_gray.png

ocrmypdf-10.3.1+dfsg/tests/resources/blank.pdf

ocrmypdf-10.3.1+dfsg/tests/resources/c02-22.pdf

ocrmypdf-10.3.1+dfsg/tests/resources/cardinal.pdf

ocrmypdf-10.3.1+dfsg/tests/resources/ccitt.pdf

ocrmypdf-10.3.1+dfsg/tests/resources/cmyk.pdf

䴀甀氀琀椀挀漀氀漀爀 䈀氀愀挀欀

倀甀爀攀 䈀氀愀挀欀 ⠀䬀 㴀 　　⤀

倀甀爀攀 䴀愀最攀渀琀愀

倀甀爀攀 䌀礀愀渀

倀甀爀攀 夀攀氀氀漀眀

ocrmypdf-10.3.1+dfsg/tests/resources/congress.jpg

ocrmypdf-10.3.1+dfsg/tests/resources/crom.png

ocrmypdf-10.3.1+dfsg/tests/resources/encrypted_algo4.pdf

ocrmypdf-10.3.1+dfsg/tests/resources/enormous.pdf

ocrmypdf-10.3.1+dfsg/tests/resources/epson.pdf

ocrmypdf-10.3.1+dfsg/tests/resources/formxobject.pdf

What follows is an image embedded as a Form XObject:

ocrmypdf-10.3.1+dfsg/tests/resources/francais.pdf

ocrmypdf-10.3.1+dfsg/tests/resources/graph.pdf

ocrmypdf-10.3.1+dfsg/tests/resources/graph_ocred.pdf

Replacement of "creationism" with "intelligent design"

120

100 -

E 80

3

8
U

60 -

+ "Creation" and "creationist"

B —O— "Intelligentdesign"

;
and "design proponent"

40 —

20 -

+ ..
0 g I | ' ' T 9
‘69 <29 93“ ‘6“ <2)“ ‘29 <59

,9 r9 \9 r\ \9 ’\ \

A\ (\K 9\ \\ (1,\ 6K GK
\0g ’60 . é ($\\ \6 6%

<50 «:0 0° 6‘ 6‘ *9 ¢°Q (3 e e 9 e

“00 {a ® 0&0 (39> 6’5 0&0
as” \og \0\0 Q0 <2’Z’ <29 Q’O

ocrmypdf-10.3.1+dfsg/tests/resources/hugemono.pdf

ocrmypdf-10.3.1+dfsg/tests/resources/invalid.pdf

ocrmypdf-10.3.1+dfsg/tests/resources/jbig2.pdf

ocrmypdf-10.3.1+dfsg/tests/resources/kcs.pdf

ocrmypdf-10.3.1+dfsg/tests/resources/lichtenstein.pdf

ocrmypdf-10.3.1+dfsg/tests/resources/link.pdf

Go to page 2

Other content

Somewhere on page 2

Go to page 1

ocrmypdf-10.3.1+dfsg/tests/resources/linn.pdf

ocrmypdf-10.3.1+dfsg/tests/resources/linn.png

ocrmypdf-10.3.1+dfsg/tests/resources/linn.txt

The LinnSequencer
32 Track MIDI Sequence Recorder

The LinnSequencer is a state—of—the-art composition and performance tool for the professional musician. It is

extremely powerful, yet amazingly simple to learn and use. It’s many remarkable features include:

0 Operation is similar to multi-track tape recorder with PLAY, STOP, RECORD, FAST
FORWARD, REWIND, and LOCATE controls.

0 Each of the 100 sequences contains 32 simultaneous, polyphonic tracks. Each track may
be assigned to one of 16 MIDI channels. Simultaneously plays up to 16 polyphonic

synthesizers !

0 Ultra-fast 3 1/2 ” disk drive stores complex songs in seconds and holds over 110,000 notes

per disk!

0 One or all tracks may be TRANSPOSED at the touch of a key.
0 Exclusive real—time ERASE function makes editing FAST.
0 Exclusive REPEAT function automatically repeats any held notes at a pre-selected

rhythmic value.

0 TIMING CORRECTION works during playback and operates without ‘chopping’ notes.

0 Optional SMPTE time code synchronization.

0 Optional remote control.

Recording a Sequence

To record a sequence, simply press RECORD and PLAY,
then play your MIDI keyboard in time to the Sequencer’s
click track. When the sequence loops back around to bar 1,
you’ll hear what you played—only all timing errors will be

corrected! (Timing correction may be adjusted 0r defeated).

Any additional notes played will be added into the track
—existing notes are not erased while recording!

FAST FORWARD, REWIND, and LOCATE controls
may be used at any time to quickly access any location in
your sequence for spot-recording. To overdub a new part,
select a different track and start recording—while you
record, the ﬁrst‘track will play in perfect sync (unless you
MUTE it, or SOLO another track). In this way, up to 32
tracks may be overdubbed! All MIDI effects are recorded
including pitch bend, modulation, velocity, aftertouch,
sustain pedal, and program changes!

Editing

To erase a wrong note, simply hold ERASE and press
the note to be erased just before it plays in the sequence-—
when played back, it will be gone. Notes may also be

added, erased, or changed using the SINGLE STEP func-
tion. To overdub notes at specific points within a sequence,

Additional Features

simply use LOCATE, FAST FORWARD, or REWIND to
find the desired bar number, then start recording.

The INSERT/ COPY function allows you to move bars
from one location to another—in the same sequence or a
different one. For example, you might insert a copy of the
first verse between the second chorus and the bridge.
DELETE BARS operates the same way to remove
unwanted sections.

Creating a Song

One way to create a song is to record each track all the
way through (up to 999 bars). Another way is to record
each basic section (verse, chorus, etc.) in individual
sequences, then use the CREATE SONG function to “chain”
them together. CREATE SONG will then automatically
copy all the parts into a new sequence. If desired, you can
even set the last few bars to repeat infinitely, for a fadeout.

Composition Without Compromise

The technology you use should never be so complex that
it interferes with the creative process. That’s precisely why
the LinnSequencer is designed to let you compose, record
and edit while devoting your undivided attention to your
music. See your Linn dealer today for a demonstration!

0 Simple, easy to learn operation—the 32 character LCD display clearly guides you through all operations. If needed, the

HELP button displays additional explanations.

0 Non-destructive recording—existing notes are not erased while recording.
0 Two FOOTSWIT CH INPUTS may be assigned to remotely control many of the commonly used functions, including

ERASE, REPEAT, PLAY/ STOP, or LOCATE.

0 Two TRIGGER OUTPUTS may be programmed to output pulses at any selected note value.

0 Will sync to standard LinnDrum or Linn 9000 sync tone.

0 Utilizes ultra high—speed, 8 MHZ 80186 16 bit computer internally for FAST operation.
0 TEMPO may be specified in BEATS-PER—MINUTE or FRAMES-PER—BEAT at 24, 25, or 30 frames per second,

(even drop frame!)

0 TEMPO may be entered numerically, adjustable in tenths of a Beat-Per-Minute increments, or by tapping quarter notes

on the TAP TEMPO button.

0 TEMPO CHANGES may be programmed into a sequence, with smooth transitions if desired.
0 Any TIME SIGNATURE may be used, and may be changed within a song.

EDI]
Linn Electronics, Inc.

18720 Oxnard Street, Tarzana, CA 91356
(818) 708-8131 TELEX #298949 LINN UR

ocrmypdf-10.3.1+dfsg/tests/resources/livecycle.pdf

ocrmypdf-10.3.1+dfsg/tests/resources/masks.pdf

ocrmypdf-10.3.1+dfsg/tests/resources/missing_docinfo.pdf

This file has no /DocumentInfo block

ocrmypdf-10.3.1+dfsg/tests/resources/multipage.pdf

Replacement of "creationism" with "intelligent design"

120

100 -

E 80

3

8
U

60 -

+ "Creation" and "creationist"

B —O— "Intelligentdesign"

;
and "design proponent"

40 —

20 -

+ ..
0 g I | ' ' T 9
‘69 <29 93“ ‘6“ <2)“ ‘29 <59

,9 r9 \9 r\ \9 ’\ \

A\ (\K 9\ \\ (1,\ 6K GK
\0g ’60 . é ($\\ \6 6%

<50 «:0 0° 6‘ 6‘ *9 ¢°Q (3 e e 9 e

“00 {a ® 0&0 (39> 6’5 0&0
as” \og \0\0 Q0 <2’Z’ <29 Q’O

			Chapter II

			Huge Page

			Wikipedia image

			Indented image

ocrmypdf-10.3.1+dfsg/tests/resources/negzero.pdf

What follows is an image embedded as a Form XObject:

ocrmypdf-10.3.1+dfsg/tests/resources/no_contents.pdf

ocrmypdf-10.3.1+dfsg/tests/resources/overlay.pdf

Text
Text

Text

Payed 2017-Jan-22

ocrmypdf-10.3.1+dfsg/tests/resources/palette.pdf

ocrmypdf-10.3.1+dfsg/tests/resources/poster.pdf

ocrmypdf-10.3.1+dfsg/tests/resources/rotated_skew.pdf

ocrmypdf-10.3.1+dfsg/tests/resources/skew-encrypted.pdf

ocrmypdf-10.3.1+dfsg/tests/resources/skew.pdf

ocrmypdf-10.3.1+dfsg/tests/resources/toc.pdf

What follows is an image embedded as a Form XObject:

			Page 1

			Page 2

			This is also page 2

			Page 1 again

			The next bookmark is a space

			

			Now we start nesting

			Deeper

			Deeper still

ocrmypdf-10.3.1+dfsg/tests/resources/trivial.pdf

ocrmypdf-10.3.1+dfsg/tests/resources/truetype_font_nomapping.pdf

"7+%-

ocrmypdf-10.3.1+dfsg/tests/resources/type3_font_nomapping.pdf

��

ocrmypdf-10.3.1+dfsg/tests/resources/typewriter.png

ocrmypdf-10.3.1+dfsg/tests/resources/vector.pdf

ocrmypdf-10.3.1+dfsg/tests/spoof/gs.py

© 2019 James R. Barlow: github.com/jbarlow83
#
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
#
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

"""Find Ghostscript executable"""

import os
import shutil

def real_ghostscript(argv):
 if os.name != 'nt':
 gs = shutil.which('gs')
 gs_args = [gs] + argv[1:]
 os.execv(gs_args[0], gs_args)
 else:
 gs = shutil.which('gswin64c')
 if not gs:
 gs = shutil.which('gswin32c')
 os.execv(gs, argv[1:])

 return # Not reachable

ocrmypdf-10.3.1+dfsg/tests/test_acroform.py

© 2019 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import logging

import pytest

import ocrmypdf

check_ocrmypdf = pytest.helpers.check_ocrmypdf

@pytest.fixture
def acroform(resources):
 return resources / 'acroform.pdf'

def test_acroform_and_redo(acroform, caplog, no_outpdf):
 with pytest.raises(ocrmypdf.exceptions.InputFileError):
 check_ocrmypdf(acroform, no_outpdf, '--redo-ocr')
 assert '--redo-ocr is not currently possible' in caplog.text

def test_acroform_message(acroform, caplog, outpdf):
 caplog.set_level(logging.INFO)
 check_ocrmypdf(acroform, outpdf, '--plugin', 'tests/plugins/tesseract_noop.py')
 assert 'fillable form' in caplog.text
 assert '--force-ocr' in caplog.text

ocrmypdf-10.3.1+dfsg/tests/test_api.py

© 2019 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import logging
from io import BytesIO, StringIO

import pytest
from tqdm import tqdm

import ocrmypdf

def test_raw_console():
 bio = StringIO()
 tqconsole = ocrmypdf.api.TqdmConsole(file=bio)
 tqconsole.write("Test")
 tqconsole.flush()
 assert "Test" in bio.getvalue()

def test_tqdm_console():
 log = logging.getLogger()
 log.setLevel(logging.INFO)

 formatter = logging.Formatter('%(message)s')

 bio = StringIO()
 console = logging.StreamHandler(ocrmypdf.api.TqdmConsole(file=bio))
 console.setFormatter(formatter)

 log.addHandler(console)

 def before_pbar(message):
 # Ensure that log messages appear before the progress bar, even when
 # printed after the progress bar updates.
 v = bio.getvalue()
 pbar_start_marker = '|#'
 return v.index(message) < v.index(pbar_start_marker)

 with tqdm(total=2, file=bio, disable=False) as pbar:
 pbar.update()
 msg = "1/2 above progress bar"
 log.info(msg)
 assert before_pbar(msg)

 log.info("done")
 assert not before_pbar("done")

def test_language_list():
 with pytest.raises(
 (ocrmypdf.exceptions.InputFileError, ocrmypdf.exceptions.MissingDependencyError)
):
 ocrmypdf.ocr('doesnotexist.pdf', '_.pdf', language=['eng', 'deu'])

def test_stream_api(resources):
 in_ = (resources / 'graph.pdf').open('rb')
 out = BytesIO()

 ocrmypdf.ocr(in_, out, tesseract_timeout=0.0)
 out.seek(0)
 assert b'%PDF' in out.read(1024)

ocrmypdf-10.3.1+dfsg/tests/test_check_pdf.py

© 2018 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import pytest

from ocrmypdf.helpers import check_pdf

def test_pdf_error(resources):
 assert check_pdf(resources / 'blank.pdf')
 assert not check_pdf(__file__)

ocrmypdf-10.3.1+dfsg/tests/test_completion.py

© 2019 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

from subprocess import PIPE, run

import pytest

pytestmark = pytest.mark.skipif(
 pytest.helpers.running_in_docker(), # pylint: disable=no-member
 reason="docker can't complete",
)

def test_fish():
 try:
 proc = run(
 ['fish', '-n', 'misc/completion/ocrmypdf.fish'],
 check=True,
 encoding='utf-8',
 stdout=PIPE,
 stderr=PIPE,
)
 assert proc.stderr == '', proc.stderr
 except FileNotFoundError:
 pytest.xfail('fish is not installed')

def test_bash():
 try:
 proc = run(
 ['bash', '-n', 'misc/completion/ocrmypdf.bash'],
 check=True,
 encoding='utf-8',
 stdout=PIPE,
 stderr=PIPE,
)
 assert proc.stderr == '', proc.stderr
 except FileNotFoundError:
 pytest.xfail('bash is not installed')

ocrmypdf-10.3.1+dfsg/tests/test_ghostscript.py

© 2019 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import logging
from decimal import Decimal

import pikepdf
import pytest
from PIL import Image

from ocrmypdf._exec.ghostscript import rasterize_pdf
from ocrmypdf.exceptions import ExitCode
from ocrmypdf.helpers import Resolution

check_ocrmypdf = pytest.helpers.check_ocrmypdf # pylint: disable=no-member
run_ocrmypdf = pytest.helpers.run_ocrmypdf # pylint: disable=no-member
run_ocrmypdf_api = pytest.helpers.run_ocrmypdf_api # pylint: disable=no-member

pylint: disable=redefined-outer-name

@pytest.fixture
def francais(resources):
 path = resources / 'francais.pdf'
 return path, pikepdf.open(path)

def test_rasterize_size(francais, outdir):
 path, pdf = francais
 page_size_pts = (pdf.pages[0].MediaBox[2], pdf.pages[0].MediaBox[3])
 assert pdf.pages[0].MediaBox[0] == pdf.pages[0].MediaBox[1] == 0
 page_size = (page_size_pts[0] / Decimal(72), page_size_pts[1] / Decimal(72))
 target_size = Decimal('50.0'), Decimal('30.0')
 forced_dpi = Resolution(42.0, 4242.0)

 rasterize_pdf(
 path,
 outdir / 'out.png',
 raster_device='pngmono',
 raster_dpi=Resolution(
 target_size[0] / page_size[0], target_size[1] / page_size[1]
),
 page_dpi=forced_dpi,
)

 with Image.open(outdir / 'out.png') as im:
 assert im.size == target_size
 assert im.info['dpi'] == forced_dpi

def test_rasterize_rotated(francais, outdir, caplog):
 path, pdf = francais
 page_size_pts = (pdf.pages[0].MediaBox[2], pdf.pages[0].MediaBox[3])
 assert pdf.pages[0].MediaBox[0] == pdf.pages[0].MediaBox[1] == 0
 page_size = (page_size_pts[0] / Decimal(72), page_size_pts[1] / Decimal(72))
 target_size = Decimal('50.0'), Decimal('30.0')
 forced_dpi = Resolution(42.0, 4242.0)

 caplog.set_level(logging.DEBUG)
 rasterize_pdf(
 path,
 outdir / 'out.png',
 raster_device='pngmono',
 raster_dpi=Resolution(
 target_size[0] / page_size[0], target_size[1] / page_size[1]
),
 page_dpi=forced_dpi,
 rotation=90,
)

 with Image.open(outdir / 'out.png') as im:
 assert im.size == (target_size[1], target_size[0])
 assert im.info['dpi'] == (forced_dpi[1], forced_dpi[0])

def test_gs_render_failure(resources, outpdf):
 p, _out, err = run_ocrmypdf(
 resources / 'blank.pdf',
 outpdf,
 '--plugin',
 'tests/plugins/tesseract_noop.py',
 '--plugin',
 'tests/plugins/gs_render_failure.py',
)
 assert 'Casper is not a friendly ghost' in err
 assert p.returncode == ExitCode.child_process_error

def test_gs_raster_failure(resources, outpdf):
 p, _out, err = run_ocrmypdf(
 resources / 'francais.pdf',
 outpdf,
 '--plugin',
 'tests/plugins/tesseract_noop.py',
 '--plugin',
 'tests/plugins/gs_raster_failure.py',
)
 assert 'Ghost story archive not found' in err
 assert p.returncode == ExitCode.child_process_error

def test_ghostscript_pdfa_failure(resources, outpdf):
 p, _out, _err = run_ocrmypdf(
 resources / 'francais.pdf',
 outpdf,
 '--plugin',
 'tests/plugins/tesseract_noop.py',
 '--plugin',
 'tests/plugins/gs_pdfa_failure.py',
)
 assert (
 p.returncode == ExitCode.pdfa_conversion_failed
), "Unexpected return when PDF/A fails"

def test_ghostscript_feature_elision(resources, outpdf):
 check_ocrmypdf(
 resources / 'francais.pdf',
 outpdf,
 '--plugin',
 'tests/plugins/tesseract_noop.py',
 '--plugin',
 'tests/plugins/gs_feature_elision.py',
)

ocrmypdf-10.3.1+dfsg/tests/test_graft.py

© 2019 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

from unittest.mock import patch

import pikepdf
import pytest

import ocrmypdf

def test_no_glyphless_graft(resources, outdir):
 with pikepdf.open(resources / 'francais.pdf') as pdf, pikepdf.open(
 resources / 'aspect.pdf'
) as pdf_aspect, pikepdf.open(resources / 'cmyk.pdf') as pdf_cmyk:
 pdf.pages.extend(pdf_aspect.pages)
 pdf.pages.extend(pdf_cmyk.pages)
 pdf.save(outdir / 'test.pdf')

 with patch('ocrmypdf._graft.MAX_REPLACE_PAGES', 2):
 ocrmypdf.ocr(
 outdir / 'test.pdf',
 outdir / 'out.pdf',
 deskew=True,
 tesseract_timeout=0,
 force_ocr=True,
)
 # This test needs asserts

def test_links(resources, outpdf):
 ocrmypdf.ocr(
 resources / 'link.pdf', outpdf, redo_ocr=True, oversample=200, output_type='pdf'
)
 with pikepdf.open(outpdf) as pdf:
 p1 = pdf.pages[0]
 p2 = pdf.pages[1]
 assert p1.Annots[0].A.D[0].objgen == p2.objgen
 assert p2.Annots[0].A.D[0].objgen == p1.objgen

ocrmypdf-10.3.1+dfsg/tests/test_helpers.py

© 2019 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import logging
import multiprocessing
import os
from unittest.mock import MagicMock

import pytest

import ocrmypdf.helpers as helpers
from ocrmypdf.subprocess import shim_paths_with_program_files

class TestSafeSymlink:
 def test_safe_symlink_link_self(self, tmp_path, caplog):
 helpers.safe_symlink(tmp_path / 'self', tmp_path / 'self')
 assert caplog.record_tuples[0][1] == logging.WARNING

 def test_safe_symlink_overwrite(self, tmp_path):
 (tmp_path / 'regular_file').touch()
 with pytest.raises(FileExistsError):
 helpers.safe_symlink(tmp_path / 'input', tmp_path / 'regular_file')

 def test_safe_symlink_relink(self, tmp_path):
 (tmp_path / 'regular_file_a').touch()
 (tmp_path / 'regular_file_b').write_bytes(b'ABC')
 (tmp_path / 'link').symlink_to(tmp_path / 'regular_file_a')
 helpers.safe_symlink(tmp_path / 'regular_file_b', tmp_path / 'link')
 assert (tmp_path / 'link').samefile(tmp_path / 'regular_file_b') or (
 tmp_path / 'link'
).read_bytes() == b'ABC'

def test_no_cpu_count(monkeypatch):
 def cpu_count_raises():
 raise NotImplementedError()

 monkeypatch.setattr(multiprocessing, 'cpu_count', cpu_count_raises)
 with pytest.warns(expected_warning=UserWarning):
 assert helpers.available_cpu_count() == 1

def test_deprecated():
 @helpers.deprecated
 def old_function():
 return 42

 with pytest.deprecated_call():
 assert old_function() == 42

skipif_docker = pytest.mark.skipif(
 pytest.helpers.running_in_docker(), reason="fails on Docker"
)

class TestFileIsWritable:
 @pytest.fixture
 def non_existent(self, tmp_path):
 return tmp_path / 'nofile'

 @pytest.fixture
 def basic_file(self, tmp_path):
 basic = tmp_path / 'basic'
 basic.touch()
 return basic

 def test_plain(self, non_existent):
 assert helpers.is_file_writable(non_existent)

 def test_symlink_loop(self, tmp_path):
 loop = tmp_path / 'loop'
 loop.symlink_to(loop)
 assert not helpers.is_file_writable(loop)

 @skipif_docker
 def test_chmod(self, basic_file):
 assert helpers.is_file_writable(basic_file)
 basic_file.chmod(0o400)
 assert not helpers.is_file_writable(basic_file)
 basic_file.chmod(0o000)
 assert not helpers.is_file_writable(basic_file)

 def test_permission_error(self, basic_file):
 pathmock = MagicMock(spec_set=basic_file)
 pathmock.is_symlink.return_value = False
 pathmock.exists.return_value = True
 pathmock.is_file.side_effect = PermissionError
 assert not helpers.is_file_writable(pathmock)

def test_shim_paths(tmp_path):
 progfiles = tmp_path / 'Program Files'
 progfiles.mkdir()
 (progfiles / 'tesseract-ocr').mkdir()
 (progfiles / 'gs' / '9.51' / 'bin').mkdir(parents=True)
 (progfiles / 'gs' / '9.52' / 'bin').mkdir(parents=True)
 syspath = tmp_path / 'bin'
 env = {'PROGRAMFILES': str(progfiles), 'PATH': str(syspath)}

 result_str = shim_paths_with_program_files(env=env)
 results = result_str.split(os.pathsep)
 assert results[0].endswith('tesseract-ocr')
 assert results[1].endswith(os.path.join('gs', '9.52', 'bin'))
 assert results[2].endswith(os.path.join('gs', '9.51', 'bin'))
 assert results[3] == str(syspath)

ocrmypdf-10.3.1+dfsg/tests/test_hocrtransform.py

© 2015 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import re
from io import StringIO

import pytest
from pdfminer.converter import TextConverter
from pdfminer.layout import LAParams
from pdfminer.pdfdocument import PDFDocument
from pdfminer.pdfinterp import PDFPageInterpreter, PDFResourceManager
from pdfminer.pdfpage import PDFPage
from pdfminer.pdfparser import PDFParser
from PIL import Image

from ocrmypdf import hocrtransform
from ocrmypdf._exec.tesseract import HOCR_TEMPLATE
from ocrmypdf.helpers import check_pdf

def text_from_pdf(filename):
 output_string = StringIO()
 with open(filename, 'rb') as in_file:
 parser = PDFParser(in_file)
 doc = PDFDocument(parser)
 rsrcmgr = PDFResourceManager()
 device = TextConverter(rsrcmgr, output_string, laparams=LAParams())
 interpreter = PDFPageInterpreter(rsrcmgr, device)
 for page in PDFPage.create_pages(doc):
 interpreter.process_page(page)
 return output_string.getvalue()

pylint: disable=redefined-outer-name

check_ocrmypdf = pytest.helpers.check_ocrmypdf # pylint: disable=no-member

@pytest.fixture
def blank_hocr(tmp_path):
 filename = tmp_path / "blank.hocr"
 filename.write_text(HOCR_TEMPLATE)
 return filename

def test_mono_image(blank_hocr, outdir):
 im = Image.new('1', (8, 8), 0)
 for n in range(8):
 im.putpixel((n, n), 1)
 im.save(outdir / 'mono.tif', format='TIFF')

 hocr = hocrtransform.HocrTransform(str(blank_hocr), 300)
 hocr.to_pdf(str(outdir / 'mono.pdf'), image_filename=str(outdir / 'mono.tif'))

 check_pdf(str(outdir / 'mono.pdf'))

@pytest.mark.slow
def test_hocrtransform_matches_sandwich(resources, outdir):
 check_ocrmypdf(resources / 'ccitt.pdf', outdir / 'hocr.pdf', '--pdf-renderer=hocr')
 check_ocrmypdf(
 resources / 'ccitt.pdf', outdir / 'tess.pdf', '--pdf-renderer=sandwich'
)

 def clean(s):
 s = re.sub(r'[]+', ' ', s)
 s = re.sub(r'[]?[\n]+', r'\n', s)
 return s

 hocr_txt = clean(text_from_pdf(outdir / 'hocr.pdf'))
 tess_txt = clean(text_from_pdf(outdir / 'tess.pdf'))

 # Path('hocr.txt').write_text(hocr_txt)
 # Path('tess.txt').write_text(tess_txt)

 assert hocr_txt == tess_txt

ocrmypdf-10.3.1+dfsg/tests/test_image_input.py

© 2019 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

from unittest.mock import patch

import img2pdf
import pikepdf
import pytest
from PIL import Image

import ocrmypdf

check_ocrmypdf = pytest.helpers.check_ocrmypdf
run_ocrmypdf_api = pytest.helpers.run_ocrmypdf_api

@pytest.fixture
def baiona(resources):
 return Image.open(resources / 'baiona_gray.png')

def test_image_to_pdf(resources, outpdf):
 check_ocrmypdf(
 resources / 'crom.png',
 outpdf,
 '--image-dpi',
 '200',
 '--plugin',
 'tests/plugins/tesseract_noop.py',
)

def test_no_dpi_info(caplog, baiona, outdir, no_outpdf):
 im = baiona
 assert 'dpi' not in im.info
 input_image = outdir / 'baiona_no_dpi.png'
 im.save(input_image)

 rc = run_ocrmypdf_api(input_image, no_outpdf)
 assert rc == ocrmypdf.ExitCode.input_file
 assert "--image-dpi" in caplog.text

def test_dpi_not_credible(caplog, baiona, outdir, no_outpdf):
 im = baiona
 assert 'dpi' not in im.info
 input_image = outdir / 'baiona_no_dpi.png'
 im.save(input_image, dpi=(30, 30))

 rc = run_ocrmypdf_api(input_image, no_outpdf)
 assert rc == ocrmypdf.ExitCode.input_file
 assert "not credible" in caplog.text

def test_cmyk_no_icc(caplog, resources, no_outpdf):
 rc = run_ocrmypdf_api(resources / 'baiona_cmyk.jpg', no_outpdf)
 assert rc == ocrmypdf.ExitCode.input_file
 assert "no ICC profile" in caplog.text

def test_img2pdf_fails(resources, no_outpdf):
 with patch(
 'ocrmypdf._pipeline.img2pdf.convert', side_effect=img2pdf.ImageOpenError()
):
 rc = run_ocrmypdf_api(
 resources / 'baiona_gray.png', no_outpdf, '--image-dpi', '200'
)
 assert rc == ocrmypdf.ExitCode.input_file

def test_jpeg_in_jpeg_out(resources, outpdf):
 check_ocrmypdf(
 resources / 'congress.jpg',
 outpdf,
 '--image-dpi',
 '100',
 '--output-type',
 'pdf', # specifically check pdf because Ghostscript may convert to JPEG
 '--remove-background',
 '--plugin',
 'tests/plugins/tesseract_noop.py',
)
 with pikepdf.open(outpdf) as pdf:
 assert next(pdf.pages[0].images.values()).Filter == pikepdf.Name.DCTDecode

ocrmypdf-10.3.1+dfsg/tests/test_lept.py

© 2018 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

from os import fspath
from pickle import dumps, loads

import pytest
from PIL import Image, ImageChops

from ocrmypdf import leptonica as lp

def test_colormap_backgroundnorm(resources):
 # Issue #262 - unclear how to reproduce exactly, so just ensure leptonica
 # can handle that case
 pix = lp.Pix.open(resources / 'baiona_colormapped.png')
 pix.background_norm()

@pytest.fixture
def crom_pix(resources):
 pix = lp.Pix.open(resources / 'crom.png')
 im = Image.open(resources / 'crom.png')
 yield pix, im
 im.close()

def test_pix_basic(crom_pix):
 pix, im = crom_pix

 assert pix.width == im.width
 assert pix.height == im.height
 assert pix.mode == im.mode

def test_pil_conversion(crom_pix):
 pix, im = crom_pix

 # Check for pixel perfect
 assert ImageChops.difference(pix.topil(), im).getbbox() is None

def test_pix_otsu(crom_pix):
 pix, _ = crom_pix
 im1bpp = pix.otsu_adaptive_threshold()
 assert im1bpp.mode == '1'

@pytest.mark.skipif(
 lp.get_leptonica_version() < 'leptonica-1.76',
 reason="needs new leptonica for API change",
)
def test_crop(resources):
 pix = lp.Pix.open(resources / 'linn.png')
 foreground = pix.crop_to_foreground()
 assert foreground.width < pix.width

def test_clean_bg(resources):
 pix = lp.Pix.open(resources / 'congress.jpg')
 imbg = pix.clean_background_to_white()

def test_pickle(crom_pix):
 pix, _ = crom_pix
 pickled = dumps(pix)
 pix2 = loads(pickled)
 assert pix.mode == pix2.mode

def test_leptonica_compile(tmp_path):
 from ocrmypdf.lib.compile_leptonica import ffibuilder

 # Compile the library but build it somewhere that won't interfere with
 # existing compiled library. Also compile in API mode so that we test
 # the interfaces, even though we use it ABI mode.
 ffibuilder.compile(tmpdir=fspath(tmp_path), target=fspath(tmp_path / 'lepttest.*'))

def test_file_not_found():
 with pytest.raises(FileNotFoundError):
 lp.Pix.open("does_not_exist1")

@pytest.mark.skipif(
 lp.get_leptonica_version() < 'leptonica-1.79.0',
 reason="test not reliable on all platforms for old leptonica",
)
def test_error_trap():
 with pytest.raises(lp.LeptonicaError, match=r"Error in pixReadMem"):
 with lp._LeptonicaErrorTrap():
 lp.Pix(lp.lept.pixReadMem(lp.ffi.NULL, 0))

ocrmypdf-10.3.1+dfsg/tests/test_main.py

© 2015-19 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import os
import shutil
from math import isclose
from pathlib import Path
from subprocess import PIPE, run
from unittest.mock import patch

import pikepdf
import PIL
import pytest
from PIL import Image

import ocrmypdf
from ocrmypdf._exec import ghostscript, tesseract
from ocrmypdf.exceptions import ExitCode, MissingDependencyError
from ocrmypdf.pdfa import file_claims_pdfa
from ocrmypdf.pdfinfo import Colorspace, Encoding, PdfInfo
from ocrmypdf.subprocess import get_version

pytest.helpers is dynamic
pylint: disable=no-member,redefined-outer-name

check_ocrmypdf = pytest.helpers.check_ocrmypdf
run_ocrmypdf = pytest.helpers.run_ocrmypdf
run_ocrmypdf_api = pytest.helpers.run_ocrmypdf_api

RENDERERS = ['hocr', 'sandwich']

def test_quick(resources, outpdf):
 check_ocrmypdf(
 resources / 'ccitt.pdf', outpdf, '--plugin', 'tests/plugins/tesseract_cache.py'
)

@pytest.mark.parametrize('renderer', RENDERERS)
def test_oversample(renderer, resources, outpdf):
 oversampled_pdf = check_ocrmypdf(
 resources / 'skew.pdf',
 outpdf,
 '--oversample',
 '350',
 '-f',
 '--pdf-renderer',
 renderer,
 '--plugin',
 'tests/plugins/tesseract_cache.py',
)

 pdfinfo = PdfInfo(oversampled_pdf)

 print(pdfinfo[0].dpi.x)
 assert abs(pdfinfo[0].dpi.x - 350) < 1

def test_repeat_ocr(resources, no_outpdf):
 result = run_ocrmypdf_api(resources / 'graph_ocred.pdf', no_outpdf)
 assert result == ExitCode.already_done_ocr

def test_force_ocr(resources, outpdf):
 out = check_ocrmypdf(
 resources / 'graph_ocred.pdf',
 outpdf,
 '-f',
 '--plugin',
 'tests/plugins/tesseract_cache.py',
)
 pdfinfo = PdfInfo(out)
 assert pdfinfo[0].has_text

def test_skip_ocr(resources, outpdf):
 out = check_ocrmypdf(
 resources / 'graph_ocred.pdf',
 outpdf,
 '-s',
 '--plugin',
 'tests/plugins/tesseract_cache.py',
)
 pdfinfo = PdfInfo(out)
 assert pdfinfo[0].has_text

def test_redo_ocr(resources, outpdf):
 in_ = resources / 'graph_ocred.pdf'
 before = PdfInfo(in_)
 out = outpdf
 out = check_ocrmypdf(in_, out, '--redo-ocr')
 after = PdfInfo(out)
 assert before[0].has_text and after[0].has_text
 assert (
 before[0].get_textareas() != after[0].get_textareas()
), "Expected text to be different after re-OCR"

def test_argsfile(resources, outdir):
 path_argsfile = outdir / 'test_argsfile.txt'
 with open(str(path_argsfile), 'w') as argsfile:
 print(
 '--title',
 'ArgsFile Test',
 '--author',
 'Test Cases',
 '--plugin',
 'tests/plugins/tesseract_noop.py',
 sep='\n',
 end='\n',
 file=argsfile,
)
 check_ocrmypdf(
 resources / 'graph.pdf', path_argsfile, '@' + str(outdir / 'test_argsfile.txt')
)

@pytest.mark.parametrize('renderer', RENDERERS)
def test_ocr_timeout(renderer, resources, outpdf):
 out = check_ocrmypdf(
 resources / 'skew.pdf',
 outpdf,
 '--tesseract-timeout',
 '0',
 '--pdf-renderer',
 renderer,
)
 pdfinfo = PdfInfo(out)
 assert not pdfinfo[0].has_text

def test_skip_big(resources, outpdf):
 out = check_ocrmypdf(
 resources / 'jbig2.pdf',
 outpdf,
 '--skip-big',
 '1',
 '--plugin',
 'tests/plugins/tesseract_cache.py',
)
 pdfinfo = PdfInfo(out)
 assert not pdfinfo[0].has_text

@pytest.mark.parametrize('renderer', RENDERERS)
@pytest.mark.parametrize('output_type', ['pdf', 'pdfa'])
def test_maximum_options(renderer, output_type, resources, outpdf):
 check_ocrmypdf(
 resources / 'multipage.pdf',
 outpdf,
 '-d',
 '-ci' if pytest.helpers.have_unpaper() else None,
 '-f',
 '-k',
 '--oversample',
 '300',
 '--remove-background',
 '--skip-big',
 '10',
 '--title',
 'Too Many Weird Files',
 '--author',
 'py.test',
 '--pdf-renderer',
 renderer,
 '--output-type',
 output_type,
 '--plugin',
 'tests/plugins/tesseract_cache.py',
)

def test_tesseract_missing_tessdata(monkeypatch, resources, no_outpdf, tmpdir):
 monkeypatch.setenv("TESSDATA_PREFIX", os.fspath(tmpdir))
 with pytest.raises(MissingDependencyError):
 run_ocrmypdf_api(resources / 'graph.pdf', no_outpdf, '-v', '1', '--skip-text')

def test_invalid_input_pdf(resources, no_outpdf):
 result = run_ocrmypdf_api(resources / 'invalid.pdf', no_outpdf)
 assert result == ExitCode.input_file

def test_blank_input_pdf(resources, outpdf):
 result = run_ocrmypdf_api(resources / 'blank.pdf', outpdf)
 assert result == ExitCode.ok

def test_force_ocr_on_pdf_with_no_images(resources, no_outpdf):
 # As a correctness test, make sure that --force-ocr on a PDF with no
 # content still triggers tesseract. If tesseract crashes, then it was
 # called.
 p, _, _ = run_ocrmypdf(
 resources / 'blank.pdf',
 no_outpdf,
 '--force-ocr',
 '--plugin',
 'tests/plugins/tesseract_crash.py',
)
 assert p.returncode == ExitCode.child_process_error
 assert not no_outpdf.exists()

@pytest.mark.skipif(
 pytest.helpers.is_macos() and pytest.helpers.running_in_travis(),
 reason="takes too long to install language packs in Travis macOS homebrew",
)
def test_german(resources, outdir):
 # Produce a sidecar too - implicit test that system locale is set up
 # properly. It is fine that we are testing -l deu on a French file because
 # we are exercising the functionality not going for accuracy.
 sidecar = outdir / 'francais.txt'
 try:
 check_ocrmypdf(
 resources / 'francais.pdf',
 outdir / 'francais.pdf',
 '-l',
 'deu', # more commonly installed
 '--sidecar',
 sidecar,
 '--plugin',
 'tests/plugins/tesseract_cache.py',
)
 except MissingDependencyError:
 if 'deu' not in tesseract.get_languages():
 pytest.xfail(reason="tesseract-deu language pack not installed")
 raise

def test_klingon(resources, outpdf):
 p, _, _ = run_ocrmypdf(resources / 'francais.pdf', outpdf, '-l', 'klz')
 assert p.returncode == ExitCode.missing_dependency

def test_missing_docinfo(resources, outpdf):
 result = run_ocrmypdf_api(
 resources / 'missing_docinfo.pdf',
 outpdf,
 '-l',
 'eng',
 '--skip-text',
 '--plugin',
 Path('tests/plugins/tesseract_noop.py'),
)
 assert result == ExitCode.ok

def test_uppercase_extension(resources, outdir):
 shutil.copy(str(resources / "skew.pdf"), str(outdir / "UPPERCASE.PDF"))

 check_ocrmypdf(
 outdir / "UPPERCASE.PDF",
 outdir / "UPPERCASE_OUT.PDF",
 '--plugin',
 'tests/plugins/tesseract_noop.py',
)

def test_input_file_not_found(caplog, no_outpdf):
 input_file = "does not exist.pdf"
 result = run_ocrmypdf_api(input_file, no_outpdf)
 assert result == ExitCode.input_file
 assert input_file in caplog.text

@pytest.mark.skipif(
 os.name == 'nt' or pytest.helpers.running_in_docker(), reason="chmod"
)
def test_input_file_not_readable(caplog, resources, outdir, no_outpdf):
 input_file = outdir / 'trivial.pdf'
 shutil.copy(resources / 'trivial.pdf', input_file)
 input_file.chmod(0o000)
 result = run_ocrmypdf_api(input_file, no_outpdf)
 assert result == ExitCode.input_file
 assert str(input_file) in caplog.text

def test_input_file_not_a_pdf(caplog, no_outpdf):
 input_file = __file__ # Try to OCR this file
 result = run_ocrmypdf_api(input_file, no_outpdf)
 assert result == ExitCode.input_file
 if os.name != 'nt': # name will be mangled with \\'s on nt
 assert input_file in caplog.text

def test_encrypted(resources, caplog, no_outpdf):
 result = run_ocrmypdf_api(resources / 'skew-encrypted.pdf', no_outpdf)
 assert result == ExitCode.encrypted_pdf
 assert 'encryption must be removed' in caplog.text

@pytest.mark.parametrize('renderer', RENDERERS)
def test_pagesegmode(renderer, resources, outpdf):
 check_ocrmypdf(
 resources / 'skew.pdf',
 outpdf,
 '--tesseract-pagesegmode',
 '7',
 '-v',
 '1',
 '--pdf-renderer',
 renderer,
 '--plugin',
 'tests/plugins/tesseract_cache.py',
)

@pytest.mark.parametrize('renderer', RENDERERS)
def test_tesseract_crash(renderer, resources, no_outpdf):
 p, _, err = run_ocrmypdf(
 resources / 'ccitt.pdf',
 no_outpdf,
 '-v',
 '1',
 '--pdf-renderer',
 renderer,
 '--plugin',
 'tests/plugins/tesseract_crash.py',
)
 assert p.returncode == ExitCode.child_process_error
 assert not no_outpdf.exists()
 assert "SubprocessOutputError" in err

def test_tesseract_crash_autorotate(resources, no_outpdf):
 p, out, err = run_ocrmypdf(
 resources / 'ccitt.pdf',
 no_outpdf,
 '-r',
 '--plugin',
 'tests/plugins/tesseract_crash.py',
)
 assert p.returncode == ExitCode.child_process_error
 assert not no_outpdf.exists()
 assert "uncaught exception" in err
 print(out)
 print(err)

@pytest.mark.parametrize('renderer', RENDERERS)
@pytest.mark.slow
def test_tesseract_image_too_big(renderer, resources, outpdf):
 check_ocrmypdf(
 resources / 'hugemono.pdf',
 outpdf,
 '-r',
 '--pdf-renderer',
 renderer,
 '--max-image-mpixels',
 '0',
 '--plugin',
 'tests/plugins/tesseract_big_image_error.py',
)

def test_algo4(resources, outpdf):
 p, _, _ = run_ocrmypdf(
 resources / 'encrypted_algo4.pdf',
 outpdf,
 '--plugin',
 'tests/plugins/tesseract_noop.py',
)
 assert p.returncode == ExitCode.encrypted_pdf

def test_jbig2_passthrough(resources, outpdf):
 out = check_ocrmypdf(
 resources / 'jbig2.pdf',
 outpdf,
 '--output-type',
 'pdf',
 '--pdf-renderer',
 'hocr',
 '--plugin',
 'tests/plugins/tesseract_cache.py',
)
 out_pageinfo = PdfInfo(out)
 assert out_pageinfo[0].images[0].enc == Encoding.jbig2

def test_masks(resources, outpdf):
 assert (
 ocrmypdf.ocr(
 resources / 'masks.pdf', outpdf, plugins=['tests/plugins/tesseract_noop.py']
)
 == ExitCode.ok
)

def test_linearized_pdf_and_indirect_object(resources, outpdf):
 check_ocrmypdf(
 resources / 'epson.pdf', outpdf, '--plugin', 'tests/plugins/tesseract_noop.py'
)

def test_very_high_dpi(resources, outpdf):
 "Checks for a Decimal quantize error with high DPI, etc"
 check_ocrmypdf(
 resources / '2400dpi.pdf',
 outpdf,
 '--plugin',
 'tests/plugins/tesseract_cache.py',
)
 pdfinfo = PdfInfo(outpdf)

 image = pdfinfo[0].images[0]
 assert isclose(image.dpi.x, image.dpi.y)
 assert isclose(image.dpi.x, 2400)

def test_overlay(resources, outpdf):
 check_ocrmypdf(
 resources / 'overlay.pdf',
 outpdf,
 '--skip-text',
 '--plugin',
 'tests/plugins/tesseract_noop.py',
)

def test_destination_not_writable(resources, outdir):
 if os.name != 'nt' and (os.getuid() == 0 or os.geteuid() == 0):
 pytest.xfail(reason="root can write to anything")
 protected_file = outdir / 'protected.pdf'
 protected_file.touch()
 protected_file.chmod(0o400) # Read-only
 p, _out, _err = run_ocrmypdf(
 resources / 'jbig2.pdf',
 protected_file,
 '--plugin',
 'tests/plugins/tesseract_noop.py',
)
 assert p.returncode == ExitCode.file_access_error, "Expected error"

def test_tesseract_config_valid(resources, outdir):
 cfg_file = outdir / 'test.cfg'
 with cfg_file.open('w') as f:
 f.write(
 '''\
load_system_dawg 0
language_model_penalty_non_dict_word 0
language_model_penalty_non_freq_dict_word 0
'''
)

 check_ocrmypdf(
 resources / '3small.pdf',
 outdir / 'out.pdf',
 '--tesseract-config',
 cfg_file,
 '--pages',
 '1',
)

@pytest.mark.slow # This test sometimes times out in CI
@pytest.mark.parametrize('renderer', RENDERERS)
def test_tesseract_config_invalid(renderer, resources, outdir):
 cfg_file = outdir / 'test.cfg'
 with cfg_file.open('w') as f:
 f.write(
 '''\
THIS FILE IS INVALID
'''
)

 p, _out, err = run_ocrmypdf(
 resources / 'ccitt.pdf',
 outdir / 'out.pdf',
 '--pdf-renderer',
 renderer,
 '--tesseract-config',
 cfg_file,
)
 assert (
 "parameter not found" in err.lower()
 or "error occurred while parsing" in err.lower()
), "No error message"
 assert p.returncode == ExitCode.invalid_config

@pytest.mark.skipif(not tesseract.has_user_words(), reason='not functional until 4.1.0')
def test_user_words_ocr(resources, outdir):
 # Does not actually test if --user-words causes output to differ
 word_list = outdir / 'wordlist.txt'
 sidecar_after = outdir / 'sidecar.txt'

 with word_list.open('w') as f:
 f.write('cromulent\n') # a perfectly cromulent word

 check_ocrmypdf(
 resources / 'crom.png',
 outdir / 'out.pdf',
 '--image-dpi',
 150,
 '--sidecar',
 sidecar_after,
 '--user-words',
 word_list,
)

def test_form_xobject(resources, outpdf):
 check_ocrmypdf(
 resources / 'formxobject.pdf',
 outpdf,
 '--force-ocr',
 '--plugin',
 'tests/plugins/tesseract_noop.py',
)

@pytest.mark.parametrize('renderer', RENDERERS)
def test_pagesize_consistency(renderer, resources, outpdf):

 first_page_dimensions = pytest.helpers.first_page_dimensions

 infile = resources / '3small.pdf'

 before_dims = first_page_dimensions(infile)

 check_ocrmypdf(
 infile,
 outpdf,
 '--pdf-renderer',
 renderer,
 '--clean' if pytest.helpers.have_unpaper() else None,
 '--deskew',
 '--remove-background',
 '--clean-final' if pytest.helpers.have_unpaper() else None,
 '--pages',
 '1',
)

 after_dims = first_page_dimensions(outpdf)

 assert isclose(before_dims[0], after_dims[0], rel_tol=1e-4)
 assert isclose(before_dims[1], after_dims[1], rel_tol=1e-4)

def test_skip_big_with_no_images(resources, outpdf):
 check_ocrmypdf(
 resources / 'blank.pdf',
 outpdf,
 '--skip-big',
 '5',
 '--force-ocr',
 '--plugin',
 'tests/plugins/tesseract_noop.py',
)

@pytest.mark.skipif(
 '8.0.0' <= pikepdf.__libqpdf_version__ <= '8.0.1',
 reason="libqpdf regression on pages with no contents",
)
def test_no_contents(resources, outpdf):
 check_ocrmypdf(
 resources / 'no_contents.pdf',
 outpdf,
 '--force-ocr',
 '--plugin',
 'tests/plugins/tesseract_noop.py',
)

@pytest.mark.parametrize(
 'image', ['baiona.png', 'baiona_gray.png', 'baiona_alpha.png', 'congress.jpg']
)
def test_compression_preserved(ocrmypdf_exec, resources, image, outpdf):
 input_file = str(resources / image)
 output_file = str(outpdf)

 im = Image.open(input_file)
 # Runs: ocrmypdf - output.pdf < testfile
 with open(input_file, 'rb') as input_stream:
 p_args = ocrmypdf_exec + [
 '--optimize',
 '0',
 '--image-dpi',
 '150',
 '--output-type',
 'pdf',
 '--plugin',
 'tests/plugins/tesseract_noop.py',
 '-',
 output_file,
]
 p = run(
 p_args,
 stdout=PIPE,
 stderr=PIPE,
 stdin=input_stream,
 universal_newlines=True,
 check=False,
)

 if im.mode in ('RGBA', 'LA'):
 # If alpha image is input, expect an error
 assert p.returncode != ExitCode.ok and 'alpha' in p.stderr
 return

 assert p.returncode == ExitCode.ok, p.stderr

 pdfinfo = PdfInfo(output_file)

 pdfimage = pdfinfo[0].images[0]

 if input_file.endswith('.png'):
 assert pdfimage.enc != Encoding.jpeg, "Lossless compression changed to lossy!"
 elif input_file.endswith('.jpg'):
 assert pdfimage.enc == Encoding.jpeg, "Lossy compression changed to lossless!"
 if im.mode.startswith('RGB') or im.mode.startswith('BGR'):
 assert pdfimage.color == Colorspace.rgb, "Colorspace changed"
 elif im.mode.startswith('L'):
 assert pdfimage.color == Colorspace.gray, "Colorspace changed"
 im.close()

@pytest.mark.parametrize(
 'image,compression',
 [
 ('baiona.png', 'jpeg'),
 ('baiona_gray.png', 'lossless'),
 ('congress.jpg', 'lossless'),
],
)
def test_compression_changed(ocrmypdf_exec, resources, image, compression, outpdf):
 input_file = str(resources / image)
 output_file = str(outpdf)

 im = Image.open(input_file)

 # Runs: ocrmypdf - output.pdf < testfile
 with open(input_file, 'rb') as input_stream:
 p_args = ocrmypdf_exec + [
 '--image-dpi',
 '150',
 '--output-type',
 'pdfa',
 '--optimize',
 '0',
 '--pdfa-image-compression',
 compression,
 '--plugin',
 'tests/plugins/tesseract_noop.py',
 '-',
 output_file,
]
 p = run(
 p_args,
 stdout=PIPE,
 stderr=PIPE,
 stdin=input_stream,
 universal_newlines=True,
 check=False,
)
 assert p.returncode == ExitCode.ok, p.stderr

 pdfinfo = PdfInfo(output_file)

 pdfimage = pdfinfo[0].images[0]

 if compression == "jpeg":
 assert pdfimage.enc == Encoding.jpeg
 else:
 if ghostscript.jpeg_passthrough_available():
 # Ghostscript 9.23 adds JPEG passthrough, which allows a JPEG to be
 # copied without transcoding - so report
 if image.endswith('jpg'):
 assert pdfimage.enc == Encoding.jpeg
 else:
 assert pdfimage.enc not in (Encoding.jpeg, Encoding.jpeg2000)

 if im.mode.startswith('RGB') or im.mode.startswith('BGR'):
 assert pdfimage.color == Colorspace.rgb, "Colorspace changed"
 elif im.mode.startswith('L'):
 assert pdfimage.color == Colorspace.gray, "Colorspace changed"
 im.close()

def test_sidecar_pagecount(resources, outpdf):
 sidecar = outpdf.with_suffix('.txt')
 check_ocrmypdf(
 resources / '3small.pdf',
 outpdf,
 '--skip-text',
 '--sidecar',
 sidecar,
 '--plugin',
 'tests/plugins/tesseract_cache.py',
)

 pdfinfo = PdfInfo(resources / '3small.pdf')
 num_pages = len(pdfinfo)

 with open(sidecar, 'r', encoding='utf-8') as f:
 ocr_text = f.read()

 # There should a formfeed between each pair of pages, so the count of
 # formfeeds is the page count less one
 assert (
 ocr_text.count('\f') == num_pages - 1
), "Sidecar page count does not match PDF page count"

def test_sidecar_nonempty(resources, outpdf):
 sidecar = outpdf.with_suffix('.txt')
 check_ocrmypdf(
 resources / 'ccitt.pdf',
 outpdf,
 '--sidecar',
 sidecar,
 '--plugin',
 'tests/plugins/tesseract_cache.py',
)

 with open(sidecar, 'r', encoding='utf-8') as f:
 ocr_text = f.read()
 assert 'the' in ocr_text

@pytest.mark.parametrize('pdfa_level', ['1', '2', '3'])
def test_pdfa_n(pdfa_level, resources, outpdf):
 if pdfa_level == '3' and ghostscript.version() < '9.19':
 pytest.xfail(reason='Ghostscript >= 9.19 required')

 check_ocrmypdf(
 resources / 'ccitt.pdf',
 outpdf,
 '--output-type',
 'pdfa-' + pdfa_level,
 '--plugin',
 'tests/plugins/tesseract_cache.py',
)

 pdfa_info = file_claims_pdfa(outpdf)
 assert pdfa_info['conformance'] == f'PDF/A-{pdfa_level}B'

@pytest.mark.skipif(
 PIL.__version__ < '5.0.0', reason="Pillow < 5.0.0 doesn't raise the exception"
)
@pytest.mark.slow
def test_decompression_bomb(resources, outpdf):
 p, _out, err = run_ocrmypdf(resources / 'hugemono.pdf', outpdf)
 assert 'decompression bomb' in err

 p, _out, err = run_ocrmypdf(
 resources / 'hugemono.pdf', outpdf, '--max-image-mpixels', '2000'
)
 assert p.returncode == 0

def test_text_curves(resources, outpdf):
 with patch('ocrmypdf._pipeline.VECTOR_PAGE_DPI', 100):
 check_ocrmypdf(
 resources / 'vector.pdf',
 outpdf,
 '--plugin',
 'tests/plugins/tesseract_noop.py',
)

 info = PdfInfo(outpdf)
 assert len(info.pages[0].images) == 0, "added images to the vector PDF"

 check_ocrmypdf(
 resources / 'vector.pdf',
 outpdf,
 '--force-ocr',
 '--plugin',
 'tests/plugins/tesseract_noop.py',
)

 info = PdfInfo(outpdf)
 assert len(info.pages[0].images) != 0, "force did not rasterize"

def test_output_is_dir(resources, outdir):
 p, _out, err = run_ocrmypdf(
 resources / 'trivial.pdf',
 outdir,
 '--force-ocr',
 '--plugin',
 'tests/plugins/tesseract_noop.py',
)
 assert p.returncode == ExitCode.file_access_error
 assert 'is not a writable file' in err

@pytest.mark.skipif(os.name == 'nt', reason="symlink needs admin permissions")
def test_output_is_symlink(resources, outdir):
 sym = Path(outdir / 'this_is_a_symlink')
 sym.symlink_to(outdir / 'out.pdf')
 p, _out, err = run_ocrmypdf(
 resources / 'trivial.pdf',
 sym,
 '--force-ocr',
 '--plugin',
 'tests/plugins/tesseract_noop.py',
)
 assert p.returncode == ExitCode.ok, err
 assert (outdir / 'out.pdf').stat().st_size > 0, 'target file not created'

def test_livecycle(resources, no_outpdf):
 p, _, err = run_ocrmypdf(resources / 'livecycle.pdf', no_outpdf)

 assert p.returncode == ExitCode.input_file, err

def test_version_check():
 with pytest.raises(MissingDependencyError):
 get_version('NOT_FOUND_UNLIKELY_ON_PATH')

 with pytest.raises(MissingDependencyError):
 get_version('sh', version_arg='-c')

 with pytest.raises(MissingDependencyError):
 get_version('echo')

@pytest.mark.parametrize(
 'threshold, optimize, output_type, expected',
 [
 [1.0, 0, 'pdfa', False],
 [1.0, 0, 'pdf', False],
 [0.0, 0, 'pdfa', True],
 [0.0, 0, 'pdf', True],
 [1.0, 1, 'pdfa', False],
 [1.0, 1, 'pdf', False],
 [0.0, 1, 'pdfa', True],
 [0.0, 1, 'pdf', True],
],
)
def test_fast_web_view(resources, outpdf, threshold, optimize, output_type, expected):
 check_ocrmypdf(
 resources / 'trivial.pdf',
 outpdf,
 '--fast-web-view',
 threshold,
 '--optimize',
 optimize,
 '--output-type',
 output_type,
 '--plugin',
 'tests/plugins/tesseract_noop.py',
)
 with pikepdf.open(outpdf) as pdf:
 assert pdf.is_linearized == expected

def test_image_dpi_not_image(caplog, resources, outpdf):
 check_ocrmypdf(
 resources / 'trivial.pdf',
 outpdf,
 '--image-dpi',
 '100',
 '--plugin',
 'tests/plugins/tesseract_noop.py',
)
 assert '--image-dpi is being ignored' in caplog.text

ocrmypdf-10.3.1+dfsg/tests/test_metadata.py

© 2018 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import datetime
import mmap
from datetime import timezone
from os import fspath
from shutil import copyfile
from unittest.mock import patch

import pikepdf
import pytest
from pikepdf.models.metadata import decode_pdf_date

from ocrmypdf._jobcontext import PdfContext
from ocrmypdf._pipeline import convert_to_pdfa, metadata_fixup
from ocrmypdf._plugin_manager import get_plugin_manager
from ocrmypdf.cli import get_parser
from ocrmypdf.exceptions import ExitCode
from ocrmypdf.pdfa import SRGB_ICC_PROFILE, file_claims_pdfa, generate_pdfa_ps
from ocrmypdf.pdfinfo import PdfInfo

try:
 import fitz
except ImportError:
 fitz = None

pytest.helpers is dynamic
pylint: disable=no-member

pytestmark = pytest.mark.filterwarnings('ignore:.*XMLParser.*:DeprecationWarning')

check_ocrmypdf = pytest.helpers.check_ocrmypdf
run_ocrmypdf = pytest.helpers.run_ocrmypdf

@pytest.mark.parametrize("output_type", ['pdfa', 'pdf'])
def test_preserve_docinfo(output_type, resources, outpdf):
 pdf_before = pikepdf.open(resources / 'graph.pdf')

 output = check_ocrmypdf(
 resources / 'graph.pdf',
 outpdf,
 '--output-type',
 output_type,
 '--plugin',
 'tests/plugins/tesseract_noop.py',
)

 pdf_after = pikepdf.open(output)

 for key in ('/Title', '/Author'):
 assert pdf_before.docinfo[key] == pdf_after.docinfo[key]

 pdfa_info = file_claims_pdfa(str(output))
 assert pdfa_info['output'] == output_type

@pytest.mark.parametrize("output_type", ['pdfa', 'pdf'])
def test_override_metadata(output_type, resources, outpdf):
 input_file = resources / 'c02-22.pdf'
 german = 'Du siehst den Wald vor lauter Bäumen nicht.'
 chinese = '孔子'

 p, _out, err = run_ocrmypdf(
 input_file,
 outpdf,
 '--title',
 german,
 '--author',
 chinese,
 '--output-type',
 output_type,
 '--plugin',
 'tests/plugins/tesseract_noop.py',
)

 assert p.returncode == ExitCode.ok, err

 before = pikepdf.open(input_file)
 after = pikepdf.open(outpdf)

 assert after.docinfo.Title == german, after.docinfo
 assert after.docinfo.Author == chinese, after.docinfo
 assert after.docinfo.get('/Keywords', '') == ''

 before_date = decode_pdf_date(str(before.docinfo.CreationDate))
 after_date = decode_pdf_date(str(after.docinfo.CreationDate))
 assert before_date == after_date

 pdfa_info = file_claims_pdfa(outpdf)
 assert pdfa_info['output'] == output_type

def test_high_unicode(resources, no_outpdf):

 # Ghostscript doesn't support high Unicode, so neither do we, to be
 # safe
 input_file = resources / 'c02-22.pdf'
 high_unicode = 'U+1030C is: 𐌌'

 p, _out, err = run_ocrmypdf(
 input_file,
 no_outpdf,
 '--subject',
 high_unicode,
 '--output-type',
 'pdfa',
 '--plugin',
 'tests/plugins/tesseract_noop.py',
)

 assert p.returncode == ExitCode.bad_args, err

@pytest.mark.skipif(not fitz, reason="test uses fitz")
@pytest.mark.parametrize('ocr_option', ['--skip-text', '--force-ocr'])
@pytest.mark.parametrize('output_type', ['pdf', 'pdfa'])
def test_bookmarks_preserved(output_type, ocr_option, resources, outpdf):
 input_file = resources / 'toc.pdf'
 before_toc = fitz.Document(str(input_file)).getToC()

 check_ocrmypdf(
 input_file,
 outpdf,
 ocr_option,
 '--output-type',
 output_type,
 '--plugin',
 'tests/plugins/tesseract_noop.py',
)

 after_toc = fitz.Document(str(outpdf)).getToC()
 print(before_toc)
 print(after_toc)
 assert before_toc == after_toc

def seconds_between_dates(date1, date2):
 return (date2 - date1).total_seconds()

@pytest.mark.parametrize('infile', ['trivial.pdf', 'jbig2.pdf'])
@pytest.mark.parametrize('output_type', ['pdf', 'pdfa'])
def test_creation_date_preserved(output_type, resources, infile, outpdf):
 input_file = resources / infile

 check_ocrmypdf(
 input_file,
 outpdf,
 '--output-type',
 output_type,
 '--plugin',
 'tests/plugins/tesseract_noop.py',
)

 pdf_before = pikepdf.open(input_file)
 pdf_after = pikepdf.open(outpdf)

 before = pdf_before.trailer.get('/Info', {})
 after = pdf_after.trailer.get('/Info', {})

 if not before:
 assert after.get('/CreationDate', '') != ''
 else:
 # We expect that the creation date stayed the same
 date_before = decode_pdf_date(str(before['/CreationDate']))
 date_after = decode_pdf_date(str(after['/CreationDate']))
 assert seconds_between_dates(date_before, date_after) < 1000

 # We expect that the modified date is quite recent
 date_after = decode_pdf_date(str(after['/ModDate']))
 assert seconds_between_dates(date_after, datetime.datetime.now(timezone.utc)) < 1000

@pytest.mark.parametrize(
 'test_file,output_type',
 [
 ('graph.pdf', 'pdf'), # PDF with full metadata
 ('graph.pdf', 'pdfa'), # PDF/A with full metadata
 ('overlay.pdf', 'pdfa'), # /Title()
 ('3small.pdf', 'pdfa'),
],
)
def test_xml_metadata_preserved(test_file, output_type, resources, outpdf):
 input_file = resources / test_file

 try:
 from libxmp.utils import file_to_dict # pylint: disable=import-outside-toplevel
 except Exception: # pylint: disable=broad-except
 pytest.skip("libxmp not available or libexempi3 not installed")

 before = file_to_dict(str(input_file))

 check_ocrmypdf(
 input_file,
 outpdf,
 '--output-type',
 output_type,
 '--skip-text',
 '--plugin',
 'tests/plugins/tesseract_noop.py',
)

 after = file_to_dict(str(outpdf))

 equal_properties = [
 'dc:contributor',
 'dc:coverage',
 'dc:creator',
 'dc:description',
 'dc:format',
 'dc:identifier',
 'dc:language',
 'dc:publisher',
 'dc:relation',
 'dc:rights',
 'dc:source',
 'dc:subject',
 'dc:title',
 'dc:type',
 'pdf:keywords',
]
 acquired_properties = ['dc:format']
 might_change_properties = [
 'dc:date',
 'pdf:pdfversion',
 'pdf:Producer',
 'xmp:CreateDate',
 'xmp:ModifyDate',
 'xmp:MetadataDate',
 'xmp:CreatorTool',
 'xmpMM:DocumentId',
 'xmpMM:DnstanceId',
]

 # Cleanup messy data structure
 # Top level is key-value mapping of namespaces to keys under namespace,
 # so we put everything in the same namespace
 def unify_namespaces(xmpdict):
 for entries in xmpdict.values():
 yield from entries

 # Now we have a list of (key, value, {infodict}). We don't care about
 # infodict. Just flatten to keys and values
 def keyval_from_tuple(list_of_tuples):
 for k, v, *_ in list_of_tuples:
 yield k, v

 before = dict(keyval_from_tuple(unify_namespaces(before)))
 after = dict(keyval_from_tuple(unify_namespaces(after)))

 for prop in equal_properties:
 if prop in before:
 assert prop in after, f'{prop} dropped from xmp'
 assert before[prop] == after[prop]

 # libxmp presents multivalued entries (e.g. dc:title) as:
 # 'dc:title': '' <- there's a title
 # 'dc:title[1]: 'The Title' <- the actual title
 # 'dc:title[1]/?xml:lang': 'x-default' <- language info
 propidx = f'{prop}[1]'
 if propidx in before:
 assert (
 after.get(propidx) == before[propidx]
 or after.get(prop) == before[propidx]
)

 if prop in after and prop not in before:
 assert prop in acquired_properties, (
 f"acquired unexpected property {prop} with value "
 f"{after.get(propidx) or after.get(prop)}"
)

def test_srgb_in_unicode_path(tmp_path):
 """Test that we can produce pdfmark when install path is not ASCII"""

 dstdir = tmp_path / b'\xe4\x80\x80'.decode('utf-8')
 dstdir.mkdir()
 dst = dstdir / 'sRGB.icc'

 copyfile(SRGB_ICC_PROFILE, fspath(dst))

 with patch('ocrmypdf.pdfa.SRGB_ICC_PROFILE', new=str(dst)):
 generate_pdfa_ps(dstdir / 'out.ps')

def test_kodak_toc(resources, outpdf):
 _output = check_ocrmypdf(
 resources / 'kcs.pdf',
 outpdf,
 '--output-type',
 'pdf',
 '--plugin',
 'tests/plugins/tesseract_noop.py',
)

 p = pikepdf.open(outpdf)

 if pikepdf.Name.First in p.root.Outlines:
 assert isinstance(p.root.Outlines.First, pikepdf.Dictionary)

def test_metadata_fixup_warning(resources, outdir, caplog):
 options = get_parser().parse_args(
 args=['--output-type', 'pdfa-2', 'graph.pdf', 'out.pdf']
)

 copyfile(resources / 'graph.pdf', outdir / 'graph.pdf')

 context = PdfContext(
 options, outdir, outdir / 'graph.pdf', None, get_plugin_manager([])
)
 metadata_fixup(working_file=outdir / 'graph.pdf', context=context)
 for record in caplog.records:
 assert record.levelname != 'WARNING'

 # Now add some metadata that will not be copyable
 graph = pikepdf.open(outdir / 'graph.pdf')
 with graph.open_metadata() as meta:
 meta['prism2:publicationName'] = 'OCRmyPDF Test'
 graph.save(outdir / 'graph_mod.pdf')

 context = PdfContext(
 options, outdir, outdir / 'graph_mod.pdf', None, get_plugin_manager([])
)
 metadata_fixup(working_file=outdir / 'graph.pdf', context=context)
 assert any(record.levelname == 'WARNING' for record in caplog.records)

def test_prevent_gs_invalid_xml(resources, outdir):
 generate_pdfa_ps(outdir / 'pdfa.ps')
 copyfile(resources / 'trivial.pdf', outdir / 'layers.rendered.pdf')

 # Inject a string with a trailing nul character into the DocumentInfo
 # dictionary of this PDF, as often occurs in practice.
 with pikepdf.open(outdir / 'layers.rendered.pdf') as pike:
 pike.Root.DocumentInfo = pikepdf.Dictionary(
 Title=b'String with trailing nul\x00'
)

 options = get_parser().parse_args(
 args=['-j', '1', '--output-type', 'pdfa-2', 'a.pdf', 'b.pdf']
)
 pdfinfo = PdfInfo(outdir / 'layers.rendered.pdf')
 context = PdfContext(
 options, outdir, outdir / 'layers.rendered.pdf', pdfinfo, get_plugin_manager([])
)

 convert_to_pdfa(
 str(outdir / 'layers.rendered.pdf'), str(outdir / 'pdfa.ps'), context
)

 with open(outdir / 'pdfa.pdf', 'r+b') as f:
 with mmap.mmap(f.fileno(), 0) as mm:
 # Since the XML may be invalid, we scan instead of actually feeding it
 # to a parser.
 XMP_MAGIC = b'W5M0MpCehiHzreSzNTczkc9d'
 xmp_start = mm.find(XMP_MAGIC)
 xmp_end = mm.rfind(b'<?xpacket end', xmp_start)
 assert 0 < xmp_start < xmp_end
 # Ensure we did not carry the nul forward.
 assert mm.find(b'�', xmp_start, xmp_end) == -1, "found escaped nul"
 assert mm.find(b'\x00', xmp_start, xmp_end) == -1

def test_malformed_docinfo(caplog, resources, outdir):
 generate_pdfa_ps(outdir / 'pdfa.ps')
 # copyfile(resources / 'trivial.pdf', outdir / 'layers.rendered.pdf')

 with pikepdf.open(resources / 'trivial.pdf') as pike:
 pike.trailer.Info = pikepdf.Stream(pike, b"<xml></xml>")
 pike.save(outdir / 'layers.rendered.pdf', fix_metadata_version=False)

 options = get_parser().parse_args(
 args=['-j', '1', '--output-type', 'pdfa-2', 'a.pdf', 'b.pdf']
)
 pdfinfo = PdfInfo(outdir / 'layers.rendered.pdf')
 context = PdfContext(
 options, outdir, outdir / 'layers.rendered.pdf', pdfinfo, get_plugin_manager([])
)

 convert_to_pdfa(
 str(outdir / 'layers.rendered.pdf'), str(outdir / 'pdfa.ps'), context
)

 print(caplog.records)
 assert any(
 'malformed DocumentInfo block' in record.message for record in caplog.records
)

ocrmypdf-10.3.1+dfsg/tests/test_optimize.py

© 2018 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

from os import fspath
from pathlib import Path
from unittest.mock import patch

import img2pdf
import pikepdf
import pytest
from PIL import Image, ImageDraw

from ocrmypdf import optimize as opt
from ocrmypdf._exec import jbig2enc, pngquant
from ocrmypdf._exec.ghostscript import rasterize_pdf
from ocrmypdf.helpers import Resolution

check_ocrmypdf = pytest.helpers.check_ocrmypdf # pylint: disable=e1101

@pytest.mark.parametrize('pdf', ['multipage.pdf', 'palette.pdf'])
def test_basic(resources, pdf, outpdf):
 infile = resources / pdf
 opt.main(infile, outpdf, level=3)

 assert 0.98 * Path(outpdf).stat().st_size <= Path(infile).stat().st_size

def test_mono_not_inverted(resources, outdir):
 infile = resources / '2400dpi.pdf'
 opt.main(infile, outdir / 'out.pdf', level=3)

 rasterize_pdf(
 outdir / 'out.pdf',
 outdir / 'im.png',
 raster_device='pnggray',
 raster_dpi=Resolution(10, 10),
)

 with Image.open(fspath(outdir / 'im.png')) as im:
 assert im.getpixel((0, 0)) == 255, "Expected white background"

@pytest.mark.skipif(not pngquant.available(), reason='need pngquant')
def test_jpg_png_params(resources, outpdf):
 check_ocrmypdf(
 resources / 'crom.png',
 outpdf,
 '--image-dpi',
 '200',
 '--optimize',
 '3',
 '--jpg-quality',
 '50',
 '--png-quality',
 '20',
 '--plugin',
 'tests/plugins/tesseract_noop.py',
)

@pytest.mark.skipif(not jbig2enc.available(), reason='need jbig2enc')
@pytest.mark.parametrize('lossy', [False, True])
def test_jbig2_lossy(lossy, resources, outpdf):
 args = [
 resources / 'ccitt.pdf',
 outpdf,
 '--image-dpi',
 '200',
 '--optimize',
 3,
 '--jpg-quality',
 '50',
 '--png-quality',
 '20',
 '--plugin',
 'tests/plugins/tesseract_noop.py',
]
 if lossy:
 args.append('--jbig2-lossy')

 check_ocrmypdf(*args)

 pdf = pikepdf.open(outpdf)
 pim = pikepdf.PdfImage(next(iter(pdf.pages[0].images.values())))
 assert pim.filters[0] == '/JBIG2Decode'

 if lossy:
 assert '/JBIG2Globals' in pim.decode_parms[0]
 else:
 assert len(pim.decode_parms) == 0

@pytest.mark.skipif(
 not jbig2enc.available() or not pngquant.available(),
 reason='need jbig2enc and pngquant',
)
def test_flate_to_jbig2(resources, outdir):
 # This test requires an image that pngquant is capable of converting to
 # to 1bpp - so use an existing 1bpp image, convert up, confirm it can
 # convert down
 with Image.open(fspath(resources / 'typewriter.png')) as im:
 assert im.mode in ('1', 'P')
 im = im.convert('L')
 im.save(fspath(outdir / 'type8.png'))

 check_ocrmypdf(
 outdir / 'type8.png',
 outdir / 'out.pdf',
 '--image-dpi',
 '100',
 '--png-quality',
 '50',
 '--optimize',
 '3',
 '--plugin',
 'tests/plugins/tesseract_noop.py',
)

 pdf = pikepdf.open(outdir / 'out.pdf')
 pim = pikepdf.PdfImage(next(iter(pdf.pages[0].images.values())))
 assert pim.filters[0] == '/JBIG2Decode'

def test_multiple_pngs(resources, outdir):
 with Path.open(outdir / 'in.pdf', 'wb') as inpdf:
 img2pdf.convert(
 fspath(resources / 'baiona_colormapped.png'),
 fspath(resources / 'baiona_gray.png'),
 with_pdfrw=False,
 outputstream=inpdf,
)

 def mockquant(input_file, output_file, _quality_min, _quality_max):
 with Image.open(input_file) as im:
 draw = ImageDraw.Draw(im)
 draw.rectangle((0, 0, im.width, im.height), fill=128)
 im.save(output_file)

 with patch('ocrmypdf.optimize.pngquant.quantize', new=mockquant):
 check_ocrmypdf(
 outdir / 'in.pdf',
 outdir / 'out.pdf',
 '--optimize',
 '3',
 '--jobs',
 '1',
 '--use-threads',
 '--output-type',
 'pdf',
 '--plugin',
 'tests/plugins/tesseract_noop.py',
)

 with pikepdf.open(outdir / 'in.pdf') as inpdf, pikepdf.open(
 outdir / 'out.pdf'
) as outpdf:
 for n in range(len(inpdf.pages)):
 inim = next(iter(inpdf.pages[n].images.values()))
 outim = next(iter(outpdf.pages[n].images.values()))
 assert len(outim.read_raw_bytes()) < len(inim.read_raw_bytes()), n

ocrmypdf-10.3.1+dfsg/tests/test_page_numbers.py

© 2019 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import pytest

import ocrmypdf
from ocrmypdf._validation import _pages_from_ranges
from ocrmypdf.exceptions import BadArgsError
from ocrmypdf.pdfinfo import PdfInfo

@pytest.mark.parametrize(
 'pages, result',
 [
 ['1', {0}],
 ['1,2', {0, 1}],
 ['1-3', {0, 1, 2}],
 ['2,5,6', {1, 4, 5}],
 ['11-15, 18, ', {10, 11, 12, 13, 14, 17}],
 [',,3', {2}],
 ['3, 3, 3, 3,', {2}],
 ['3, 2, 1, 42', {0, 1, 2, 41}],
 ['-1', BadArgsError],
 ['1,3,-11', BadArgsError],
 ['1-,', BadArgsError],
 ['start-end', BadArgsError],
],
)
def test_pages(pages, result):
 if isinstance(result, type):
 with pytest.raises(result):
 _pages_from_ranges(pages)
 else:
 assert _pages_from_ranges(pages) == result

def test_nonmonotonic_warning(caplog):
 pages = _pages_from_ranges('1, 3, 2')
 assert pages == {0, 1, 2}
 assert 'out of order' in caplog.text

def test_list_range():
 assert _pages_from_ranges([0, 1, 2]) == {0, 1, 2}

def test_limited_pages(resources, outpdf):
 multi = resources / 'multipage.pdf'
 ocrmypdf.ocr(
 multi,
 outpdf,
 pages='5-6',
 optimize=0,
 output_type='pdf',
 plugins=['tests/plugins/tesseract_cache.py'],
)
 pi = PdfInfo(outpdf)
 assert not pi.pages[0].has_text
 assert pi.pages[4].has_text
 assert pi.pages[5].has_text

ocrmypdf-10.3.1+dfsg/tests/test_pdfinfo.py

© 2015 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import pickle
from math import isclose

import img2pdf
import pikepdf
import pytest
from PIL import Image
from reportlab.pdfgen.canvas import Canvas

from ocrmypdf import pdfinfo
from ocrmypdf.pdfinfo import Colorspace, Encoding

pylint: disable=protected-access

def test_single_page_text(outdir):
 filename = outdir / 'text.pdf'
 pdf = Canvas(str(filename), pagesize=(8 * 72, 6 * 72))
 text = pdf.beginText()
 text.setFont('Helvetica', 12)
 text.setTextOrigin(1 * 72, 3 * 72)
 text.textLine(
 "Methink'st thou art a general offence and every" " man should beat thee."
)
 pdf.drawText(text)
 pdf.showPage()
 pdf.save()

 info = pdfinfo.PdfInfo(filename)

 assert len(info) == 1
 page = info[0]

 assert page.has_text
 assert len(page.images) == 0

def test_single_page_image(outdir):
 filename = outdir / 'image-mono.pdf'

 im_tmp = outdir / 'tmp.png'
 im = Image.new('1', (8, 8), 0)
 for n in range(8):
 im.putpixel((n, n), 1)
 im.save(str(im_tmp), format='PNG')

 imgsize = ((img2pdf.ImgSize.dpi, 8), (img2pdf.ImgSize.dpi, 8))
 layout_fun = img2pdf.get_layout_fun(None, imgsize, None, None, None)

 im_bytes = im_tmp.read_bytes()
 pdf_bytes = img2pdf.convert(
 im_bytes, producer="img2pdf", with_pdfrw=False, layout_fun=layout_fun
)
 filename.write_bytes(pdf_bytes)

 info = pdfinfo.PdfInfo(filename)

 assert len(info) == 1
 page = info[0]

 assert not page.has_text
 assert len(page.images) == 1

 pdfimage = page.images[0]
 assert pdfimage.width == 8
 assert pdfimage.color == Colorspace.gray

 # DPI in a 1"x1" is the image width
 assert isclose(pdfimage.dpi.x, 8)
 assert isclose(pdfimage.dpi.y, 8)

def test_single_page_inline_image(outdir):
 filename = outdir / 'image-mono-inline.pdf'
 pdf = Canvas(str(filename), pagesize=(8 * 72, 6 * 72))

 im = Image.new('1', (8, 8), 0)
 for n in range(8):
 im.putpixel((n, n), 1)

 # Draw image in a 72x72 pt or 1"x1" area
 pdf.drawInlineImage(im, 0, 0, width=72, height=72)
 pdf.showPage()
 pdf.save()

 info = pdfinfo.PdfInfo(filename)
 print(info)
 pdfimage = info[0].images[0]
 assert isclose(pdfimage.dpi.x, 8)
 assert pdfimage.color == Colorspace.gray
 assert pdfimage.width == 8

def test_jpeg(resources):
 filename = resources / 'c02-22.pdf'

 pdf = pdfinfo.PdfInfo(filename)

 pdfimage = pdf[0].images[0]
 assert pdfimage.enc == Encoding.jpeg
 assert isclose(pdfimage.dpi.x, 150)

def test_form_xobject(resources):
 filename = resources / 'formxobject.pdf'

 pdf = pdfinfo.PdfInfo(filename)
 pdfimage = pdf[0].images[0]
 assert pdfimage.width == 50

def test_no_contents(resources):
 filename = resources / 'no_contents.pdf'

 pdf = pdfinfo.PdfInfo(filename)
 assert len(pdf[0].images) == 0
 assert not pdf[0].has_text

def test_oversized_page(resources):
 pdf = pdfinfo.PdfInfo(resources / 'poster.pdf')
 image = pdf[0].images[0]
 assert image.width * image.dpi.x > 200, "this is supposed to be oversized"

def test_pickle(resources):
 # For multiprocessing we must be able to pickle our information - if
 # this fails then we are probably storing some unpickleabe pikepdf or
 # other external data around
 filename = resources / 'graph_ocred.pdf'
 pdf = pdfinfo.PdfInfo(filename)
 pickle.dumps(pdf)

def test_vector(resources):
 filename = resources / 'vector.pdf'
 pdf = pdfinfo.PdfInfo(filename)
 assert pdf[0].has_vector
 assert not pdf[0].has_text

def test_ocr_detection(resources):
 filename = resources / 'graph_ocred.pdf'
 pdf = pdfinfo.PdfInfo(filename)
 assert not pdf[0].has_vector
 assert pdf[0].has_text

@pytest.mark.parametrize(
 'testfile', ('truetype_font_nomapping.pdf', 'type3_font_nomapping.pdf')
)
def test_corrupt_font_detection(resources, testfile):
 filename = resources / testfile
 pdf = pdfinfo.PdfInfo(filename, detailed_analysis=True)
 assert pdf[0].has_corrupt_text

def test_stack_abuse():
 p = pikepdf.Pdf.new()

 stream = pikepdf.Stream(p, b'q ' * 35)
 with pytest.warns(None) as record:
 pdfinfo.info._interpret_contents(stream)
 assert 'overflowed' in str(record[0].message)

 stream = pikepdf.Stream(p, b'q Q Q Q Q')
 with pytest.warns(None) as record:
 pdfinfo.info._interpret_contents(stream)
 assert 'underflowed' in str(record[0].message)

 stream = pikepdf.Stream(p, b'q ' * 135)
 with pytest.warns(None):
 with pytest.raises(RuntimeError):
 pdfinfo.info._interpret_contents(stream)

ocrmypdf-10.3.1+dfsg/tests/test_preprocessing.py

© 2019 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

from math import isclose

import pytest
from PIL import Image

from ocrmypdf._exec import ghostscript
from ocrmypdf.helpers import Resolution
from ocrmypdf.leptonica import Pix
from ocrmypdf.pdfinfo import PdfInfo

pytest.helpers is dynamic
pylint: disable=no-member,redefined-outer-name

check_ocrmypdf = pytest.helpers.check_ocrmypdf
run_ocrmypdf = pytest.helpers.run_ocrmypdf
run_ocrmypdf_api = pytest.helpers.run_ocrmypdf_api

RENDERERS = ['hocr', 'sandwich']

def test_deskew(resources, outdir):
 # Run with deskew
 deskewed_pdf = check_ocrmypdf(
 resources / 'skew.pdf',
 outdir / 'skew.pdf',
 '-d',
 '--plugin',
 'tests/plugins/tesseract_noop.py',
)

 # Now render as an image again and use Leptonica to find the skew angle
 # to confirm that it was deskewed
 deskewed_png = outdir / 'deskewed.png'

 ghostscript.rasterize_pdf(
 deskewed_pdf,
 deskewed_png,
 raster_device='pngmono',
 raster_dpi=Resolution(150, 150),
 pageno=1,
)

 pix = Pix.open(deskewed_png)
 skew_angle, _skew_confidence = pix.find_skew()

 print(skew_angle)
 assert -0.5 < skew_angle < 0.5, "Deskewing failed"

def test_remove_background(resources, outdir):
 # Ensure the input image does not contain pure white/black
 with Image.open(resources / 'congress.jpg') as im:
 assert im.getextrema() != ((0, 255), (0, 255), (0, 255))

 output_pdf = check_ocrmypdf(
 resources / 'congress.jpg',
 outdir / 'test_remove_bg.pdf',
 '--remove-background',
 '--image-dpi',
 '150',
 '--plugin',
 'tests/plugins/tesseract_noop.py',
)

 output_png = outdir / 'remove_bg.png'

 ghostscript.rasterize_pdf(
 output_pdf,
 output_png,
 raster_device='png16m',
 raster_dpi=Resolution(100, 100),
 pageno=1,
)

 # The output image should contain pure white and black
 with Image.open(output_png) as im:
 assert im.getextrema() == ((0, 255), (0, 255), (0, 255))

This will run 5 * 2 * 2 = 20 test cases
@pytest.mark.parametrize(
 "pdf", ['palette.pdf', 'cmyk.pdf', 'ccitt.pdf', 'jbig2.pdf', 'lichtenstein.pdf']
)
@pytest.mark.parametrize("renderer", ['sandwich', 'hocr'])
@pytest.mark.parametrize("output_type", ['pdf', 'pdfa'])
def test_exotic_image(pdf, renderer, output_type, resources, outdir):
 outfile = outdir / f'test_{pdf}_{renderer}.pdf'
 check_ocrmypdf(
 resources / pdf,
 outfile,
 '-dc' if pytest.helpers.have_unpaper() else '-d',
 '-v',
 '1',
 '--output-type',
 output_type,
 '--sidecar',
 '--skip-text',
 '--pdf-renderer',
 renderer,
 '--plugin',
 'tests/plugins/tesseract_cache.py',
)

 assert outfile.with_suffix('.pdf.txt').exists()

@pytest.mark.parametrize('renderer', RENDERERS)
def test_non_square_resolution(renderer, resources, outpdf):
 # Confirm input image is non-square resolution
 in_pageinfo = PdfInfo(resources / 'aspect.pdf')
 assert in_pageinfo[0].dpi.x != in_pageinfo[0].dpi.y

 check_ocrmypdf(
 resources / 'aspect.pdf',
 outpdf,
 '--pdf-renderer',
 renderer,
 '--plugin',
 'tests/plugins/tesseract_cache.py',
)

 out_pageinfo = PdfInfo(outpdf)

 # Confirm resolution was kept the same
 assert in_pageinfo[0].dpi == out_pageinfo[0].dpi

@pytest.mark.parametrize('renderer', RENDERERS)
def test_convert_to_square_resolution(renderer, resources, outpdf):
 # Confirm input image is non-square resolution
 in_pageinfo = PdfInfo(resources / 'aspect.pdf')
 assert in_pageinfo[0].dpi.x != in_pageinfo[0].dpi.y

 # --force-ocr requires means forced conversion to square resolution
 check_ocrmypdf(
 resources / 'aspect.pdf',
 outpdf,
 '--force-ocr',
 '--pdf-renderer',
 renderer,
 '--plugin',
 'tests/plugins/tesseract_cache.py',
)

 out_pageinfo = PdfInfo(outpdf)

 in_p0, out_p0 = in_pageinfo[0], out_pageinfo[0]

 # Resolution show now be equal
 assert out_p0.dpi.x == out_p0.dpi.y

 # Page size should match input page size
 assert isclose(in_p0.width_inches, out_p0.width_inches)
 assert isclose(in_p0.height_inches, out_p0.height_inches)

 # Because we rasterized the page to produce a new image, it should occupy
 # the entire page
 out_im_w = out_p0.images[0].width / out_p0.images[0].dpi.x
 out_im_h = out_p0.images[0].height / out_p0.images[0].dpi.y
 assert isclose(out_p0.width_inches, out_im_w)
 assert isclose(out_p0.height_inches, out_im_h)

ocrmypdf-10.3.1+dfsg/tests/test_quality.py

© 2020 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import pytest

import ocrmypdf.quality as qual

def test_quality_measurement():
 oqd = qual.OcrQualityDictionary(
 wordlist=["words", "words", "quick", "brown", "fox", "dog", "lazy"]
)
 assert len(oqd.dictionary) == 6 # 6 unique

 assert (
 oqd.measure_words_matched("The quick brown fox jumps quickly over the lazy dog")
 == 0.5
)
 assert oqd.measure_words_matched("12345 10% _f 7fox -brown | words") == 1.0

 assert oqd.measure_words_matched("quick quick quick") == 1.0

ocrmypdf-10.3.1+dfsg/tests/test_rotation.py

© 2018 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

from io import BytesIO
from os import fspath

import img2pdf
import pikepdf
import pytest
from PIL import Image

from ocrmypdf import leptonica
from ocrmypdf._exec import ghostscript, tesseract
from ocrmypdf.helpers import Resolution
from ocrmypdf.pdfinfo import PdfInfo

pytest.helpers is dynamic
pylint: disable=no-member
pylint: disable=w0612

pytestmark = pytest.mark.skipif(
 leptonica.get_leptonica_version() < 'leptonica-1.72',
 reason="Leptonica is too old, correlation doesn't work",
)

check_ocrmypdf = pytest.helpers.check_ocrmypdf
run_ocrmypdf = pytest.helpers.run_ocrmypdf

RENDERERS = ['hocr', 'sandwich']

def check_monochrome_correlation(
 outdir, reference_pdf, reference_pageno, test_pdf, test_pageno
):
 reference_png = outdir / f'{reference_pdf.name}.ref{reference_pageno:04d}.png'
 test_png = outdir / f'{test_pdf.name}.test{test_pageno:04d}.png'

 def rasterize(pdf, pageno, png):
 if png.exists():
 print(png)
 return
 ghostscript.rasterize_pdf(
 pdf,
 png,
 raster_device='pngmono',
 raster_dpi=Resolution(100, 100),
 pageno=pageno,
 rotation=0,
)

 rasterize(reference_pdf, reference_pageno, reference_png)
 rasterize(test_pdf, test_pageno, test_png)

 pix_ref = leptonica.Pix.open(reference_png)
 pix_test = leptonica.Pix.open(test_png)

 return leptonica.Pix.correlation_binary(pix_ref, pix_test)

def test_monochrome_correlation(resources, outdir):
 # Verify leptonica: check that an incorrect rotated image has poor
 # correlation with reference
 corr = check_monochrome_correlation(
 outdir,
 reference_pdf=resources / 'cardinal.pdf',
 reference_pageno=1, # north facing page
 test_pdf=resources / 'cardinal.pdf',
 test_pageno=3, # south facing page
)
 assert corr < 0.10
 corr = check_monochrome_correlation(
 outdir,
 reference_pdf=resources / 'cardinal.pdf',
 reference_pageno=2,
 test_pdf=resources / 'cardinal.pdf',
 test_pageno=2,
)
 assert corr > 0.90

@pytest.mark.slow
@pytest.mark.parametrize('renderer', RENDERERS)
def test_autorotate(renderer, resources, outdir):
 # cardinal.pdf contains four copies of an image rotated in each cardinal
 # direction - these ones are "burned in" not tagged with /Rotate
 out = check_ocrmypdf(
 resources / 'cardinal.pdf',
 outdir / 'out.pdf',
 '-r',
 '-v',
 '1',
 '--pdf-renderer',
 renderer,
 '--plugin',
 'tests/plugins/tesseract_cache.py',
)
 for n in range(1, 4 + 1):
 correlation = check_monochrome_correlation(
 outdir,
 reference_pdf=resources / 'cardinal.pdf',
 reference_pageno=1,
 test_pdf=outdir / 'out.pdf',
 test_pageno=n,
)
 assert correlation > 0.80

@pytest.mark.parametrize(
 'threshold, correlation_test',
 [
 ('1', 'correlation > 0.80'), # Low thresh -> always rotate -> high corr
 ('99', 'correlation < 0.10'), # High thres -> never rotate -> low corr
],
)
def test_autorotate_threshold(threshold, correlation_test, resources, outdir):
 out = check_ocrmypdf(
 resources / 'cardinal.pdf',
 outdir / 'out.pdf',
 '--rotate-pages-threshold',
 threshold,
 '-r',
 # '-v',
 # '1',
 '--plugin',
 'tests/plugins/tesseract_cache.py',
)

 correlation = check_monochrome_correlation(
 outdir,
 reference_pdf=resources / 'cardinal.pdf',
 reference_pageno=1,
 test_pdf=outdir / 'out.pdf',
 test_pageno=3,
)
 assert eval(correlation_test) # pylint: disable=w0123

def test_rotated_skew_timeout(resources, outpdf):
 """This document contains an image that is rotated 90 into place with a
 /Rotate tag and intentionally skewed by altering the transformation matrix.

 This tests for a bug where the combination of preprocessing and a tesseract
 timeout produced a page whose dimensions did not match the original's.
 """

 input_file = resources / 'rotated_skew.pdf'
 in_pageinfo = PdfInfo(input_file)[0]

 assert (
 in_pageinfo.height_pixels < in_pageinfo.width_pixels
), "Expected the input page to be landscape"
 assert in_pageinfo.rotation == 90, "Expected a rotated page"

 out = check_ocrmypdf(
 input_file,
 outpdf,
 '--pdf-renderer',
 'hocr',
 '--deskew',
 '--tesseract-timeout',
 '0',
)

 out_pageinfo = PdfInfo(out)[0]
 w, h = out_pageinfo.width_pixels, out_pageinfo.height_pixels

 assert h > w, "Expected the output page to be portrait"

 assert out_pageinfo.rotation == 0, "Expected no page rotation for output"

 assert (
 in_pageinfo.width_pixels == h and in_pageinfo.height_pixels == w
), "Expected page rotation to be baked in"

def test_rotate_deskew_timeout(resources, outdir):
 check_ocrmypdf(
 resources / 'rotated_skew.pdf',
 outdir / 'deskewed.pdf',
 '--rotate-pages',
 '--rotate-pages-threshold',
 '0',
 '--deskew',
 '--tesseract-timeout',
 '0',
 '--pdf-renderer',
 'sandwich',
)

 correlation = check_monochrome_correlation(
 outdir,
 reference_pdf=resources / 'ccitt.pdf',
 reference_pageno=1,
 test_pdf=outdir / 'deskewed.pdf',
 test_pageno=1,
)

 # Confirm that the page still got deskewed
 assert correlation > 0.50

@pytest.mark.slow
@pytest.mark.parametrize('page_angle', (0, 90, 180, 270))
@pytest.mark.parametrize('image_angle', (0, 90, 180, 270))
def test_rotate_page_level(image_angle, page_angle, resources, outdir):
 def make_rotate_test(prefix, image_angle, page_angle):
 memimg = BytesIO()
 with Image.open(fspath(resources / 'typewriter.png')) as im:
 if image_angle != 0:
 ccw_angle = -image_angle % 360
 im = im.transpose(getattr(Image, f'ROTATE_{ccw_angle}'))
 im.save(memimg, format='PNG')
 memimg.seek(0)
 mempdf = BytesIO()
 img2pdf.convert(
 memimg.read(),
 layout_fun=img2pdf.get_fixed_dpi_layout_fun((200, 200)),
 outputstream=mempdf,
)
 mempdf.seek(0)
 pike = pikepdf.open(mempdf)
 pike.pages[0].Rotate = page_angle
 target = outdir / f'{prefix}_{image_angle}_{page_angle}.pdf'
 pike.save(target)
 return target

 reference = make_rotate_test('ref', 0, 0)
 test = make_rotate_test('test', image_angle, page_angle)
 out = test.with_suffix('.out.pdf')

 p, _, err = run_ocrmypdf(
 test,
 out,
 '-O0',
 '--rotate-pages',
 '--rotate-pages-threshold',
 '0.001',
 universal_newlines=False,
)
 err = err.decode('utf-8', errors='replace')
 assert p.returncode == 0, err

 assert check_monochrome_correlation(outdir, reference, 1, out, 1) > 0.2

def test_tesseract_orientation(resources, tmp_path):
 pix = leptonica.Pix.open(resources / 'crom.png')
 pix_rotated = pix.rotate_orth(2) # 180 degrees clockwise
 pix_rotated.write_implied_format(tmp_path / '000001.png')

 tesseract.get_orientation(# Test results of this are unreliable
 tmp_path / '000001.png', engine_mode='3', timeout=10
)

ocrmypdf-10.3.1+dfsg/tests/test_stdio.py

© 2019 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import os
import sys
from pathlib import Path
from subprocess import DEVNULL, PIPE, Popen, run

import pytest

from ocrmypdf.exceptions import ExitCode
from ocrmypdf.helpers import check_pdf

pytest.helpers is dynamic
pylint: disable=no-member,redefined-outer-name

run_ocrmypdf = pytest.helpers.run_ocrmypdf
run_ocrmypdf_api = pytest.helpers.run_ocrmypdf

def test_stdin(ocrmypdf_exec, resources, outpdf):
 input_file = str(resources / 'francais.pdf')
 output_file = str(outpdf)

 # Runs: ocrmypdf - output.pdf < testfile.pdf
 with open(input_file, 'rb') as input_stream:
 p_args = ocrmypdf_exec + [
 '-',
 output_file,
 '--plugin',
 'tests/plugins/tesseract_noop.py',
]
 p = run(p_args, stdout=PIPE, stderr=PIPE, stdin=input_stream)
 assert p.returncode == ExitCode.ok

def test_stdout(ocrmypdf_exec, resources, outpdf):
 if 'COV_CORE_DATAFILE' in os.environ:
 pytest.skip(msg="Coverage uses stdout")

 input_file = str(resources / 'francais.pdf')
 output_file = str(outpdf)

 # Runs: ocrmypdf francais.pdf - > test_stdout.pdf
 with open(output_file, 'wb') as output_stream:
 p_args = ocrmypdf_exec + [
 input_file,
 '-',
 '--plugin',
 'tests/plugins/tesseract_noop.py',
]
 p = run(p_args, stdout=output_stream, stderr=PIPE, stdin=DEVNULL)
 assert p.returncode == ExitCode.ok

 assert check_pdf(output_file)

@pytest.mark.skipif(
 sys.version_info[0:3] >= (3, 6, 4), reason="issue fixed in Python 3.6.4"
)
@pytest.mark.skipif(os.name == 'nt', reason="POSIX problem")
def test_closed_streams(ocrmypdf_exec, resources, outpdf):
 input_file = str(resources / 'francais.pdf')
 output_file = str(outpdf)

 def evil_closer():
 os.close(0)
 os.close(1)

 p_args = ocrmypdf_exec + [
 input_file,
 output_file,
 '--plugin',
 'tests/plugins/tesseract_noop.py',
]
 p = Popen(# pylint: disable=subprocess-popen-preexec-fn
 p_args,
 close_fds=True,
 stdout=None,
 stderr=PIPE,
 stdin=None,
 preexec_fn=evil_closer,
)
 _out, err = p.communicate()
 print(err.decode())
 assert p.returncode == ExitCode.ok

@pytest.mark.skipif(sys.version_info >= (3, 7, 0), reason='better utf-8')
@pytest.mark.skipif(
 Path('/etc/alpine-release').exists(), reason="invalid test on alpine"
)
@pytest.mark.skipif(os.name == 'nt', reason="invalid test on Windows")
def test_bad_locale(monkeypatch):
 monkeypatch.setenv('LC_ALL', 'C')
 p, out, err = run_ocrmypdf('a', 'b')
 assert out == '', "stdout not clean"
 assert p.returncode != 0
 assert 'configured to use ASCII as encoding' in err, "should whine"

@pytest.mark.xfail(
 os.name == 'nt' and sys.version_info < (3, 8),
 reason="Windows does not like this; not sure how to fix",
)
def test_dev_null(resources):
 if 'COV_CORE_DATAFILE' in os.environ:
 pytest.skip(msg="Coverage uses stdout")

 p, out, _err = run_ocrmypdf(
 resources / 'trivial.pdf',
 os.devnull,
 '--force-ocr',
 '--plugin',
 'tests/plugins/tesseract_noop.py',
)
 assert p.returncode == 0, "could not send output to /dev/null"
 assert len(out) == 0, "wrote to stdout"

ocrmypdf-10.3.1+dfsg/tests/test_tesseract.py

© 2017 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import logging
import os
import subprocess
from os import fspath
from pathlib import Path

import pytest

from ocrmypdf import pdfinfo
from ocrmypdf._exec import tesseract
from ocrmypdf.exceptions import MissingDependencyError

pylint: disable=no-member,redefined-outer-name

check_ocrmypdf = pytest.helpers.check_ocrmypdf
run_ocrmypdf = pytest.helpers.run_ocrmypdf

@pytest.mark.parametrize('basename', ['graph_ocred.pdf', 'cardinal.pdf'])
def test_skip_pages_does_not_replicate(resources, basename, outdir):
 infile = resources / basename
 outpdf = outdir / basename

 check_ocrmypdf(
 infile,
 outpdf,
 '--pdf-renderer',
 'sandwich',
 '--force-ocr',
 '--tesseract-timeout',
 '0',
)

 info_in = pdfinfo.PdfInfo(infile)

 info = pdfinfo.PdfInfo(outpdf)
 for page in info:
 assert len(page.images) == 1, "skipped page was replicated"

 for n, info_out_n in enumerate(info):
 assert info_out_n.width_inches == info_in[n].width_inches

def test_content_preservation(resources, outpdf):
 infile = resources / 'masks.pdf'

 check_ocrmypdf(
 infile, outpdf, '--pdf-renderer', 'sandwich', '--tesseract-timeout', '0'
)

 info = pdfinfo.PdfInfo(outpdf)
 page = info[0]
 assert len(page.images) > 1, "masks were rasterized"

def test_no_languages(tmp_path, monkeypatch):
 (tmp_path / 'tessdata').mkdir()
 monkeypatch.setenv('TESSDATA_PREFIX', fspath(tmp_path))
 with pytest.raises(MissingDependencyError):
 tesseract.get_languages()

def test_image_too_large_hocr(monkeypatch, resources, outdir):
 def dummy_run(args, *, env=None, **kwargs):
 raise subprocess.CalledProcessError(1, 'tesseract', output=b'Image too large')

 monkeypatch.setattr(tesseract, 'run', dummy_run)
 tesseract.generate_hocr(
 input_file=resources / 'crom.png',
 output_hocr=outdir / 'out.hocr',
 output_text=outdir / 'out.txt',
 languages=['eng'],
 engine_mode=None,
 tessconfig=[],
 timeout=180.0,
 pagesegmode=None,
 user_words=None,
 user_patterns=None,
)
 assert "name='ocr-capabilities'" in Path(outdir / 'out.hocr').read_text()

def test_image_too_large_pdf(monkeypatch, resources, outdir):
 def dummy_run(args, *, env=None, **kwargs):
 raise subprocess.CalledProcessError(1, 'tesseract', output=b'Image too large')

 monkeypatch.setattr(tesseract, 'run', dummy_run)
 tesseract.generate_pdf(
 input_file=resources / 'crom.png',
 output_pdf=outdir / 'pdf.pdf',
 output_text=outdir / 'txt.txt',
 languages=['eng'],
 engine_mode=None,
 tessconfig=[],
 timeout=180.0,
 pagesegmode=None,
 user_words=None,
 user_patterns=None,
)
 assert Path(outdir / 'txt.txt').read_text() == '[skipped page]'
 if os.name != 'nt': # different semantics
 assert Path(outdir / 'pdf.pdf').stat().st_size == 0

def test_timeout(caplog):
 tesseract.page_timedout(5)
 assert "took too long" in caplog.text

@pytest.mark.parametrize(
 'in_, logged',
 [
 (b'Tesseract Open Source', ''),
 (b'lots of diacritics blah blah', 'diacritics'),
 (b'Warning in pixReadMem', ''),
 (b'OSD: Weak margin', 'unsure about page orientation'),
 (b'Error in pixScanForForeground', ''),
 (b'Error in boxClipToRectangle', ''),
 (b'an unexpected error', 'an unexpected error'),
 (b'a dire warning', 'a dire warning'),
 (b'read_params_file something', 'read_params_file'),
 (b'an innocent message', 'innocent'),
 (b'\x7f\x7f\x80innocent unicode failure', 'innocent'),
],
)
def test_tesseract_log_output(caplog, in_, logged):
 caplog.set_level(logging.INFO)
 tesseract.tesseract_log_output(in_)
 if logged == '':
 assert caplog.text == ''
 else:
 assert logged in caplog.text

def test_tesseract_log_output_raises(caplog):
 with pytest.raises(tesseract.TesseractConfigError):
 tesseract.tesseract_log_output(b'parameter not found: moo')
 assert 'not found' in caplog.text

ocrmypdf-10.3.1+dfsg/tests/test_unpaper.py

© 2015-17 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

from os import fspath
from unittest.mock import patch

import pytest

from ocrmypdf._plugin_manager import get_parser_options_plugins
from ocrmypdf._validation import check_options
from ocrmypdf.exceptions import ExitCode, MissingDependencyError

pytest.helpers is dynamic
pylint: disable=no-member,redefined-outer-name
pylint: disable=w0612

check_ocrmypdf = pytest.helpers.check_ocrmypdf
run_ocrmypdf = pytest.helpers.run_ocrmypdf
have_unpaper = pytest.helpers.have_unpaper

def test_no_unpaper(resources, no_outpdf):
 input_ = fspath(resources / "c02-22.pdf")
 output = fspath(no_outpdf)

 _parser, options, pm = get_parser_options_plugins(["--clean", input_, output])
 with patch("ocrmypdf._exec.unpaper.version") as mock_unpaper_version:
 mock_unpaper_version.side_effect = FileNotFoundError("unpaper")

 with pytest.raises(MissingDependencyError):
 check_options(options, pm)

def test_old_unpaper(resources, no_outpdf):
 input_ = fspath(resources / "c02-22.pdf")
 output = fspath(no_outpdf)

 _parser, options, pm = get_parser_options_plugins(["--clean", input_, output])
 with patch("ocrmypdf._exec.unpaper.version") as mock_unpaper_version:
 mock_unpaper_version.return_value = '0.5'

 with pytest.raises(MissingDependencyError):
 check_options(options, pm)

@pytest.mark.skipif(not have_unpaper(), reason="requires unpaper")
def test_clean(resources, outpdf):
 check_ocrmypdf(
 resources / "skew.pdf",
 outpdf,
 "-c",
 '--plugin',
 'tests/plugins/tesseract_noop.py',
)

@pytest.mark.skipif(not have_unpaper(), reason="requires unpaper")
def test_unpaper_args_valid(resources, outpdf):
 check_ocrmypdf(
 resources / "skew.pdf",
 outpdf,
 "-c",
 "--unpaper-args",
 "--layout double", # Spaces required here
 '--plugin',
 'tests/plugins/tesseract_noop.py',
)

@pytest.mark.skipif(not have_unpaper(), reason="requires unpaper")
def test_unpaper_args_invalid_filename(resources, outpdf):
 p, out, err = run_ocrmypdf(
 resources / "skew.pdf",
 outpdf,
 "-c",
 "--unpaper-args",
 "/etc/passwd",
 '--plugin',
 'tests/plugins/tesseract_noop.py',
)
 assert "No filenames allowed" in err
 assert p.returncode == ExitCode.bad_args

@pytest.mark.skipif(not have_unpaper(), reason="requires unpaper")
def test_unpaper_args_invalid(resources, outpdf):
 p, out, err = run_ocrmypdf(
 resources / "skew.pdf",
 outpdf,
 "-c",
 "--unpaper-args",
 "unpaper is not going to like these arguments",
 '--plugin',
 'tests/plugins/tesseract_noop.py',
)
 # Can't tell difference between unpaper choking on bad arguments or some
 # other unpaper failure
 assert p.returncode == ExitCode.child_process_error

ocrmypdf-10.3.1+dfsg/tests/test_userunit.py

© 2017 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

from math import isclose

import pytest

from ocrmypdf.exceptions import ExitCode
from ocrmypdf.pdfinfo import PdfInfo

check_ocrmypdf = pytest.helpers.check_ocrmypdf # pylint: disable=no-member
run_ocrmypdf = pytest.helpers.run_ocrmypdf # pylint: disable=no-member
run_ocrmypdf_api = pytest.helpers.run_ocrmypdf_api # pylint: disable=no-member

pylint: disable=redefined-outer-name

@pytest.fixture
def poster(resources):
 return resources / 'poster.pdf'

def test_userunit_ghostscript_fails(poster, no_outpdf, caplog):
 result = run_ocrmypdf_api(poster, no_outpdf, '--output-type=pdfa')
 assert result == ExitCode.input_file
 assert 'not supported by Ghostscript' in caplog.text

def test_userunit_pdf_passes(poster, outpdf):
 before = PdfInfo(poster)
 check_ocrmypdf(
 poster,
 outpdf,
 '--output-type=pdf',
 '--plugin',
 'tests/plugins/tesseract_cache.py',
)

 after = PdfInfo(outpdf)
 assert isclose(before[0].width_inches, after[0].width_inches)

def test_rotate_interaction(poster, outpdf):
 check_ocrmypdf(
 poster,
 outpdf,
 '--output-type=pdf',
 '--rotate-pages',
 '--plugin',
 'tests/plugins/tesseract_cache.py',
)

ocrmypdf-10.3.1+dfsg/tests/test_validation.py

© 2019 James R. Barlow: github.com/jbarlow83
#
This file is part of OCRmyPDF.
#
OCRmyPDF is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
OCRmyPDF is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with OCRmyPDF. If not, see <http://www.gnu.org/licenses/>.

import logging
from unittest.mock import patch

import pikepdf
import pytest

import ocrmypdf._validation as vd
from ocrmypdf._plugin_manager import get_plugin_manager
from ocrmypdf.api import create_options
from ocrmypdf.cli import get_parser
from ocrmypdf.exceptions import BadArgsError, MissingDependencyError
from ocrmypdf.pdfinfo import PdfInfo

def make_opts_pm(input_file='a.pdf', output_file='b.pdf', language='eng', **kwargs):
 if language is not None:
 kwargs['language'] = language
 parser = get_parser()
 pm = get_plugin_manager(kwargs.get('plugins', []))
 pm.hook.add_options(parser=parser) # pylint: disable=no-member
 return (
 create_options(
 input_file=input_file, output_file=output_file, parser=parser, **kwargs
),
 pm,
)

def make_opts(*args, **kwargs):
 opts, _pm = make_opts_pm(*args, **kwargs)
 return opts

def test_hocr_notlatin_warning(caplog):
 # Bypass the test to see if the language is installed; we just want to pretend
 # that a non-Latin language is installed
 vd._check_options(
 *make_opts_pm(language='chi_sim', pdf_renderer='hocr', output_type='pdfa'),
 {'chi_sim'},
)
 assert 'PDF renderer is known to cause' in caplog.text

def test_old_ghostscript(caplog):
 with patch('ocrmypdf._exec.ghostscript.version', return_value='9.19'), patch(
 'ocrmypdf._exec.tesseract.has_textonly_pdf', return_value=True
):
 vd._check_options(
 *make_opts_pm(language='chi_sim', output_type='pdfa'), {'chi_sim'}
)
 assert 'Ghostscript does not work correctly' in caplog.text

 with patch('ocrmypdf._exec.ghostscript.version', return_value='9.18'), patch(
 'ocrmypdf._exec.tesseract.has_textonly_pdf', return_value=True
):
 with pytest.raises(MissingDependencyError):
 vd._check_options(*make_opts_pm(output_type='pdfa-3'), set())

 with patch('ocrmypdf._exec.ghostscript.version', return_value='9.24'), patch(
 'ocrmypdf._exec.tesseract.has_textonly_pdf', return_value=True
):
 with pytest.raises(MissingDependencyError):
 vd._check_options(*make_opts_pm(), set())

def test_old_tesseract_error():
 with patch('ocrmypdf._exec.tesseract.has_textonly_pdf', return_value=False):
 with pytest.raises(MissingDependencyError):
 opts = make_opts(pdf_renderer='sandwich', language='eng')
 plugin_manager = get_plugin_manager(opts.plugins)
 vd._check_options(opts, plugin_manager, {'eng'})

def test_lossless_redo():
 with pytest.raises(BadArgsError):
 vd.check_options_output(make_opts(redo_ocr=True, deskew=True))

def test_mutex_options():
 with pytest.raises(BadArgsError):
 vd.check_options_ocr_behavior(make_opts(force_ocr=True, skip_text=True))
 with pytest.raises(BadArgsError):
 vd.check_options_ocr_behavior(make_opts(redo_ocr=True, skip_text=True))
 with pytest.raises(BadArgsError):
 vd.check_options_ocr_behavior(make_opts(redo_ocr=True, force_ocr=True))
 with pytest.raises(BadArgsError):
 vd.check_options_ocr_behavior(make_opts(pages='1-3', sidecar='file.txt'))

def test_optimizing(caplog):
 vd.check_options_optimizing(
 make_opts(optimize=0, jbig2_lossy=True, png_quality=18, jpeg_quality=10)
)
 assert 'will be ignored because' in caplog.text

def test_user_words(caplog):
 with patch('ocrmypdf._exec.tesseract.has_user_words', return_value=False):
 opts = make_opts(user_words='foo')
 plugin_manager = get_plugin_manager(opts.plugins)
 vd._check_options(opts, plugin_manager, set())
 assert '4.0 ignores --user-words' in caplog.text
 caplog.clear()
 with patch('ocrmypdf._exec.tesseract.has_user_words', return_value=True):
 opts = make_opts(user_patterns='foo')
 plugin_manager = get_plugin_manager(opts.plugins)
 vd._check_options(opts, plugin_manager, set())
 assert '4.0 ignores --user-words' not in caplog.text

def test_pillow_options():
 vd.check_options_pillow(make_opts(max_image_mpixels=0))

def test_output_tty():
 with patch('sys.stdout.isatty', return_value=True):
 with pytest.raises(BadArgsError):
 vd.check_requested_output_file(make_opts(output_file='-'))

def test_report_file_size(tmp_path, caplog):
 in_ = tmp_path / 'a.pdf'
 out = tmp_path / 'b.pdf'
 pdf = pikepdf.new()
 pdf.save(in_)
 pdf.save(out)
 opts = make_opts()
 vd.report_output_file_size(opts, in_, out)
 assert caplog.text == ''
 caplog.clear()

 waste_of_space = b'Dummy' * 5000
 pdf.root.Dummy = waste_of_space
 pdf.save(in_)
 pdf.root.Dummy2 = waste_of_space + waste_of_space
 pdf.save(out)

 with patch('ocrmypdf._validation.jbig2enc.available', return_value=True), patch(
 'ocrmypdf._validation.pngquant.available', return_value=True
):
 vd.report_output_file_size(opts, in_, out)
 assert 'No reason' in caplog.text
 caplog.clear()

 with patch('ocrmypdf._validation.jbig2enc.available', return_value=False), patch(
 'ocrmypdf._validation.pngquant.available', return_value=True
):
 vd.report_output_file_size(opts, in_, out)
 assert 'optional dependency' in caplog.text
 caplog.clear()

 opts = make_opts(in_, out, optimize=0)
 vd.report_output_file_size(opts, in_, out)
 assert 'disabled' in caplog.text
 caplog.clear()

def test_false_action_store_true():
 opts = make_opts(keep_temporary_files=True)
 assert opts.keep_temporary_files
 opts = make_opts(keep_temporary_files=False)
 assert not opts.keep_temporary_files

@pytest.mark.parametrize('progress_bar', [True, False])
def test_no_progress_bar(progress_bar, resources):
 opts = make_opts(progress_bar=progress_bar, input_file=(resources / 'trivial.pdf'))
 plugin_manager = get_plugin_manager(opts.plugins)
 with patch('ocrmypdf._concurrent.tqdm', autospec=True) as tqdmpatch:
 vd._check_options(opts, plugin_manager, set())
 pdfinfo = PdfInfo(opts.input_file, progbar=opts.progress_bar)
 assert pdfinfo is not None
 assert tqdmpatch.called
 _args, kwargs = tqdmpatch.call_args
 assert kwargs['disable'] != progress_bar

def test_language_warning(caplog):
 opts = make_opts(language=None)
 plugin_manager = get_plugin_manager(opts.plugins)
 caplog.set_level(logging.DEBUG)
 with patch(
 'ocrmypdf._validation.locale.getlocale', return_value=('en_US', 'UTF-8')
):
 vd.check_options_languages(opts, {'eng'})
 assert opts.languages == {'eng'}
 assert '' in caplog.text

 opts = make_opts(language=None)
 with patch(
 'ocrmypdf._validation.locale.getlocale', return_value=('fr_FR', 'UTF-8')
):
 vd.check_options_languages(opts, {'eng'})
 assert opts.languages == {'eng'}
 assert 'assuming --language' in caplog.text

def test_version_comparison():
 vd.check_external_program(
 program="dummy_basic",
 package="dummy",
 version_checker=lambda: '9.0',
 need_version='8.0.2',
)
 vd.check_external_program(
 program="dummy_doubledigit",
 package="dummy",
 version_checker=lambda: '10.0',
 need_version='8.0.2',
)
 vd.check_external_program(
 program="tesseract",
 package="tesseract",
 version_checker=lambda: '4.0.0-beta.1',
 need_version='4.0.0',
)
 vd.check_external_program(
 program="tesseract",
 package="tesseract",
 version_checker=lambda: 'v5.0.0-alpha.20200201',
 need_version='4.0.0',
)
 with pytest.raises(MissingDependencyError):
 vd.check_external_program(
 program="dummy_fails",
 package="dummy",
 version_checker=lambda: '1.0',
 need_version='2.0',
)

def test_optional_program_recommended(caplog):
 caplog.clear()

 def raiser():
 raise FileNotFoundError('jbig2')

 with caplog.at_level(logging.WARNING):
 vd.check_external_program(
 program="jbig2",
 package="jbig2enc",
 version_checker=raiser,
 need_version='42',
 required_for='this test case',
 recommended=True,
)
 assert any(
 (loglevel == logging.WARNING and "recommended" in msg)
 for _logger_name, loglevel, msg in caplog.record_tuples
)

def test_pagesegmode_warning(caplog):
 opts = make_opts(tesseract_pagesegmode='0')
 plugin_manager = get_plugin_manager(opts.plugins)
 vd._check_options(opts, plugin_manager, set())
 assert 'disable OCR' in caplog.text

def test_two_languages():
 with patch('ocrmypdf._exec.tesseract.has_textonly_pdf', return_value=True):
 vd._check_options(
 *make_opts_pm(language='fakelang1+fakelang2'), {'fakelang1', 'fakelang2'}
)

