58#define DEBUGCOND (getID() == DEBUGID)
61#define DEBUGCOND2(obj) ((obj != 0 && (obj)->getID() == DEBUGID))
106 mayDefinitelyPass(mayDefinitelyPass_),
123 connectionsDone(false) {
136 assert((
int)myTransitions.size() > virtEdge);
138 NBEdge* succEdge = myTransitions[virtEdge];
139 std::vector<int> lanes;
143 std::map<NBEdge*, std::vector<int> >::iterator i =
myConnections.find(succEdge);
151 std::vector<int>::iterator j = std::find(lanes.begin(), lanes.end(), lane);
152 if (j == lanes.end()) {
154 lanes.push_back(lane);
167 const NBEdge* straight =
nullptr;
168 for (
const NBEdge*
const out : outgoing) {
170 for (
const int l : availableLanes) {
171 if ((parent->
myLanes[l].permissions & outPerms) != 0) {
172 if (straight ==
nullptr || sorter(out, straight)) {
179 if (straight ==
nullptr) {
182 myStraightest = (int)std::distance(outgoing.begin(), std::find(outgoing.begin(), outgoing.end(), straight));
185 assert(outgoing.size() > 0);
187#ifdef DEBUG_CONNECTION_GUESSING
189 std::cout <<
" MainDirections edge=" << parent->
getID() <<
" straightest=" << straight->
getID() <<
" dir=" <<
toString(straightestDir) <<
"\n";
201 if (outgoing.back()->getJunctionPriority(to) == 1) {
205 if (outgoing.back()->getPriority() > straight->
getPriority() ||
206 outgoing.back()->getNumLanes() > straight->
getNumLanes()) {
223 return myDirs.empty();
229 return std::find(myDirs.begin(), myDirs.end(), d) != myDirs.end();
249 std::string type,
double speed,
double friction,
int nolanes,
250 int priority,
double laneWidth,
double endOffset,
272 init(nolanes,
false,
"");
277 std::string type,
double speed,
double friction,
int nolanes,
278 int priority,
double laneWidth,
double endOffset,
281 const std::string& streetName,
282 const std::string& origID,
283 bool tryIgnoreNodePositions) :
287 myFrom(from), myTo(to),
288 myStartAngle(0), myEndAngle(0), myTotalAngle(0),
289 myPriority(priority), mySpeed(speed), myFriction(friction),
291 myTurnDestination(nullptr),
292 myPossibleTurnDestination(nullptr),
293 myFromJunctionPriority(-1), myToJunctionPriority(-1),
294 myGeom(geom), myLaneSpreadFunction(spread), myEndOffset(endOffset),
295 myLaneWidth(laneWidth),
296 myLoadedLength(UNSPECIFIED_LOADED_LENGTH),
297 myAmInTLS(false), myAmMacroscopicConnector(false),
298 myStreetName(streetName),
300 mySignalNode(nullptr),
304 init(nolanes, tryIgnoreNodePositions, origID);
311 myType(tpl->getTypeID()),
312 myFrom(from), myTo(to),
313 myStartAngle(0), myEndAngle(0), myTotalAngle(0),
314 myPriority(tpl->getPriority()), mySpeed(tpl->getSpeed()),
315 myFriction(tpl->getFriction()),
317 myTurnDestination(nullptr),
318 myPossibleTurnDestination(nullptr),
319 myFromJunctionPriority(-1), myToJunctionPriority(-1),
321 myLaneSpreadFunction(tpl->getLaneSpreadFunction()),
322 myEndOffset(tpl->getEndOffset()),
323 myEdgeStopOffset(tpl->getEdgeStopOffset()),
324 myLaneWidth(tpl->getLaneWidth()),
325 myLoadedLength(UNSPECIFIED_LOADED_LENGTH),
327 myAmMacroscopicConnector(false),
328 myStreetName(tpl->getStreetName()),
329 mySignalPosition(to == tpl->myTo ? tpl->mySignalPosition :
Position::
INVALID),
330 mySignalNode(to == tpl->myTo ? tpl->mySignalNode : nullptr),
342 myLanes[i].updateParameters(tpl->
myLanes[tplIndex].getParametersMap());
343 if (to == tpl->
myTo) {
358 myFrom(nullptr), myTo(nullptr),
359 myStartAngle(0), myEndAngle(0), myTotalAngle(0),
360 myPriority(0), mySpeed(0), myFriction(UNSPECIFIED_FRICTION),
362 myTurnDestination(nullptr),
363 myPossibleTurnDestination(nullptr),
364 myFromJunctionPriority(-1), myToJunctionPriority(-1),
369 myLoadedLength(UNSPECIFIED_LOADED_LENGTH),
371 myAmMacroscopicConnector(false),
373 mySignalNode(nullptr) {
379 double speed,
double friction,
int nolanes,
int priority,
381 const std::string& streetName,
383 bool tryIgnoreNodePositions) {
405 const std::vector<Lane> oldLanes =
myLanes;
406 init(nolanes, tryIgnoreNodePositions, oldLanes.empty() ?
"" : oldLanes[0].getParameter(
SUMO_PARAM_ORIGID));
407 for (
int i = 0; i < (int)nolanes; ++i) {
409 myLanes[i] = oldLanes[
MIN2(i, (
int)oldLanes.size() - 1)];
431 if (from ==
nullptr || to ==
nullptr) {
455NBEdge::init(
int noLanes,
bool tryIgnoreNodePositions,
const std::string& origID) {
478 if (!tryIgnoreNodePositions ||
myGeom.size() < 2) {
501 assert(
myGeom.size() >= 2);
503 if ((
int)
myLanes.size() > noLanes) {
505 for (
int lane = noLanes; lane < (int)
myLanes.size(); ++lane) {
510 for (EdgeVector::const_iterator i = incoming.begin(); i != incoming.end(); i++) {
511 for (
int lane = noLanes; lane < (int)
myLanes.size(); ++lane) {
512 (*i)->removeFromConnections(
this, -1, lane);
517 for (
int i = 0; i < noLanes; i++) {
523#ifdef DEBUG_CONNECTION_GUESSING
525 std::cout <<
"init edge=" <<
getID() <<
"\n";
527 std::cout <<
" conn " << c.getDescription(
this) <<
"\n";
530 std::cout <<
" connToDelete " << c.getDescription(
this) <<
"\n";
545 lane.customShape.add(xoff, yoff, 0);
549 (*i).customShape.add(xoff, yoff, 0);
564 for (
int i = 0; i < (int)
myLanes.size(); i++) {
566 myLanes[i].customShape.mirrorX();
570 c.viaShape.mirrorX();
571 c.customShape.mirrorX();
606 assert(node ==
myTo);
648 assert(node ==
myTo);
677 if (rectangularCut) {
678 const double extend = 100;
682 border.push_back(p2);
684 if (border.size() == 2) {
689 assert(node ==
myTo);
693#ifdef DEBUG_NODE_BORDER
696 <<
" rect=" << rectangularCut
697 <<
" p=" << p <<
" p2=" << p2
698 <<
" border=" << border
711 assert(node ==
myTo);
722 assert(node ==
myTo);
777 if (shape.size() < 2) {
779 const double oldLength = old.
length();
780 shape = old.
getSubpart(oldLength - 2 * POSITION_EPS, oldLength);
784 if (shape.
length() < POSITION_EPS) {
785 if (old.
length() < 2 * POSITION_EPS) {
788 const double midpoint = old.
length() / 2;
790 shape = old.
getSubpart(midpoint - POSITION_EPS, midpoint + POSITION_EPS);
791 assert(shape.size() >= 2);
792 assert(shape.
length() > 0);
800 tmp.push_back(shape[0]);
801 tmp.push_back(shape[-1]);
803 if (tmp.
length() < POSITION_EPS) {
805 if (old.
length() < 2 * POSITION_EPS) {
808 const double midpoint = old.
length() / 2;
810 shape = old.
getSubpart(midpoint - POSITION_EPS, midpoint + POSITION_EPS);
811 assert(shape.size() >= 2);
812 assert(shape.
length() > 0);
815 const double midpoint = shape.
length() / 2;
817 shape = shape.
getSubpart(midpoint - POSITION_EPS, midpoint + POSITION_EPS);
818 if (shape.
length() < POSITION_EPS) {
825 const double z = (shape[0].z() + shape[1].z()) / 2;
841 const double d = cut[0].distanceTo2D(cut[1]);
842 const double dZ = fabs(cut[0].z() - cut[1].z());
843 if (dZ / smoothElevationThreshold > d) {
849 const double d = cut[-1].distanceTo2D(cut[-2]);
850 const double dZ = fabs(cut[-1].z() - cut[-2].z());
851 if (dZ / smoothElevationThreshold > d) {
862 for (
int i = 0; i < (int)
myLanes.size(); i++) {
866 double avgLength = 0;
867 for (
int i = 0; i < (int)
myLanes.size(); i++) {
868 avgLength +=
myLanes[i].shape.length();
877 if (nodeShape.size() == 0) {
886 assert(pbv.size() > 0);
894 const double delta = ns[0].z() - laneShape[0].z();
896 if (fabs(delta) > 2 * POSITION_EPS && (!startNode->
geometryLike() || pb < 1)) {
901 assert(ns.size() >= 2);
906 assert(pbv.size() > 0);
911 const double delta = np.
z() - laneShape[0].z();
913 if (fabs(delta) > 2 * POSITION_EPS && !startNode->
geometryLike()) {
972 reverse = lane.customShape.
reverse();
974 lane.customShape = reverse.
reverse();
979 lane.customShape.removeDoublePoints(minDist,
true, 0, 0,
true);
991 std::vector<double> angles;
993 for (
int i = 0; i < (int)
myGeom.size() - 1; ++i) {
998 for (
int i = 0; i < (int)angles.size() - 1; ++i) {
1001 if (maxAngle > 0 && relAngle > maxAngle && !silent) {
1007 if (i == 0 || i == (
int)angles.size() - 2) {
1008 const bool start = i == 0;
1010 const double r = tan(0.5 * (
M_PI - relAngle)) * dist;
1012 if (minRadius > 0 && r < minRadius) {
1015 (start ?
"start" :
"end") +
" of edge '" +
getID() +
"'.");
1019 }
else if (!silent) {
1021 toString(start ?
"start" :
"end") +
" of edge '%'.", r,
getID());
1039 if (dest !=
nullptr &&
myTo != dest->
myFrom) {
1042 if (dest ==
nullptr) {
1049 if (overrideRemoval) {
1052 if (it->toEdge == dest) {
1069 bool mayUseSameDestination,
1070 bool mayDefinitelyPass,
1081 const std::string& edgeType,
1097 return setConnection(from, dest, toLane, type, mayUseSameDestination, mayDefinitelyPass, keepClear, contPos, visibility, speed, friction, length,
1098 customShape, uncontrolled, permissions, indirectLeft, edgeType, changeLeft, changeRight, postProcess);
1104 NBEdge* dest,
int toLane,
1106 bool invalidatePrevious,
1107 bool mayDefinitelyPass) {
1108 if (invalidatePrevious) {
1112 for (
int i = 0; i < no && ok; i++) {
1122 bool mayUseSameDestination,
1123 bool mayDefinitelyPass,
1134 const std::string& edgeType,
1162 if ((*i).toEdge == destEdge && ((*i).fromLane == -1 || (*i).toLane == -1)) {
1166 permissions = (*i).permissions;
1174 if (mayDefinitelyPass) {
1207 if ((it->fromLane < 0 || it->fromLane == lane)
1208 && (it->toEdge ==
nullptr || it->toEdge == destEdge)
1209 && (it->toLane < 0 || it->toLane == destLane)) {
1220std::vector<NBEdge::Connection>
1222 std::vector<NBEdge::Connection> ret;
1224 if ((lane < 0 || c.fromLane == lane)
1225 && (to ==
nullptr || to == c.toEdge)
1226 && (toLane < 0 || toLane == c.toLane)) {
1237 if (c.fromLane == fromLane && c.toEdge == to && c.toLane == toLane) {
1242 +
" to " + to->
getID() +
"_" +
toString(toLane) +
" not found");
1249 if (c.fromLane == fromLane && c.toEdge == to && c.toLane == toLane) {
1254 +
" to " + to->
getID() +
"_" +
toString(toLane) +
" not found");
1285 if (find(outgoing.begin(), outgoing.end(), (*i).toEdge) == outgoing.end()) {
1286 outgoing.push_back((*i).toEdge);
1291 if (it->fromLane < 0 && it->toLane < 0) {
1293 EdgeVector::iterator forbidden = std::find(outgoing.begin(), outgoing.end(), it->toEdge);
1294 if (forbidden != outgoing.end()) {
1295 outgoing.erase(forbidden);
1300 int size = (int) outgoing.size();
1302 edges->reserve(size);
1303 for (EdgeVector::const_iterator i = outgoing.begin(); i != outgoing.end(); i++) {
1306 edges->push_back(outedge);
1318 if (find(ret.begin(), ret.end(), (*i).toEdge) == ret.end()) {
1319 ret.push_back((*i).toEdge);
1330 for (EdgeVector::const_iterator i = candidates.begin(); i != candidates.end(); i++) {
1331 if ((*i)->isConnectedTo(
this)) {
1341 std::vector<int> ret;
1345 ret.push_back(c.fromLane);
1368 for (EdgeVector::const_iterator i = incoming.begin(); i != incoming.end(); i++) {
1373 for (EdgeVector::iterator j = connected.begin(); j != connected.end(); j++) {
1383 const bool keepPossibleTurns) {
1385 const int fromLaneRemoved = adaptToLaneRemoval && fromLane >= 0 ? fromLane : -1;
1386 const int toLaneRemoved = adaptToLaneRemoval && toLane >= 0 ? toLane : -1;
1389 if ((toEdge ==
nullptr || c.
toEdge == toEdge)
1390 && (fromLane < 0 || c.
fromLane == fromLane)
1391 && (toLane < 0 || c.
toLane == toLane)) {
1394 for (std::set<NBTrafficLightDefinition*>::iterator it = tldefs.begin(); it != tldefs.end(); it++) {
1401 if (fromLaneRemoved >= 0 && c.
fromLane > fromLaneRemoved) {
1404 for (std::set<NBTrafficLightDefinition*>::iterator it = tldefs.begin(); it != tldefs.end(); it++) {
1405 for (NBConnectionVector::iterator tlcon = (*it)->getControlledLinks().begin(); tlcon != (*it)->getControlledLinks().end(); ++tlcon) {
1416 if (toLaneRemoved >= 0 && c.
toLane > toLaneRemoved && (toEdge ==
nullptr || c.
toEdge == toEdge)) {
1432#ifdef DEBUG_CONNECTION_GUESSING
1434 std::cout <<
"removeFromConnections " <<
getID() <<
"_" << fromLane <<
"->" << toEdge->
getID() <<
"_" << toLane <<
"\n";
1436 std::cout <<
" conn " << c.getDescription(
this) <<
"\n";
1439 std::cout <<
" connToDelete " << c.getDescription(
this) <<
"\n";
1451 if ((i->toEdge == connectionToRemove.
toEdge) && (i->fromLane == connectionToRemove.
fromLane) && (i->toLane == connectionToRemove.
toLane)) {
1466 if (reallowSetting) {
1478 if ((*i).toEdge == which) {
1480 (*i).toLane += laneOff;
1491 std::map<int, int> laneMap;
1495 bool wasConnected =
false;
1497 if ((*i).toEdge != which) {
1500 wasConnected =
true;
1501 if ((*i).fromLane != -1) {
1502 int fromLane = (*i).fromLane;
1503 laneMap[(*i).toLane] = fromLane;
1504 if (minLane == -1 || minLane > fromLane) {
1507 if (maxLane == -1 || maxLane < fromLane) {
1512 if (!wasConnected) {
1516 std::vector<NBEdge::Connection> conns = origConns;
1518 for (std::vector<NBEdge::Connection>::iterator i = conns.begin(); i != conns.end(); ++i) {
1519 if ((*i).toEdge == which || (*i).toEdge ==
this
1521 || std::find(origTargets.begin(), origTargets.end(), (*i).toEdge) != origTargets.end()) {
1522#ifdef DEBUG_REPLACECONNECTION
1524 std::cout <<
" replaceInConnections edge=" <<
getID() <<
" which=" << which->
getID()
1525 <<
" origTargets=" <<
toString(origTargets) <<
" newTarget=" << i->toEdge->getID() <<
" skipped\n";
1535 int fromLane = (*i).fromLane;
1537 if (laneMap.find(fromLane) == laneMap.end()) {
1538 if (fromLane >= 0 && fromLane <= minLane) {
1541 for (
auto& item : laneMap) {
1542 if (item.first < fromLane) {
1543 item.second =
MIN2(item.second, minLane);
1547 if (fromLane >= 0 && fromLane >= maxLane) {
1550 for (
auto& item : laneMap) {
1551 if (item.first > fromLane) {
1552 item.second =
MAX2(item.second, maxLane);
1557 toUse = laneMap[fromLane];
1562#ifdef DEBUG_REPLACECONNECTION
1564 std::cout <<
" replaceInConnections edge=" <<
getID() <<
" which=" << which->
getID() <<
" origTargets=" <<
toString(origTargets)
1565 <<
" origFrom=" << fromLane <<
" laneMap=" <<
joinToString(laneMap,
":",
",") <<
" minLane=" << minLane <<
" maxLane=" << maxLane
1566 <<
" newTarget=" << i->toEdge->getID() <<
" fromLane=" << toUse <<
" toLane=" << i->toLane <<
"\n";
1570 i->contPos, i->visibility, i->speed, i->friction, i->customLength, i->customShape, i->uncontrolled);
1601 std::vector<Connection>::iterator i =
myConnections.begin() + index;
1624 const int numPoints = oc.
getInt(
"junctions.internal-link-detail");
1625 const bool joinTurns = oc.
getBool(
"junctions.join-turns");
1626 const double limitTurnSpeed = oc.
getFloat(
"junctions.limit-turn-speed");
1627 const double limitTurnSpeedMinAngle =
DEG2RAD(oc.
getFloat(
"junctions.limit-turn-speed.min-angle"));
1628 const double limitTurnSpeedMinAngleRail =
DEG2RAD(oc.
getFloat(
"junctions.limit-turn-speed.min-angle.railway"));
1629 const double limitTurnSpeedWarnStraight = oc.
getFloat(
"junctions.limit-turn-speed.warn.straight");
1630 const double limitTurnSpeedWarnTurn = oc.
getFloat(
"junctions.limit-turn-speed.warn.turn");
1631 const bool higherSpeed = oc.
getBool(
"junctions.higher-speed");
1632 const double interalJunctionVehicleWidth = oc.
getFloat(
"internal-junctions.vehicle-width");
1634 std::string innerID =
":" + n.
getID();
1635 NBEdge* toEdge =
nullptr;
1636 int edgeIndex = linkIndex;
1637 int internalLaneIndex = 0;
1639 double lengthSum = 0;
1640 int avoidedIntersectingLeftOriginLane = std::numeric_limits<int>::max();
1641 bool averageLength =
true;
1642 double maxCross = 0.;
1646 if (con.
toEdge ==
nullptr) {
1653 if (con.
toEdge != toEdge) {
1656 edgeIndex = linkIndex;
1658 internalLaneIndex = 0;
1663 averageLength = !isTurn || joinTurns;
1667 std::vector<int> foeInternalLinks;
1674 std::pair<double, std::vector<int> > crossingPositions(-1, std::vector<int>());
1675 std::set<std::string> tmpFoeIncomingLanes;
1678 std::vector<PositionVector> otherShapes;
1680 const double width1OppositeLeft = 0;
1682 for (
const Connection& k2 : i2->getConnections()) {
1683 if (k2.toEdge ==
nullptr) {
1688 double width2 = k2.toEdge->getLaneWidth(k2.toLane);
1689 if (k2.toEdge->getPermissions(k2.toLane) !=
SVC_BICYCLE) {
1692 const bool foes = n.
foes(
this, con.
toEdge, i2, k2.toEdge);
1695 const bool avoidIntersectCandidate = !foes &&
bothLeftTurns(dir, i2, dir2);
1696 bool oppositeLeftIntersect = avoidIntersectCandidate &&
haveIntersection(n, shape, i2, k2, numPoints, width1OppositeLeft, width2);
1701 && k2.customShape.size() == 0
1702 && (oppositeLeftIntersect || (avoidedIntersectingLeftOriginLane < con.
fromLane && avoidIntersectCandidate))
1703 && ((i2->getPermissions(k2.fromLane) & warn) != 0
1704 && (k2.toEdge->getPermissions(k2.toLane) & warn) != 0)) {
1710 oppositeLeftIntersect =
haveIntersection(n, shape, i2, k2, numPoints, width1OppositeLeft, width2, shapeFlag);
1711 if (oppositeLeftIntersect
1716 if (avoidedIntersectingLeftOriginLane == std::numeric_limits<int>::max()
1717 || avoidedIntersectingLeftOriginLane < con.
fromLane) {
1720 const double minDV =
firstIntersection(shape, otherShape, width1OppositeLeft, width2,
1721 "Could not compute intersection of conflicting internal lanes at node '" +
myTo->
getID() +
"'", secondIntersection);
1722 if (minDV < shape.
length() - POSITION_EPS && minDV > POSITION_EPS) {
1724 if (crossingPositions.first < 0 || crossingPositions.first > minDV) {
1725 crossingPositions.first = minDV;
1731 avoidedIntersectingLeftOriginLane = con.
fromLane;
1737 const bool isBicycleLeftTurn = k2.indirectLeft || (dir2 ==
LinkDirection::LEFT && (i2->getPermissions(k2.fromLane) & k2.toEdge->getPermissions(k2.toLane)) ==
SVC_BICYCLE);
1740 crossingPositions.second.push_back(index);
1742 otherShapes.push_back(otherShape);
1745 "Could not compute intersection of conflicting internal lanes at node '" +
myTo->
getID() +
"'", secondIntersection);
1746 if (minDV < shape.
length() - POSITION_EPS && minDV > POSITION_EPS) {
1748 if (crossingPositions.first < 0 || crossingPositions.first > minDV) {
1749 crossingPositions.first = minDV;
1760 if (foes || rightTurnConflict || oppositeLeftIntersect || mergeConflict || indirectTurnConflit || bidiConflict) {
1761 foeInternalLinks.push_back(index);
1764 if (oppositeLeftIntersect &&
getID() > i2->getID()
1767 && (i2->getPermissions(k2.fromLane) & warn) != 0
1768 && (k2.toEdge->getPermissions(k2.toLane) & warn) != 0
1772 WRITE_WARNINGF(
TL(
"Intersecting left turns at junction '%' from lane '%' and lane '%' (increase junction radius to avoid this)."),
1777 if ((n.
forbids(i2, k2.toEdge,
this, con.
toEdge, signalised) || rightTurnConflict || indirectTurnConflit || mergeResponse)
1779 tmpFoeIncomingLanes.insert(i2->getID() +
"_" +
toString(k2.fromLane));
1781 if (bothPrio && oppositeLeftIntersect &&
getID() < i2->getID()) {
1785 tmpFoeIncomingLanes.insert(
":" +
toString(index));
1791 std::vector<NBNode::Crossing*> crossings = n.
getCrossings();
1792 for (
auto c : crossings) {
1794 for (EdgeVector::const_iterator it_e = crossing.
edges.begin(); it_e != crossing.
edges.end(); ++it_e) {
1795 const NBEdge* edge = *it_e;
1797 if (
this == edge || con.
toEdge == edge) {
1798 foeInternalLinks.push_back(index);
1799 if (con.
toEdge == edge &&
1805 if (minDV < shape.
length() - POSITION_EPS && minDV > POSITION_EPS) {
1807 if (crossingPositions.first < 0 || crossingPositions.first > minDV) {
1808 crossingPositions.first = minDV;
1817 if (dir ==
LinkDirection::TURN && crossingPositions.first < 0 && crossingPositions.second.size() != 0 && shape.
length() > 2. * POSITION_EPS) {
1827 crossingPositions.first = -1;
1830 crossingPositions.first = con.
contPos;
1849 if (limitTurnSpeed > 0) {
1854 const double angle =
MAX2(0.0, angleRaw - (fromRail ? limitTurnSpeedMinAngleRail : limitTurnSpeedMinAngle));
1855 const double length = shape.
length2D();
1858 if (angle > 0 && length > 1) {
1861 const double limit = sqrt(limitTurnSpeed * radius);
1862 const double reduction = con.
vmax - limit;
1870 dirType =
"roundabout";
1872 WRITE_WARNINGF(
TL(
"Speed of % connection '%' reduced by % due to turning radius of % (length=%, angle=%)."),
1879 assert(con.
vmax > 0);
1894 assert(shape.size() >= 2);
1896 con.
id = innerID +
"_" +
toString(edgeIndex);
1897 const double shapeLength = shape.
length();
1898 double firstLength = shapeLength;
1899 if (crossingPositions.first >= 0 && crossingPositions.first < shapeLength) {
1900 std::pair<PositionVector, PositionVector>
split = shape.
splitAt(crossingPositions.first);
1902 con.
foeIncomingLanes = std::vector<std::string>(tmpFoeIncomingLanes.begin(), tmpFoeIncomingLanes.end());
1904 con.
viaID = innerID +
"_" +
toString(splitIndex + noInternalNoSplits);
1913 ++internalLaneIndex;
1918 lengthSum += firstLength / shapeLength * con.
customLength;
1920 lengthSum += firstLength;
1932 double maxCross = 0.;
1934 for (
int prevIndex = 1; prevIndex <= numLanes; prevIndex++) {
1948 if (!averageLength) {
1969 double intersect = std::numeric_limits<double>::max();
1970 if (v2.
length() < POSITION_EPS) {
1987 bool skip = secondIntersection;
1993 intersect =
MIN2(intersect, cand);
1995 skip = secondIntersection;
2001 intersect =
MIN2(intersect, cand);
2003 skip = secondIntersection;
2009 intersect =
MIN2(intersect, cand);
2011 skip = secondIntersection;
2017 intersect =
MIN2(intersect, cand);
2033 if (otherFrom ==
this) {
2042 double width1,
double width2,
int shapeFlag)
const {
2045 return minDV < shape.
length() - POSITION_EPS && minDV > POSITION_EPS;
2064#ifdef DEBUG_JUNCTIONPRIO
2069#ifdef DEBUG_JUNCTIONPRIO
2082 assert(atNode ==
myTo);
2094 assert(atNode ==
myTo);
2113 assert(atNode ==
myTo);
2121 if (!onlyPossible) {
2136 return myLanes[lane].friction;
2149 if (lane.changeLeft !=
SVCAll) {
2150 lane.changeLeft = ignoring;
2152 if (lane.changeRight !=
SVCAll) {
2153 lane.changeRight = ignoring;
2158 con.changeLeft = ignoring;
2161 con.changeRight = ignoring;
2174 std::vector<double> offsets(
myLanes.size(), 0.);
2176 for (
int i = (
int)
myLanes.size() - 2; i >= 0; --i) {
2178 offsets[i] = offset;
2182 for (
int i = 0; i < (int)
myLanes.size(); ++i) {
2188 offset = laneWidth / 2.;
2199 for (
int i = 0; i < (int)
myLanes.size(); ++i) {
2200 offsets[i] += offset;
2204 for (
int i = 0; i < (int)
myLanes.size(); ++i) {
2205 if (
myLanes[i].customShape.size() != 0) {
2241 if ((hasFromShape || hasToShape) &&
getNumLanes() > 0) {
2274 if (suspiciousFromShape) {
2275 std::cout <<
"suspiciousFromShape len=" << shape.
length() <<
" startA=" <<
myStartAngle <<
" startA2=" << myStartAngle2 <<
" startA3=" << myStartAngle3
2277 <<
" fromCenter=" << fromCenter
2279 <<
" refStart=" << referencePosStart
2282 if (suspiciousToShape) {
2283 std::cout <<
"suspiciousToShape len=" << shape.
length() <<
" endA=" <<
myEndAngle <<
" endA2=" << myEndAngle2 <<
" endA3=" << myEndAngle3
2285 <<
" toCenter=" << toCenter
2287 <<
" refEnd=" << referencePosEnd
2293 if (suspiciousFromShape && shape.
length() > 1) {
2304 if (suspiciousToShape && shape.
length() > 1) {
2318 <<
" fromCenter=" << fromCenter <<
" toCenter=" << toCenter
2319 <<
" refStart=" << referencePosStart <<
" refEnd=" << referencePosEnd <<
" shape=" << shape
2320 <<
" hasFromShape=" << hasFromShape
2321 <<
" hasToShape=" << hasToShape
2347 for (std::vector<Lane>::const_iterator i =
myLanes.begin(); i !=
myLanes.end(); ++i) {
2348 if ((*i).permissions !=
SVCAll) {
2358 std::vector<Lane>::const_iterator i =
myLanes.begin();
2361 for (; i !=
myLanes.end(); ++i) {
2362 if (i->permissions != firstLanePermissions) {
2372 for (std::vector<Lane>::const_iterator i =
myLanes.begin(); i !=
myLanes.end(); ++i) {
2382 for (std::vector<Lane>::const_iterator i =
myLanes.begin(); i !=
myLanes.end(); ++i) {
2383 if (i->friction !=
myLanes.begin()->friction) {
2392 for (std::vector<Lane>::const_iterator i =
myLanes.begin(); i !=
myLanes.end(); ++i) {
2393 if (i->width !=
myLanes.begin()->width) {
2403 for (std::vector<Lane>::const_iterator i =
myLanes.begin(); i !=
myLanes.end(); ++i) {
2404 if (i->type !=
myLanes.begin()->type) {
2414 for (std::vector<Lane>::const_iterator i =
myLanes.begin(); i !=
myLanes.end(); ++i) {
2415 if (i->endOffset !=
myLanes.begin()->endOffset) {
2425 for (
const auto& lane :
myLanes) {
2426 if (lane.laneStopOffset.isDefined()) {
2438 for (std::vector<Lane>::const_iterator i =
myLanes.begin(); i !=
myLanes.end(); ++i) {
2449 for (std::vector<Lane>::const_iterator i =
myLanes.begin(); i !=
myLanes.end(); ++i) {
2450 if (i->customShape.size() > 0) {
2460 for (std::vector<Lane>::const_iterator i =
myLanes.begin(); i !=
myLanes.end(); ++i) {
2461 if (i->getParametersMap().size() > 0) {
2471 if (lane.changeLeft !=
SVCAll || lane.changeRight !=
SVCAll) {
2497#ifdef DEBUG_CONNECTION_GUESSING
2499 std::cout <<
"computeEdge2Edges edge=" <<
getID() <<
" step=" << (int)
myStep <<
" noLeftMovers=" << noLeftMovers <<
"\n";
2501 std::cout <<
" conn " << c.getDescription(
this) <<
"\n";
2504 std::cout <<
" connToDelete " << c.getDescription(
this) <<
"\n";
2519 if (fromRail &&
isRailway(out->getPermissions())) {
2523 }
else if (angle > 90) {
2531 if (radius < minRadius) {
2553#ifdef DEBUG_CONNECTION_GUESSING
2555 std::cout <<
"computeLanes2Edges edge=" <<
getID() <<
" step=" << (int)
myStep <<
"\n";
2557 std::cout <<
" conn " << c.getDescription(
this) <<
"\n";
2560 std::cout <<
" connToDelete " << c.getDescription(
this) <<
"\n";
2586std::vector<LinkDirection>
2588 std::vector<LinkDirection> result;
2589 for (
int i = 0; i < 8; i++) {
2591 if ((turnSigns & (1 << i)) != 0) {
2600#ifdef DEBUG_TURNSIGNS
2601 std::cout <<
"applyTurnSigns edge=" <<
getID() <<
"\n";
2604 std::vector<const NBEdge*> targets;
2605 std::map<const NBEdge*, std::vector<int> > toLaneMap;
2607 if (
myLanes[c.fromLane].turnSigns != 0) {
2608 if (std::find(targets.begin(), targets.end(), c.toEdge) == targets.end()) {
2609 targets.push_back(c.toEdge);
2611 toLaneMap[c.toEdge].push_back(c.toLane);
2615 for (
auto& item : toLaneMap) {
2616 std::sort(item.second.begin(), item.second.end());
2620 std::map<LinkDirection, int> signCons;
2623 allDirs |= lane.turnSigns;
2629 targets.push_back(
nullptr);
2634 std::map<LinkDirection, const NBEdge*> dirMap;
2635#ifdef DEBUG_TURNSIGNS
2636 std::cout <<
" numDirs=" << signedDirs.size() <<
" numTargets=" << targets.size() <<
"\n";
2638 if (signedDirs.size() > targets.size()) {
2639 WRITE_WARNINGF(
TL(
"Cannot apply turn sign information for edge '%' because there are % signed directions but only % targets"),
getID(), signedDirs.size(), targets.size());
2641 }
else if (signedDirs.size() < targets.size()) {
2644 std::vector<LinkDirection> sumoDirs;
2645 for (
const NBEdge* to : targets) {
2649 bool checkMore =
true;
2650 while (signedDirs.size() < targets.size() && checkMore) {
2653 if (sumoDirs.back() != signedDirs.back()) {
2655 sumoDirs.pop_back();
2661 while (signedDirs.size() < targets.size() && checkMore) {
2663 if (sumoDirs.front() != signedDirs.front()) {
2664 targets.erase(targets.begin());
2665 sumoDirs.erase(sumoDirs.begin());
2671 while (signedDirs.size() < targets.size() && i < (
int)targets.size()) {
2673 targets.erase(targets.begin() + i);
2674 sumoDirs.erase(sumoDirs.begin() + i);
2679 if (signedDirs.size() != targets.size()) {
2680 WRITE_WARNINGF(
TL(
"Cannot apply turn sign information for edge '%' because there are % signed directions and % targets (after target pruning)"),
getID(), signedDirs.size(), targets.size());
2685 for (
int i = 0; i < (int)signedDirs.size(); i++) {
2686 dirMap[signedDirs[i]] = targets[i];
2689 for (
auto item : signCons) {
2694 const NBEdge* to = dirMap[dir];
2696 if (candidates == 0) {
2697 WRITE_WARNINGF(
TL(
"Cannot apply turn sign information for edge '%' because the target edge '%' has no suitable lanes"),
getID(), to->
getID());
2700 std::vector<int>& knownTargets = toLaneMap[to];
2701 if ((
int)knownTargets.size() < item.second) {
2702 if (candidates < item.second) {
2703 WRITE_WARNINGF(
TL(
"Cannot apply turn sign information for edge '%' because there are % signed connections with directions '%' but target edge '%' has only % suitable lanes"),
2721 while ((
int)knownTargets.size() < item.second && i != iEnd) {
2723 if (std::find(knownTargets.begin(), knownTargets.end(), i) == knownTargets.end()) {
2724 knownTargets.push_back(i);
2729 if ((
int)knownTargets.size() != item.second) {
2730 WRITE_WARNINGF(
TL(
"Cannot apply turn sign information for edge '%' because not enough target lanes could be determined for direction '%'"),
getID(),
toString(dir));
2733 std::sort(knownTargets.begin(), knownTargets.end());
2736 std::map<const NBEdge*, int> toLaneIndex;
2738 const int turnSigns =
myLanes[i].turnSigns;
2740 if (turnSigns != 0) {
2743 if (it->fromLane == i) {
2752 if (to !=
nullptr) {
2753 if (toLaneIndex.count(to) == 0) {
2760 int toLane = toLaneMap[to][0];
2773#ifdef DEBUG_TURNSIGNS
2774 std::cout <<
" target=" << to->
getID() <<
" initial toLane=" << toLane <<
"\n";
2776 toLaneIndex[to] = toLane;
2791#ifdef DEBUG_CONNECTION_GUESSING
2793 std::cout <<
"recheckLanes (initial) edge=" <<
getID() <<
"\n";
2795 std::cout <<
" conn " << c.getDescription(
this) <<
"\n";
2798 std::cout <<
" connToDelete " << c.getDescription(
this) <<
"\n";
2806 std::vector<int> connNumbersPerLane(
myLanes.size(), 0);
2808 if ((*i).toEdge ==
nullptr || (*i).fromLane < 0 || (*i).toLane < 0) {
2811 if ((*i).fromLane >= 0) {
2812 ++connNumbersPerLane[(*i).fromLane];
2827 for (
int i = 0; i < (int)
myLanes.size(); i++) {
2830 bool hasDeadEnd =
true;
2832 for (
int i2 = i - 1; hasDeadEnd && i2 >= 0; i2--) {
2836 if (connNumbersPerLane[i2] > 1) {
2837 connNumbersPerLane[i2]--;
2838 for (
int i3 = i2; i3 != i; i3++) {
2848 for (
int i2 = i + 1; hasDeadEnd && i2 <
getNumLanes(); i2++) {
2852 if (connNumbersPerLane[i2] > 1) {
2853 connNumbersPerLane[i2]--;
2854 for (
int i3 = i2; i3 != i; i3--) {
2864 int passengerLanes = 0;
2865 int passengerTargetLanes = 0;
2873 for (
const Lane& lane : out->getLanes()) {
2875 passengerTargetLanes++;
2880 if (passengerLanes > 0 && passengerLanes <= passengerTargetLanes) {
2885 if (rightCons.size() > 0) {
2888 int toLane = rc.
toLane + 1;
2917 if (leftCons.size() > 0) {
2918 NBEdge* to = leftCons.front().toEdge;
2919 int toLane = leftCons.front().toLane - 1;
2930#ifdef ADDITIONAL_WARNINGS
2946 }
else if (common == 0) {
2949 const int origToLane = c.
toLane;
2951 int toLane = origToLane;
2964 toLane = origToLane;
2996 if (incoming.size() > 1) {
2997 for (
int i = 0; i < (int)
myLanes.size(); i++) {
2999 bool connected =
false;
3000 for (std::vector<NBEdge*>::const_iterator in = incoming.begin(); in != incoming.end(); ++in) {
3001 if ((*in)->hasConnectionTo(
this, i)) {
3015 for (
int i = 0; i < (int)
myLanes.size(); i++) {
3017 if ((connNumbersPerLane[i] == 0 || ((lane.
accelRamp || (i > 0 &&
myLanes[i - 1].accelRamp && connNumbersPerLane[i - 1] > 0))
3022 if (forbiddenLeft && (i == 0 || forbiddenRight)) {
3025 }
else if (forbiddenRight && (i ==
getNumLanes() - 1 || (i > 0 &&
myLanes[i - 1].accelRamp))) {
3032#ifdef ADDITIONAL_WARNINGS
3039 bool hasAlternative =
false;
3041 if (c.fromLane == c2.fromLane && c.toEdge == c2.toEdge
3042 && (c.toEdge->getPermissions(c2.toLane) &
SVC_PASSENGER) != 0) {
3043 hasAlternative =
true;
3046 if (!hasAlternative) {
3047 WRITE_WARNING(
"Road lane ends on bikeLane for connection " + c.getDescription(
this));
3053#ifdef DEBUG_CONNECTION_GUESSING
3055 std::cout <<
"recheckLanes (final) edge=" <<
getID() <<
"\n";
3057 std::cout <<
" conn " << c.getDescription(
this) <<
"\n";
3067 if (outgoing->size() == 0) {
3073#ifdef DEBUG_CONNECTION_GUESSING
3075 std::cout <<
" divideOnEdges " <<
getID() <<
" outgoing=" <<
toString(*outgoing) <<
"\n";
3080 std::vector<int> availableLanes;
3081 for (
int i = 0; i < (int)
myLanes.size(); ++i) {
3083 availableLanes.push_back(i);
3086 if (availableLanes.size() > 0) {
3090 availableLanes.clear();
3091 for (
int i = 0; i < (int)
myLanes.size(); ++i) {
3096 availableLanes.push_back(i);
3098 if (availableLanes.size() > 0) {
3102 availableLanes.clear();
3103 for (
int i = 0; i < (int)
myLanes.size(); ++i) {
3108 availableLanes.push_back(i);
3110 if (availableLanes.size() > 0) {
3114 availableLanes.clear();
3115 for (
int i = 0; i < (int)
myLanes.size(); ++i) {
3120 availableLanes.push_back(i);
3122 if (availableLanes.size() > 0) {
3126 bool explicitTurnaround =
false;
3129 if ((*i).fromLane == -1) {
3131 explicitTurnaround =
true;
3132 turnaroundPermissions = (*i).permissions;
3136 if (c.toLane == -1 && c.toEdge == (*i).toEdge) {
3138 c.permissions = (*i).permissions;
3147 if (explicitTurnaround) {
3158 if (priorities.empty()) {
3161#ifdef DEBUG_CONNECTION_GUESSING
3163 std::cout <<
"divideSelectedLanesOnEdges " <<
getID() <<
" out=" <<
toString(*outgoing) <<
" prios=" <<
toString(priorities) <<
" avail=" <<
toString(availableLanes) <<
"\n";
3167 const int numOutgoing = (int)outgoing->size();
3168 std::vector<int> resultingLanesFactor;
3169 resultingLanesFactor.reserve(numOutgoing);
3170 int minResulting = std::numeric_limits<int>::max();
3171 for (
int i = 0; i < numOutgoing; i++) {
3173 const int res = priorities[i] * (int)availableLanes.size();
3174 resultingLanesFactor.push_back(res);
3175 if (minResulting > res && res > 0) {
3187 transition.reserve(numOutgoing);
3188 for (
int i = 0; i < numOutgoing; i++) {
3190 assert(i < (
int)resultingLanesFactor.size());
3191 const int tmpNum = (resultingLanesFactor[i] + minResulting - 1) / minResulting;
3192 numVirtual += tmpNum;
3193 for (
int j = 0; j < tmpNum; j++) {
3194 transition.push_back((*outgoing)[i]);
3197#ifdef DEBUG_CONNECTION_GUESSING
3199 std::cout <<
" minResulting=" << minResulting <<
" numVirtual=" << numVirtual <<
" availLanes=" <<
toString(availableLanes) <<
" resLanes=" <<
toString(resultingLanesFactor) <<
" transition=" <<
toString(transition) <<
"\n";
3208 for (
NBEdge*
const target : *outgoing) {
3209 assert(l2eConns.find(target) != l2eConns.end());
3210 for (
const int j : l2eConns.find(target)->second) {
3211 const int fromIndex = availableLanes[j];
3212 if ((
getPermissions(fromIndex) & target->getPermissions()) == 0) {
3226 int targetLanes = target->getNumLanes();
3230 if (numConsToTarget >= targetLanes) {
3233 if (
myLanes[fromIndex].connectionsDone) {
3236#ifdef DEBUG_CONNECTION_GUESSING
3238 std::cout <<
" connectionsDone from " <<
getID() <<
"_" << fromIndex <<
": ";
3240 std::cout << c.getDescription(
this) <<
", ";
3248#ifdef DEBUG_CONNECTION_GUESSING
3250 std::cout <<
" request connection from " <<
getID() <<
"_" << fromIndex <<
" to " << target->getID() <<
"\n";
3263 const int numOutgoing = (int) outgoing->size();
3264 NBEdge* target =
nullptr;
3265 NBEdge* rightOfTarget =
nullptr;
3266 NBEdge* leftOfTarget =
nullptr;
3268 for (
int i = 0; i < numOutgoing; i++) {
3269 if (maxPrio < priorities[i]) {
3272 maxPrio = priorities[i];
3273 target = (*outgoing)[i];
3274 rightOfTarget = i == 0 ? outgoing->back() : (*outgoing)[i - 1];
3275 leftOfTarget = i + 1 == numOutgoing ? outgoing->front() : (*outgoing)[i + 1];
3279 if (target ==
nullptr) {
3287 const int numDesiredConsToTarget =
MIN2(targetLanes, (
int)availableLanes.size());
3288#ifdef DEBUG_CONNECTION_GUESSING
3290 std::cout <<
" checking extra lanes for target=" << target->
getID() <<
" cons=" << numConsToTarget <<
" desired=" << numDesiredConsToTarget <<
"\n";
3293 std::vector<int>::const_iterator it_avail = availableLanes.begin();
3294 while (numConsToTarget < numDesiredConsToTarget && it_avail != availableLanes.end()) {
3295 const int fromIndex = *it_avail;
3304 && !
myLanes[fromIndex].connectionsDone
3306#ifdef DEBUG_CONNECTION_GUESSING
3308 std::cout <<
" candidate from " <<
getID() <<
"_" << fromIndex <<
" to " << target->
getID() <<
"\n";
3317#ifdef DEBUG_CONNECTION_GUESSING
3319 std::cout <<
" request additional connection from " <<
getID() <<
"_" << fromIndex <<
" to " << target->
getID() <<
"\n";
3325#ifdef DEBUG_CONNECTION_GUESSING
3330 <<
" rightOfTarget=" << rightOfTarget->
getID()
3331 <<
" leftOfTarget=" << leftOfTarget->
getID()
3342const std::vector<int>
3344 std::vector<int> priorities;
3351 priorities.reserve(outgoing->size());
3352 for (
const NBEdge*
const out : *outgoing) {
3354 assert((prio + 1) * 2 > 0);
3355 prio = (prio + 1) * 2;
3356 priorities.push_back(prio);
3361#ifdef DEBUG_CONNECTION_GUESSING
3363 <<
" outgoing=" <<
toString(*outgoing)
3364 <<
" priorities1=" <<
toString(priorities)
3369 assert(priorities.size() > 0);
3371#ifdef DEBUG_CONNECTION_GUESSING
3373 std::cout <<
" priorities2=" <<
toString(priorities) <<
"\n";
3380 if (mainDirections.
empty()) {
3381 assert(dist < (
int)priorities.size());
3382 priorities[dist] *= 2;
3383#ifdef DEBUG_CONNECTION_GUESSING
3385 std::cout <<
" priorities3=" <<
toString(priorities) <<
"\n";
3390 priorities[dist] += 1;
3395 priorities[(int)priorities.size() - 1] /= 2;
3396#ifdef DEBUG_CONNECTION_GUESSING
3398 std::cout <<
" priorities6=" <<
toString(priorities) <<
"\n";
3402 && outgoing->size() > 2
3403 && availableLanes.size() == 2
3404 && (*outgoing)[dist]->getPriority() == (*outgoing)[0]->getPriority()) {
3406 priorities.back() /= 2;
3407#ifdef DEBUG_CONNECTION_GUESSING
3409 std::cout <<
" priorities7=" <<
toString(priorities) <<
"\n";
3416 priorities[dist] *= 2;
3417#ifdef DEBUG_CONNECTION_GUESSING
3419 std::cout <<
" priorities4=" <<
toString(priorities) <<
"\n";
3423 priorities[dist] *= 3;
3424#ifdef DEBUG_CONNECTION_GUESSING
3426 std::cout <<
" priorities5=" <<
toString(priorities) <<
"\n";
3436NBEdge::appendTurnaround(
bool noTLSControlled,
bool noFringe,
bool onlyDeadends,
bool onlyTurnlane,
bool noGeometryLike,
bool checkPermissions) {
3449 bool isDeadEnd =
true;
3451 if ((c.toEdge->getPermissions(c.toLane)
3459 if (onlyDeadends && !isDeadEnd) {
3472 if (checkPermissions) {
3496 if (noGeometryLike && !isDeadEnd) {
3505 if (turnIncoming.size() > 1) {
3531 if (pos < tolerance) {
3545 for (
int i = 0; i < lanes; i++) {
3547 assert(el.tlID ==
"");
3569 if (c.fromLane == fromLane && c.toEdge == toEdge && c.toLane == toLane && c.uncontrolled) {
3589 assert(fromLane < 0 || fromLane < (
int)
myLanes.size());
3591 if (fromLane >= 0 && toLane >= 0) {
3593 std::vector<Connection>::iterator i =
3601 connection.
tlID = tlID;
3610 bool hadError =
false;
3612 if ((*i).toEdge != toEdge) {
3615 if (fromLane >= 0 && fromLane != (*i).fromLane) {
3618 if (toLane >= 0 && toLane != (*i).toLane) {
3621 if ((*i).tlID ==
"") {
3623 (*i).tlLinkIndex = tlIndex;
3624 (*i).tlLinkIndex2 = tlIndex2;
3627 if ((*i).tlID != tlID && (*i).tlLinkIndex == tlIndex) {
3628 WRITE_WARNINGF(
TL(
"The lane '%' on edge '%' already had a traffic light signal."), i->fromLane,
getID());
3633 if (hadError && no == 0) {
3634 WRITE_WARNINGF(
TL(
"Could not set any signal of the tlLogic '%' (unknown group)."), tlID);
3659 ret =
myLanes[lane].shape.reverse();
3677 ret =
myLanes[lane].shape.reverse();
3688 reason =
"laneNumber";
3698 reason =
"bidi-rail";
3712 if (find(conn.begin(), conn.end(), possContinuation) == conn.end()) {
3713 reason =
"disconnected";
3724 reason =
"disconnected";
3730 if (conns.size() <
myLanes.size() - offset) {
3731 reason =
"some lanes disconnected";
3744 if (maxJunctionSize >= 0) {
3745 const double junctionSize =
myGeom.back().distanceTo2D(possContinuation->
myGeom.front());
3746 if (junctionSize > maxJunctionSize + POSITION_EPS) {
3747 reason =
"junction size (" +
toString(junctionSize) +
") > max-junction-size (" +
toString(maxJunctionSize) +
")";
3753 reason =
"priority";
3763 reason =
"spreadType";
3767 for (
int i = 0; i < (int)
myLanes.size(); i++) {
3769 reason =
"lane " +
toString(i) +
" speed";
3771 }
else if (
myLanes[i].permissions != possContinuation->
myLanes[i].permissions) {
3772 reason =
"lane " +
toString(i) +
" permissions";
3774 }
else if (
myLanes[i].changeLeft != possContinuation->
myLanes[i].changeLeft ||
myLanes[i].changeRight != possContinuation->
myLanes[i].changeRight) {
3775 reason =
"lane " +
toString(i) +
" change restrictions";
3777 }
else if (
myLanes[i].width != possContinuation->
myLanes[i].width &&
3779 reason =
"lane " +
toString(i) +
" width";
3800 for (
int i = 0; i < (int)
myLanes.size(); i++) {
3806 if (origID != origID2) {
3816 for (
int i = 0; i < (int)
myLanes.size(); i++) {
3852 if ((*i).toEdge == e && (*i).tlID !=
"") {
3878 assert(distances.size() > 0);
3884NBEdge::addLane(
int index,
bool recomputeShape,
bool recomputeConnections,
bool shiftIndices) {
3885 assert(index <= (
int)
myLanes.size());
3889 int templateIndex = index > 0 ? index - 1 : index + 1;
3899 if (recomputeShape) {
3902 if (recomputeConnections) {
3903 for (EdgeVector::const_iterator i = incs.begin(); i != incs.end(); ++i) {
3904 (*i)->invalidateConnections(
true);
3907 }
else if (shiftIndices) {
3910 if (c.fromLane >= index) {
3929 int newLaneNo = (int)
myLanes.size() + by;
3930 while ((
int)
myLanes.size() < newLaneNo) {
3940 assert(index < (
int)
myLanes.size());
3945 for (EdgeVector::const_iterator i = incs.begin(); i != incs.end(); ++i) {
3946 (*i)->invalidateConnections(
true);
3949 }
else if (shiftIndices) {
3952 inc->removeFromConnections(
this, -1, index,
false,
true);
3960 int newLaneNo = (int)
myLanes.size() - by;
3961 assert(newLaneNo > 0);
3962 while ((
int)
myLanes.size() > newLaneNo) {
3980 for (
int i = 0; i < (int)
myLanes.size(); i++) {
3984 assert(lane < (
int)
myLanes.size());
3985 myLanes[lane].permissions |= vclass;
3993 for (
int i = 0; i < (int)
myLanes.size(); i++) {
3997 assert(lane < (
int)
myLanes.size());
3998 myLanes[lane].permissions &= ~vclass;
4006 for (
int i = 0; i < (int)
myLanes.size(); i++) {
4010 assert(lane < (
int)
myLanes.size());
4011 myLanes[lane].permissions |= vclasses;
4012 myLanes[lane].preferred |= vclasses;
4022 for (
int i = 0; i < (int)
myLanes.size(); i++) {
4028 assert(lane < (
int)
myLanes.size());
4035 for (
int i = 0; i < (int)
myLanes.size(); i++) {
4041 assert(lane < (
int)
myLanes.size());
4072 for (
int i = 0; i < (int)
myLanes.size(); i++) {
4095 return myLanes[lane].laneStopOffset;
4105 for (
int i = 0; i < (int)
myLanes.size(); i++) {
4111 assert(lane < (
int)
myLanes.size());
4112 myLanes[lane].endOffset = offset;
4130 }
else if (lane < (
int)
myLanes.size()) {
4131 if (!
myLanes[lane].laneStopOffset.isDefined() || overwrite) {
4136 myLanes[lane].laneStopOffset = offset;
4151 for (
int i = 0; i < (int)
myLanes.size(); i++) {
4157 assert(lane < (
int)
myLanes.size());
4167 for (
int i = 0; i < (int)
myLanes.size(); i++) {
4173 assert(lane < (
int)
myLanes.size());
4174 myLanes[lane].friction = friction;
4181 assert(lane < (
int)
myLanes.size());
4182 myLanes[lane].accelRamp = accelRamp;
4189 assert(lane < (
int)
myLanes.size());
4190 myLanes[lane].customShape = shape;
4197 for (
int i = 0; i < (int)
myLanes.size(); i++) {
4202 assert(lane < (
int)
myLanes.size());
4203 myLanes[lane].permissions = permissions;
4211 for (
int i = 0; i < (int)
myLanes.size(); i++) {
4216 assert(lane < (
int)
myLanes.size());
4217 myLanes[lane].preferred = permissions;
4225 assert(lane < (
int)
myLanes.size());
4226 myLanes[lane].changeLeft = changeLeft;
4227 myLanes[lane].changeRight = changeRight;
4235 for (
int i = 0; i < (int)
myLanes.size(); i++) {
4240 assert(lane < (
int)
myLanes.size());
4241 return myLanes[lane].permissions;
4259 for (std::vector<Lane>::iterator i =
myLanes.begin(); i !=
myLanes.end(); ++i) {
4260 (*i).permissions =
SVCAll;
4296 for (
int i = start; i != end; i += direction) {
4312 for (
int i = start; i != end; i += direction) {
4326 for (
int i = 0; i < (int)
myLanes.size(); i++) {
4327 if (
myLanes[i].permissions == permissions) {
4339 for (
int i = start; i != end; i += direction) {
4340 if (
myLanes[i].permissions != 0) {
4344 return end - direction;
4348std::set<SVCPermissions>
4350 std::set<SVCPermissions> result;
4354 for (
int i = iStart; i < iEnd; ++i) {
4364 if ((lane.permissions & permissions) == permissions) {
4393 std::cout <<
getID() <<
" angle=" <<
getAngleAtNode(node) <<
" convAngle=" << angle <<
"\n";
4411 for (
int i = 0; i < (int)
myLanes.size(); i++) {
4416 for (
int i = 0; i < (int)
myLanes.size(); i++) {
4450 if (lane.permissions == vclass) {
4474 myLanes[newIndex].permissions = vclass;
4475 myLanes[newIndex].width = fabs(width);
4485 for (EdgeVector::const_iterator it = incoming.begin(); it != incoming.end(); ++it) {
4486 (*it)->shiftToLanesToEdge(
this, 1);
4497 if (
myLanes[0].permissions != vclass) {
4507 for (EdgeVector::const_iterator it = incoming.begin(); it != incoming.end(); ++it) {
4508 (*it)->shiftToLanesToEdge(
this, 0);
4521 if ((*it).toEdge == to && (*it).toLane >= 0) {
4522 (*it).toLane += laneOff;
4531 const int i = (node ==
myTo ? -1 : 0);
4532 const int i2 = (node ==
myTo ? 0 : -1);
4537 const double neededOffset2 = neededOffset + (other->
getTotalWidth()) / 2;
4538 if (dist < neededOffset && dist2 < neededOffset2) {
4573 double avgEndOffset = 0;
4575 avgEndOffset += lane.endOffset;
4580 avgEndOffset /= (double)
myLanes.size();
4581 return MAX2(result - avgEndOffset, POSITION_EPS);
4587 if (laneIdx == -1) {
4588 for (
int i = 0; i < (int)
myLanes.size(); i++) {
4595 if (std::find(oldIDs.begin(), oldIDs.end(), origID) == oldIDs.end()) {
4596 oldIDs.push_back(origID);
4616 if (con.fromLane >= 0 && con.toLane >= 0 && con.toEdge !=
nullptr &&
4618 & con.toEdge->getPermissions(con.toLane) & vClass) != 0)
4633 std::pair<const NBEdge*, const Connection*> pair(con.toEdge,
nullptr);
4637 }
else if ((con.fromLane >= 0) && (con.toLane >= 0) &&
4638 (con.toEdge !=
nullptr) &&
4639 ((
getPermissions(con.fromLane) & con.toEdge->getPermissions(con.toLane) & vClass) == vClass)) {
4641 if (con.getLength() > 0) {
4655 std::cout <<
" " <<
getID() <<
"_" << c.fromLane <<
"->" << c.toEdge->getID() <<
"_" << c.toLane <<
"\n";
4677 bool haveJoined =
false;
4682 const std::string newType =
myLanes[i].type +
"|" +
myLanes[i + 1].type;
4698 for (
NBEdge* edge : edges) {
4699 if ((edge->getPermissions() & permissions) != 0) {
4700 result.push_back(edge);
4709 if (cands.size() == 0) {
4713 NBEdge* best = cands.front();
4724 if (cands.size() == 0) {
4728 NBEdge* best = cands.front();
4739 NBEdge* opposite =
nullptr;
4745 if (cand->getToNode() ==
getFromNode() && !cand->getLanes().empty()) {
4746 const double lastWidthCand = cand->getLaneWidth(cand->getNumLanes() - 1);
4749 const double threshold = 1.42 * 0.5 * (lastWidth + lastWidthCand) + 0.5;
4752 if (distance < threshold) {
4757 if (opposite !=
nullptr) {
std::vector< std::string > & split(const std::string &s, char delim, std::vector< std::string > &elems)
#define WRITE_WARNINGF(...)
#define WRITE_MESSAGE(msg)
#define WRITE_WARNING(msg)
std::vector< std::pair< const NBRouterEdge *, const NBRouterEdge * > > ConstRouterEdgePairVector
std::vector< NBEdge * > EdgeVector
container for (sorted) edges
KeepClear
keepClear status of connections
const SVCPermissions SVCAll
all VClasses are allowed
bool isRailway(SVCPermissions permissions)
Returns whether an edge with the given permission is a railway edge.
const SVCPermissions SVC_UNSPECIFIED
permissions not specified
const std::string & getVehicleClassNames(SVCPermissions permissions, bool expand)
Returns the ids of the given classes, divided using a ' '.
bool isForbidden(SVCPermissions permissions)
Returns whether an edge with the given permission is a forbidden edge.
bool isBikepath(SVCPermissions permissions)
Returns whether an edge with the given permission is a bicycle edge.
SUMOVehicleClass
Definition of vehicle classes to differ between different lane usage and authority types.
@ SVC_IGNORING
vehicles ignoring classes
@ SVC_RAIL_CLASSES
classes which drive on tracks
@ SVC_PASSENGER
vehicle is a passenger car (a "normal" car)
@ SVC_BICYCLE
vehicle is a bicycle
@ SVC_DELIVERY
vehicle is a small delivery vehicle
@ SVC_TRAM
vehicle is a light rail
@ SVC_BUS
vehicle is a bus
@ SVC_PEDESTRIAN
pedestrian
int SVCPermissions
bitset where each bit declares whether a certain SVC may use this edge/lane
@ RIGHT
At the rightmost side of the lane.
const std::string SUMO_PARAM_ORIGID
LaneSpreadFunction
Numbers representing special SUMO-XML-attribute values Information how the edge's lateral offset shal...
LinkDirection
The different directions a link between two lanes may take (or a stream between two edges)....
@ PARTLEFT
The link is a partial left direction.
@ RIGHT
The link is a (hard) right direction.
@ TURN
The link is a 180 degree turn.
@ LEFT
The link is a (hard) left direction.
@ STRAIGHT
The link is a straight direction.
@ PARTRIGHT
The link is a partial right direction.
@ NODIR
The link has no direction (is a dead end link)
int gPrecision
the precision for floating point outputs
bool gDebugFlag1
global utility flags for debugging
const double SUMO_const_laneWidth
const double SUMO_const_haltingSpeed
the speed threshold at which vehicles are considered as halting
std::string joinToString(const std::vector< T > &v, const T_BETWEEN &between, std::streamsize accuracy=gPrecision)
std::string toString(const T &t, std::streamsize accuracy=gPrecision)
static void compute(BresenhamCallBack *callBack, const int val1, const int val2)
static const double INVALID_OFFSET
a value to signify offsets outside the range of [0, Line.length()]
static double legacyDegree(const double angle, const bool positive=false)
static double angleDiff(const double angle1, const double angle2)
Returns the difference of the second angle to the first angle in radiants.
int getFromLane() const
returns the from-lane
int getTLIndex() const
returns the index within the controlling tls or InvalidTLIndex if this link is unontrolled
void shiftLaneIndex(NBEdge *edge, int offset, int threshold=-1)
patches lane indices refering to the given edge and above the threshold by the given offset
int getToLane() const
returns the to-lane
NBEdge * getTo() const
returns the to-edge (end of the connection)
Holds (- relative to the edge it is build from -!!!) the list of main directions a vehicle that drive...
bool empty() const
returns the information whether no following street has a higher priority
bool includes(Direction d) const
returns the information whether the street in the given direction has a higher priority
int getStraightest() const
returns the index of the straightmost among the given outgoing edges
MainDirections(const EdgeVector &outgoing, NBEdge *parent, NBNode *to, const std::vector< int > &availableLanes)
constructor
std::vector< Direction > myDirs
list of the main direction within the following junction relative to the edge
~MainDirections()
destructor
int myStraightest
the index of the straightmost among the given outgoing edges
Direction
enum of possible directions
A class that being a bresenham-callback assigns the incoming lanes to the edges.
const std::map< NBEdge *, std::vector< int > > & getBuiltConnections() const
get built connections
void execute(const int lane, const int virtEdge)
executes a bresenham - step
Class to sort edges by their angle.
int operator()(const Connection &c1, const Connection &c2) const
comparing operation
The representation of a single edge during network building.
void reinit(NBNode *from, NBNode *to, const std::string &type, double speed, double friction, int nolanes, int priority, PositionVector geom, double width, double endOffset, const std::string &streetName, LaneSpreadFunction spread, bool tryIgnoreNodePositions=false)
Resets initial values.
void addGeometryPoint(int index, const Position &p)
Adds a further geometry point.
void mirrorX()
mirror coordinates along the x-axis
void setPreferredVehicleClass(SVCPermissions permissions, int lane=-1)
set preferred Vehicle Class
double getLaneSpeed(int lane) const
get lane speed
NBEdge * guessOpposite(bool reguess=false)
set oppositeID and return opposite edge if found
void setPermittedChanging(int lane, SVCPermissions changeLeft, SVCPermissions changeRight)
set allowed classes for changing to the left and right from the given lane
double getLength() const
Returns the computed length of the edge.
double myLaneWidth
This width of this edge's lanes.
SVCPermissions getPermissions(int lane=-1) const
get the union of allowed classes over all lanes or for a specific lane
std::vector< Connection > myConnectionsToDelete
List of connections marked for delayed removal.
const EdgeVector * getConnectedSorted()
Returns the list of outgoing edges without the turnaround sorted in clockwise direction.
double getDistancAt(double pos) const
get distance at the given offset
double myEndOffset
This edges's offset to the intersection begin (will be applied to all lanes)
int myToJunctionPriority
The priority normalised for the node the edge is incoming in.
void setPermissions(SVCPermissions permissions, int lane=-1)
set allowed/disallowed classes for the given lane or for all lanes if -1 is given
StopOffset myEdgeStopOffset
A vClass specific stop offset - assumed of length 0 (unspecified) or 1. For the latter case the int i...
double getLoadedLength() const
Returns the length was set explicitly or the computed length if it wasn't set.
double getCrossingAngle(NBNode *node)
return the angle for computing pedestrian crossings at the given node
void addBikeLane(double width)
add a bicycle lane of the given width and shift existing connctions
bool expandableBy(NBEdge *possContinuation, std::string &reason) const
Check if Node is expandable.
double getLaneFriction(int lane) const
get lane friction of specified lane
void init(int noLanes, bool tryIgnoreNodePositions, const std::string &origID)
Initialization routines common to all constructors.
void setSpeed(int lane, double speed)
set lane specific speed (negative lane implies set for all lanes)
void reinitNodes(NBNode *from, NBNode *to)
Resets nodes but keeps all other values the same (used when joining)
double mySpeed
The maximal speed.
bool hasLaneSpecificFriction() const
whether lanes differ in friction
double getLaneWidth() const
Returns the default width of lanes of this edge.
PositionVector getCWBoundaryLine(const NBNode &n) const
get the outer boundary of this edge when going clock-wise around the given node
NBNode * getToNode() const
Returns the destination node of the edge.
std::vector< Connection > myConnections
List of connections to following edges.
Connection & getConnectionRef(int fromLane, const NBEdge *to, int toLane)
Returns reference to the specified connection This method goes through "myConnections" and returns th...
NBEdge()
constructor for dummy edge
void divideOnEdges(const EdgeVector *outgoing)
divides the lanes on the outgoing edges
ConstRouterEdgePairVector myViaSuccessors
PositionVector getCCWBoundaryLine(const NBNode &n) const
get the outer boundary of this edge when going counter-clock-wise around the given node
double buildInnerEdges(const NBNode &n, int noInternalNoSplits, int &linkIndex, int &splitIndex)
static const double UNSPECIFIED_FRICTION
unspecified lane friction
void incLaneNo(int by)
increment lane
static EdgeVector filterByPermissions(const EdgeVector &edges, SVCPermissions permissions)
return only those edges that permit at least one of the give permissions
const Connection & getConnection(int fromLane, const NBEdge *to, int toLane) const
Returns the specified connection (unmodifiable) This method goes through "myConnections" and returns ...
void addLane(int index, bool recomputeShape, bool recomputeConnections, bool shiftIndices)
add lane
bool hasLaneSpecificSpeed() const
whether lanes differ in speed
void setAverageLengthWithOpposite(double val)
patch average lane length in regard to the opposite edge
void disallowVehicleClass(int lane, SUMOVehicleClass vclass)
set disallowed class for the given lane or for all lanes if -1 is given
double getShapeStartAngle() const
Returns the angle at the start of the edge.
static const int UNSPECIFIED_INTERNAL_LANE_INDEX
internal lane computation not yet done
void appendTurnaround(bool noTLSControlled, bool noFringe, bool onlyDeadends, bool onlyTurnlane, bool noGeometryLike, bool checkPermissions)
Add a connection to the previously computed turnaround, if wished and a turning direction exists (myT...
static bool connections_sorter(const Connection &c1, const Connection &c2)
connections_sorter sort by fromLane, toEdge and toLane
std::string myType
The type of the edge.
const PositionVector & getGeometry() const
Returns the geometry of the edge.
bool hasPermissions() const
whether at least one lane has restrictions
LaneSpreadFunction getLaneSpreadFunction() const
Returns how this edge's lanes' lateral offset is computed.
bool hasDefaultGeometryEndpoints() const
Returns whether the geometry is terminated by the node positions This default may be violated by init...
std::string myTurnSignTarget
node for which turnSign information applies
bool isBidiRail(bool ignoreSpread=false) const
whether this edge is part of a bidirectional railway
static const bool UNSPECIFIED_CONNECTION_UNCONTROLLED
TLS-controlled despite its node controlled not specified.
const EdgeVector & getSuccessors(SUMOVehicleClass vClass=SVC_IGNORING) const
Returns the following edges for the given vClass.
std::vector< LinkDirection > decodeTurnSigns(int turnSigns)
decode bitset
void dismissVehicleClassInformation()
dimiss vehicle class information
bool computeEdge2Edges(bool noLeftMovers)
computes the edge (step1: computation of approached edges)
EdgeBuildingStep getStep() const
The building step of this edge.
LaneSpreadFunction myLaneSpreadFunction
The information about how to spread the lanes.
void moveConnectionToLeft(int lane)
void updateChangeRestrictions(SVCPermissions ignoring)
modify all existing restrictions on lane changing
void restoreBikelane(std::vector< NBEdge::Lane > oldLanes, PositionVector oldGeometry, std::vector< NBEdge::Connection > oldConnections)
restore an previously added BikeLane
Position getEndpointAtNode(const NBNode *node) const
NBEdge * getStraightContinuation(SVCPermissions permissions) const
return the straightest follower edge for the given permissions or nullptr (never returns turn-arounds...
bool hasLoadedLength() const
Returns whether a length was set explicitly.
void restoreSidewalk(std::vector< NBEdge::Lane > oldLanes, PositionVector oldGeometry, std::vector< NBEdge::Connection > oldConnections)
restore an previously added sidewalk
bool addEdge2EdgeConnection(NBEdge *dest, bool overrideRemoval=false, SVCPermissions permission=SVC_UNSPECIFIED)
Adds a connection to another edge.
bool addLane2LaneConnection(int fromLane, NBEdge *dest, int toLane, Lane2LaneInfoType type, bool mayUseSameDestination=false, bool mayDefinitelyPass=false, KeepClear keepClear=KEEPCLEAR_UNSPECIFIED, double contPos=UNSPECIFIED_CONTPOS, double visibility=UNSPECIFIED_VISIBILITY_DISTANCE, double speed=UNSPECIFIED_SPEED, double friction=UNSPECIFIED_FRICTION, double length=myDefaultConnectionLength, const PositionVector &customShape=PositionVector::EMPTY, const bool uncontrolled=UNSPECIFIED_CONNECTION_UNCONTROLLED, SVCPermissions permissions=SVC_UNSPECIFIED, const bool indirectLeft=false, const std::string &edgeType="", SVCPermissions changeLeft=SVC_UNSPECIFIED, SVCPermissions changeRight=SVC_UNSPECIFIED, bool postProcess=false)
Adds a connection between the specified this edge's lane and an approached one.
void divideSelectedLanesOnEdges(const EdgeVector *outgoing, const std::vector< int > &availableLanes)
divide selected lanes on edges
bool setEdgeStopOffset(int lane, const StopOffset &offset, bool overwrite=false)
set lane and vehicle class specific stopOffset (negative lane implies set for all lanes)
const std::vector< NBEdge::Lane > & getLanes() const
Returns the lane definitions.
bool hasLaneSpecificStopOffsets() const
whether lanes differ in stopOffsets
void setNodeBorder(const NBNode *node, const Position &p, const Position &p2, bool rectangularCut)
Set Node border.
int getFirstNonPedestrianLaneIndex(int direction, bool exclusive=false) const
return the first lane with permissions other than SVC_PEDESTRIAN and 0
void shiftToLanesToEdge(NBEdge *to, int laneOff)
modifify the toLane for all connections to the given edge
void checkGeometry(const double maxAngle, const double minRadius, bool fix, bool silent)
Check the angles of successive geometry segments.
static double myDefaultConnectionLength
bool isNearEnough2BeJoined2(NBEdge *e, double threshold) const
Check if edge is near enought to be joined to another edge.
EdgeBuildingStep myStep
The building step.
void setLaneType(int lane, const std::string &type)
set lane specific type (negative lane implies set for all lanes)
bool computeLanes2Edges()
computes the edge, step2: computation of which lanes approach the edges)
EdgeBuildingStep
Current state of the edge within the building process.
@ INIT_REJECT_CONNECTIONS
The edge has been loaded and connections shall not be added.
@ EDGE2EDGES
The relationships between edges are computed/loaded.
@ LANES2LANES_RECHECK
Lanes to lanes - relationships are computed; should be rechecked.
@ LANES2LANES_DONE
Lanes to lanes - relationships are computed; no recheck is necessary/wished.
@ LANES2EDGES
Lanes to edges - relationships are computed/loaded.
@ LANES2LANES_USER
Lanes to lanes - relationships are loaded; no recheck is necessary/wished.
@ INIT
The edge has been loaded, nothing is computed yet.
NBEdge * getStraightPredecessor(SVCPermissions permissions) const
return the straightest predecessor edge for the given permissions or nullptr (never returns turn-arou...
void remapConnections(const EdgeVector &incoming)
Remaps the connection in a way that allows the removal of it.
double getSpeed() const
Returns the speed allowed on this edge.
const std::string & getID() const
int getFirstAllowedLaneIndex(int direction) const
return the first lane that permits at least 1 vClass or the last lane if search direction of there is...
bool allowsChangingRight(int lane, SUMOVehicleClass vclass) const
Returns whether the given vehicle class may change left from this lane.
static const double UNSPECIFIED_LOADED_LENGTH
no length override given
void setLaneWidth(int lane, double width)
set lane specific width (negative lane implies set for all lanes)
void resetLaneShapes()
reset lane shapes to what they would be before cutting with the junction shapes
bool setControllingTLInformation(const NBConnection &c, const std::string &tlID)
Returns if the link could be set as to be controlled.
bool bothLeftTurns(LinkDirection dir, const NBEdge *otherFrom, LinkDirection dir2) const
determine conflict between opposite left turns
void setAcceleration(int lane, bool accelRamp)
marks one lane as acceleration lane
const StopOffset & getEdgeStopOffset() const
Returns the stopOffset to the end of the edge.
NBNode * tryGetNodeAtPosition(double pos, double tolerance=5.0) const
Returns the node at the given edges length (using an epsilon)
void setLaneSpreadFunction(LaneSpreadFunction spread)
(Re)sets how the lanes lateral offset shall be computed
void clearControllingTLInformation()
clears tlID for all connections
bool isTurningDirectionAt(const NBEdge *const edge) const
Returns whether the given edge is the opposite direction to this edge.
void addStraightConnections(const EdgeVector *outgoing, const std::vector< int > &availableLanes, const std::vector< int > &priorities)
add some straight connections
bool hasLaneSpecificPermissions() const
whether lanes differ in allowed vehicle classes
bool needsLaneSpecificOutput() const
whether at least one lane has values differing from the edges values
void computeAngle()
computes the angle of this edge and stores it in myAngle
bool isBidiEdge(bool checkPotential=false) const
whether this edge is part of a bidirectional edge pair
static const double UNSPECIFIED_SIGNAL_OFFSET
unspecified signal offset
void addSidewalk(double width)
add a pedestrian sidewalk of the given width and shift existing connctions
bool hasSignalisedConnectionTo(const NBEdge *const e) const
Check if edge has signalised connections.
std::vector< Lane > myLanes
Lane information.
int getNumLanes() const
Returns the number of lanes.
std::vector< Connection > getConnectionsFromLane(int lane, const NBEdge *to=nullptr, int toLane=-1) const
Returns connections from a given lane.
bool hasAccelLane() const
whether one of the lanes is an acceleration lane
bool myIsBidi
whether this edge is part of a non-rail bidi edge pair
static double firstIntersection(const PositionVector &v1, const PositionVector &v2, double width1, double width2, const std::string &error="", bool secondIntersection=false)
compute the first intersection point between the given lane geometries considering their rspective wi...
PositionVector myToBorder
void extendGeometryAtNode(const NBNode *node, double maxExtent)
linearly extend the geometry at the given node
void setFriction(int lane, double friction)
set lane specific friction (negative lane implies set for all lanes)
static const double UNSPECIFIED_CONTPOS
unspecified internal junction position
static const double ANGLE_LOOKAHEAD
the distance at which to take the default angle
void reduceGeometry(const double minDist)
Removes points with a distance lesser than the given.
static NBEdge DummyEdge
Dummy edge to use when a reference must be supplied in the no-arguments constructor (FOX technicality...
bool joinLanes(SVCPermissions perms)
join adjacent lanes with the given permissions
void resetNodeBorder(const NBNode *node)
void markAsInLane2LaneState()
mark edge as in lane to state lane
bool mayBeTLSControlled(int fromLane, NBEdge *toEdge, int toLane) const
return true if certain connection must be controlled by TLS
void addRestrictedLane(double width, SUMOVehicleClass vclass)
add a lane of the given width, restricted to the given class and shift existing connections
void removeFromConnections(NBEdge *toEdge, int fromLane=-1, int toLane=-1, bool tryLater=false, const bool adaptToLaneRemoval=false, const bool keepPossibleTurns=false)
Removes the specified connection(s)
double myLength
The length of the edge.
NBEdge::Lane getFirstNonPedestrianLane(int direction) const
@brif get first non-pedestrian lane
void invalidateConnections(bool reallowSetting=false)
invalidate current connections of edge
const std::vector< int > prepareEdgePriorities(const EdgeVector *outgoing, const std::vector< int > &availableLanes)
recomputes the edge priorities and manipulates them for a distribution of lanes on edges which is mor...
int myIndex
the index of the edge in the list of all edges. Set by NBEdgeCont and requires re-set whenever the li...
double getTotalWidth() const
Returns the combined width of all lanes of this edge.
PositionVector cutAtIntersection(const PositionVector &old) const
cut shape at the intersection shapes
Position geometryPositionAtOffset(double offset) const
return position taking into account loaded length
static const double UNSPECIFIED_VISIBILITY_DISTANCE
unspecified foe visibility for connections
bool canMoveConnection(const Connection &con, int newFromLane) const
whether the connection can originate on newFromLane
double getInternalLaneWidth(const NBNode &node, const NBEdge::Connection &connection, const NBEdge::Lane &successor, bool isVia) const
Returns the width of the internal lane associated with the connection.
void allowVehicleClass(int lane, SUMOVehicleClass vclass)
set allowed class for the given lane or for all lanes if -1 is given
bool isConnectedTo(const NBEdge *e, const bool ignoreTurnaround=false) const
Returns the information whethe a connection to the given edge has been added (or computed)
double getMaxLaneOffset()
get max lane offset
void deleteLane(int index, bool recompute, bool shiftIndices)
delete lane
NBEdge * myPossibleTurnDestination
The edge that would be the turn destination if there was one.
const PositionVector & getNodeBorder(const NBNode *node) const
int getNumLanesThatAllow(SVCPermissions permissions) const
get lane indices that allow the given permissions
const NBNode * mySignalNode
bool hasLaneSpecificWidth() const
whether lanes differ in width
void moveConnectionToRight(int lane)
std::set< SVCPermissions > getPermissionVariants(int iStart, int iEnd) const
return all permission variants within the specified lane range [iStart, iEnd[
void reshiftPosition(double xoff, double yoff)
Applies an offset to the edge.
void moveOutgoingConnectionsFrom(NBEdge *e, int laneOff)
move outgoing connection
std::string getLaneID(int lane) const
get lane ID
bool myIsOffRamp
whether this edge is an Off-Ramp or leads to one
static const double UNSPECIFIED_SPEED
unspecified lane speed
Lane2LaneInfoType
Modes of setting connections between lanes.
@ USER
The connection was given by the user.
@ VALIDATED
The connection was computed and validated.
@ COMPUTED
The connection was computed.
double getFriction() const
Returns the friction on this edge.
static PositionVector startShapeAt(const PositionVector &laneShape, const NBNode *startNode, PositionVector nodeShape)
std::string getSidewalkID()
get the lane id for the canonical sidewalk lane
std::vector< int > getConnectionLanes(NBEdge *currentOutgoing, bool withBikes=true) const
Returns the list of lanes that may be used to reach the given edge.
void computeLaneShapes()
compute lane shapes
double getAngleAtNodeToCenter(const NBNode *const node) const
Returns the angle of from the node shape center to where the edge meets the node shape.
int getSpecialLane(SVCPermissions permissions) const
return index of the first lane that allows the given permissions
bool setConnection(int lane, NBEdge *destEdge, int destLane, Lane2LaneInfoType type, bool mayUseSameDestination=false, bool mayDefinitelyPass=false, KeepClear keepClear=KEEPCLEAR_UNSPECIFIED, double contPos=UNSPECIFIED_CONTPOS, double visibility=UNSPECIFIED_VISIBILITY_DISTANCE, double speed=UNSPECIFIED_SPEED, double friction=UNSPECIFIED_FRICTION, double length=myDefaultConnectionLength, const PositionVector &customShape=PositionVector::EMPTY, const bool uncontrolled=UNSPECIFIED_CONNECTION_UNCONTROLLED, SVCPermissions permissions=SVC_UNSPECIFIED, bool indirectLeft=false, const std::string &edgeType="", SVCPermissions changeLeft=SVC_UNSPECIFIED, SVCPermissions changeRight=SVC_UNSPECIFIED, bool postProcess=false)
Adds a connection to a certain lane of a certain edge.
bool hasLaneSpecificEndOffset() const
whether lanes differ in offset
int getJunctionPriority(const NBNode *const node) const
Returns the junction priority (normalised for the node currently build)
double myDistance
The mileage/kilometrage at the start of this edge in a linear coordination system.
bool myAmMacroscopicConnector
Information whether this edge is a (macroscopic) connector.
EdgeVector getConnectedEdges() const
Returns the list of outgoing edges unsorted.
const ConstRouterEdgePairVector & getViaSuccessors(SUMOVehicleClass vClass=SVC_IGNORING) const
Returns the following edges for the given vClass.
const std::string & getStreetName() const
Returns the street name of this edge.
void setLaneShape(int lane, const PositionVector &shape)
sets a custom lane shape
double myLoadedLength
An optional length to use (-1 if not valid)
void sortOutgoingConnectionsByAngle()
sorts the outgoing connections by their angle relative to their junction
bool applyTurnSigns()
apply loaded turn sign information
bool haveIntersection(const NBNode &n, const PositionVector &shape, const NBEdge *otherFrom, const NBEdge::Connection &otherCon, int numPoints, double width1, double width2, int shapeFlag=0) const
void preferVehicleClass(int lane, SVCPermissions vclasses)
prefer certain vehicle classes for the given lane or for all lanes if -1 is given (ensures also permi...
const NBEdge * getBidiEdge() const
NBNode * getFromNode() const
Returns the origin node of the edge.
double myStartAngle
The angles of the edge.
double getAngleAtNodeNormalized(const NBNode *const node) const
Returns the angle of the edge's geometry at the given node and disregards edge direction.
NBEdge * getTurnDestination(bool possibleDestination=false) const
void shiftPositionAtNode(NBNode *node, NBEdge *opposite)
shift geometry at the given node to avoid overlap
double getAngleAtNode(const NBNode *const node) const
Returns the angle of the edge's geometry at the given node.
bool hasLaneSpecificType() const
whether lanes differ in type
PositionVector myFromBorder
intersection borders (because the node shape might be invalid)
double getSignalOffset() const
Returns the offset of a traffic signal from the end of this edge.
bool hasDefaultGeometry() const
Returns whether the geometry consists only of the node positions.
bool myAmInTLS
Information whether this is lies within a joined tls.
void setTurningDestination(NBEdge *e, bool onlyPossible=false)
Sets the turing destination at the given edge.
bool hasDefaultGeometryEndpointAtNode(const NBNode *node) const
Returns whether the geometry is terminated by the node positions This default may be violated by init...
NBEdge * myTurnDestination
The turn destination edge (if a connection exists)
int getPriority() const
Returns the priority of the edge.
void computeEdgeShape(double smoothElevationThreshold=-1)
Recomputeds the lane shapes to terminate at the node shape For every lane the intersection with the f...
double assignInternalLaneLength(std::vector< Connection >::iterator i, int numLanes, double lengthSum, bool averageLength)
assign length to all lanes of an internal edge
static const double UNSPECIFIED_WIDTH
unspecified lane width
bool hasRestrictedLane(SUMOVehicleClass vclass) const
returns whether any lane already allows the given vclass exclusively
void copyConnectionsFrom(NBEdge *src)
copy connections from antoher edge
const StopOffset & getLaneStopOffset(int lane) const
Returns the stop offset to the specified lane's end.
void debugPrintConnections(bool outgoing=true, bool incoming=false) const
debugging helper to print all connections
Position mySignalPosition
the position of a traffic light signal on this edge
void replaceInConnections(NBEdge *which, NBEdge *by, int laneOff)
replace in current connections of edge
bool lanesWereAssigned() const
Check if lanes were assigned.
void restoreRestrictedLane(SUMOVehicleClass vclass, std::vector< NBEdge::Lane > oldLanes, PositionVector oldGeometry, std::vector< NBEdge::Connection > oldConnections)
restore a restricted lane
double getEndOffset() const
Returns the offset to the destination node.
bool isRailDeadEnd() const
whether this edge is a railway edge that does not continue
double myFriction
The current friction.
void setEndOffset(int lane, double offset)
set lane specific end-offset (negative lane implies set for all lanes)
static const double UNSPECIFIED_OFFSET
unspecified lane offset
void sortOutgoingConnectionsByIndex()
sorts the outgoing connections by their from-lane-index and their to-lane-index
bool recheckLanes()
recheck whether all lanes within the edge are all right and optimises the connections once again
int myFromJunctionPriority
The priority normalised for the node the edge is outgoing of.
bool addLane2LaneConnections(int fromLane, NBEdge *dest, int toLane, int no, Lane2LaneInfoType type, bool invalidatePrevious=false, bool mayDefinitelyPass=false)
Builds no connections starting at the given lanes.
void setOrigID(const std::string origID, const bool append, const int laneIdx=-1)
set origID for all lanes or for a specific lane
PositionVector computeLaneShape(int lane, double offset) const
Computes the shape for the given lane.
bool allowsChangingLeft(int lane, SUMOVehicleClass vclass) const
Returns whether the given vehicle class may change left from this lane.
static int getLaneIndexFromLaneID(const std::string laneID)
bool hasConnectionTo(const NBEdge *destEdge, int destLane, int fromLane=-1) const
Retrieves info about a connection to a certain lane of a certain edge.
bool hasCustomLaneShape() const
whether one of the lanes has a custom shape
bool hasLaneParams() const
whether one of the lanes has parameters set
const PositionVector & getLaneShape(int i) const
Returns the shape of the nth lane.
double getShapeEndAngle() const
Returns the angle at the end of the edge.
bool prohibitsChanging() const
whether one of the lanes prohibits lane changing
void setLoadedLength(double val)
set loaded length
PositionVector myGeom
The geometry for the edge.
const PositionVector getInnerGeometry() const
Returns the geometry of the edge without the endpoints.
void decLaneNo(int by)
decrement lane
NBNode * myFrom
The source and the destination node.
void append(NBEdge *continuation)
append another edge
void setJunctionPriority(const NBNode *const node, int prio)
Sets the junction priority of the edge.
double getFinalLength() const
get length that will be assigned to the lanes in the final network
void shortenGeometryAtNode(const NBNode *node, double reduction)
linearly extend the geometry at the given node
void setGeometry(const PositionVector &g, bool inner=false)
(Re)sets the edge's geometry
int myPriority
The priority of the edge.
std::string myStreetName
The street name (or whatever arbitrary string you wish to attach)
EdgeVector getIncomingEdges() const
Returns the list of incoming edges unsorted.
int getFirstNonPedestrianNonBicycleLaneIndex(int direction, bool exclusive=false) const
return the first lane with permissions other than SVC_PEDESTRIAN, SVC_BICYCLE and 0
static double normRelAngle(double angle1, double angle2)
ensure that reverse relAngles (>=179.999) always count as turnarounds (-180)
A definition of a pedestrian crossing.
PositionVector shape
The crossing's shape.
EdgeVector edges
The edges being crossed.
double width
This crossing's width.
Represents a single node (junction) during network building.
void addIncomingEdge(NBEdge *edge)
adds an incoming edge
LinkDirection getDirection(const NBEdge *const incoming, const NBEdge *const outgoing, bool leftHand=false) const
Returns the representation of the described stream's direction.
static const int AVOID_INTERSECTING_LEFT_TURNS
void removeEdge(NBEdge *edge, bool removeFromConnections=true)
Removes edge from this node and optionally removes connections as well.
const std::set< NBTrafficLightDefinition * > & getControllingTLS() const
Returns the traffic lights that were assigned to this node (The set of tls that control this node)
bool needsCont(const NBEdge *fromE, const NBEdge *otherFromE, const NBEdge::Connection &c, const NBEdge::Connection &otherC) const
whether an internal junction should be built at from and respect other
FringeType getFringeType() const
Returns fringe type.
static const int BACKWARD
SumoXMLNodeType getType() const
Returns the type of this node.
static bool isTrafficLight(SumoXMLNodeType type)
return whether the given type is a traffic light
const EdgeVector & getIncomingEdges() const
Returns this node's incoming edges (The edges which yield in this node)
static bool rightTurnConflict(const NBEdge *from, const NBEdge *to, int fromLane, const NBEdge *prohibitorFrom, const NBEdge *prohibitorTo, int prohibitorFromLane)
return whether the given laneToLane connection is a right turn which must yield to a bicycle crossing...
const EdgeVector & getOutgoingEdges() const
Returns this node's outgoing edges (The edges which start at this node)
bool forbids(const NBEdge *const possProhibitorFrom, const NBEdge *const possProhibitorTo, const NBEdge *const possProhibitedFrom, const NBEdge *const possProhibitedTo, bool regardNonSignalisedLowerPriority) const
Returns the information whether "prohibited" flow must let "prohibitor" flow pass.
bool bidiConflict(const NBEdge *from, const NBEdge::Connection &con, const NBEdge *prohibitorFrom, const NBEdge::Connection &prohibitorCon, bool foes) const
whether the foe connections is oncoming on the same lane
PositionVector computeSmoothShape(const PositionVector &begShape, const PositionVector &endShape, int numPoints, bool isTurnaround, double extrapolateBeg, double extrapolateEnd, NBNode *recordError=0, int shapeFlag=0) const
Compute a smooth curve between the given geometries.
bool isLeftMover(const NBEdge *const from, const NBEdge *const to) const
Computes whether the given connection is a left mover across the junction.
bool mergeConflict(const NBEdge *from, const NBEdge::Connection &con, const NBEdge *prohibitorFrom, const NBEdge::Connection &prohibitorCon, bool foes) const
whether multiple connections from the same edge target the same lane
std::vector< Crossing * > getCrossings() const
return this junctions pedestrian crossings
void addOutgoingEdge(NBEdge *edge)
adds an outgoing edge
bool isConstantWidthTransition() const
detects whether a given junction splits or merges lanes while keeping constant road width
const Position & getPosition() const
const PositionVector & getShape() const
retrieve the junction shape
static const int FORWARD
edge directions (for pedestrian related stuff)
bool foes(const NBEdge *const from1, const NBEdge *const to1, const NBEdge *const from2, const NBEdge *const to2) const
Returns the information whether the given flows cross.
PositionVector computeInternalLaneShape(const NBEdge *fromE, const NBEdge::Connection &con, int numPoints, NBNode *recordError=0, int shapeFlag=0) const
Compute the shape for an internal lane.
void shiftTLConnectionLaneIndex(NBEdge *edge, int offset, int threshold=-1)
patches loaded signal plans by modifying lane indices above threshold by the given offset
bool geometryLike() const
whether this is structurally similar to a geometry node
bool isTLControlled() const
Returns whether this node is controlled by any tls.
static const int SCURVE_IGNORE
static const double MIN_SPEED_CROSSING_TIME
minimum speed for computing time to cross intersection
Base class for objects which have an id.
std::string myID
The name of the object.
static std::string getIDSecure(const T *obj, const std::string &fallBack="NULL")
get an identifier for Named-like object which may be Null
const std::string & getID() const
Returns the id.
A storage for options typed value containers)
double getFloat(const std::string &name) const
Returns the double-value of the named option (only for Option_Float)
int getInt(const std::string &name) const
Returns the int-value of the named option (only for Option_Integer)
bool getBool(const std::string &name) const
Returns the boolean-value of the named option (only for Option_Bool)
static OptionsCont & getOptions()
Retrieves the options.
virtual const std::string getParameter(const std::string &key, const std::string defaultValue="") const
Returns the value for a given key.
const Parameterised::Map & getParametersMap() const
Returns the inner key/value map.
virtual void setParameter(const std::string &key, const std::string &value)
Sets a parameter.
void updateParameters(const Parameterised::Map &mapArg)
Adds or updates all given parameters from the map.
bool knowsParameter(const std::string &key) const
Returns whether the parameter is known.
A point in 2D or 3D with translation and scaling methods.
static const Position INVALID
used to indicate that a position is valid
double distanceTo2D(const Position &p2) const
returns the euclidean distance in the x-y-plane
void add(const Position &pos)
Adds the given position to this one.
void setz(double z)
set position z
double z() const
Returns the z-position.
double angleTo2D(const Position &other) const
returns the angle in the plane of the vector pointing from here to the other position
void sety(double y)
set position y
double y() const
Returns the y-position.
double length2D() const
Returns the length.
void append(const PositionVector &v, double sameThreshold=2.0)
double beginEndAngle() const
returns the angle in radians of the line connecting the first and the last position
double length() const
Returns the length.
void push_front_noDoublePos(const Position &p)
insert in front a non double position
Position positionAtOffset(double pos, double lateralOffset=0) const
Returns the position at the given length.
void add(double xoff, double yoff, double zoff)
void closePolygon()
ensures that the last position equals the first
std::vector< double > intersectsAtLengths2D(const PositionVector &other) const
For all intersections between this vector and other, return the 2D-length of the subvector from this ...
double distance2D(const Position &p, bool perpendicular=false) const
closest 2D-distance to point p (or -1 if perpendicular is true and the point is beyond this vector)
double nearest_offset_to_point2D(const Position &p, bool perpendicular=true) const
return the nearest offest to point 2D
std::vector< double > distances(const PositionVector &s, bool perpendicular=false) const
distances of all my points to s and all of s points to myself
PositionVector getOrthogonal(const Position &p, double extend, bool before, double length=1.0, double deg=90) const
return orthogonal through p (extending this vector if necessary)
std::pair< PositionVector, PositionVector > splitAt(double where, bool use2D=false) const
Returns the two lists made when this list vector is splitted at the given point.
void move2side(double amount, double maxExtension=100)
move position vector to side using certain ammount
bool almostSame(const PositionVector &v2, double maxDiv=POSITION_EPS) const
check if the two vectors have the same length and pairwise similar positions
PositionVector getSubpart2D(double beginOffset, double endOffset) const
get subpart of a position vector in two dimensions (Z is ignored)
PositionVector smoothedZFront(double dist=std::numeric_limits< double >::max()) const
returned vector that is smoothed at the front (within dist)
double angleAt2D(int pos) const
get angle in certain position of position vector
bool hasElevation() const
return whether two positions differ in z-coordinate
void extrapolate(const double val, const bool onlyFirst=false, const bool onlyLast=false)
extrapolate position vector
Position getCentroid() const
Returns the centroid (closes the polygon if unclosed)
void extrapolate2D(const double val, const bool onlyFirst=false)
extrapolate position vector in two dimensions (Z is ignored)
void push_back_noDoublePos(const Position &p)
insert in back a non double position
void removeDoublePoints(double minDist=POSITION_EPS, bool assertLength=false, int beginOffset=0, int endOffset=0, bool resample=false)
Removes positions if too near.
bool intersects(const Position &p1, const Position &p2) const
Returns the information whether this list of points interesects the given line.
PositionVector reverse() const
reverse position vector
PositionVector getSubpartByIndex(int beginIndex, int count) const
get subpart of a position vector using index and a cout
Position positionAtOffset2D(double pos, double lateralOffset=0) const
Returns the position at the given length.
PositionVector getSubpart(double beginOffset, double endOffset) const
get subpart of a position vector
bool around(const Position &p, double offset=0) const
Returns the information whether the position vector describes a polygon lying around the given point.
static bool isValidNetID(const std::string &value)
whether the given string is a valid id for a network element
bool isDefined() const
check if stopOffset was defined
double getOffset() const
get offset
std::vector< std::string > getVector()
return vector of strings
Some static methods for string processing.
static std::string convertUmlaute(std::string str)
Converts german "Umlaute" to their latin-version.
static int toInt(const std::string &sData)
converts a string into the integer value described by it by calling the char-type converter,...
static T maxValue(const std::vector< T > &v)
A structure which describes a connection between edges or lanes.
bool indirectLeft
Whether this connection is an indirect left turn.
int fromLane
The lane the connections starts at.
std::string viaID
if Connection have a via, ID of it
int toLane
The lane the connections yields in.
std::vector< int > foeInternalLinks
FOE Internal links.
Connection(int fromLane_, NBEdge *toEdge_, int toLane_, const bool mayDefinitelyPass_=false)
Constructor.
double speed
custom speed for connection
NBEdge * toEdge
The edge the connections yields in.
double customLength
custom length for connection
double vmax
maximum velocity
PositionVector customShape
custom shape for connection
PositionVector viaShape
shape of via
std::string getDescription(const NBEdge *parent) const
get string describing this connection
double contPos
custom position for internal junction on this connection
std::string getInternalLaneID() const
get ID of internal lane
int internalLaneIndex
The lane index of this internal lane within the internal edge.
std::string tlID
The id of the traffic light that controls this connection.
int tlLinkIndex2
The index of the internal junction within the controlling traffic light (optional)
double length
computed length (average of all internal lane shape lengths that share an internal edge)
PositionVector shape
shape of Connection
std::string id
id of Connection
std::vector< std::string > foeIncomingLanes
FOE Incomings lanes.
bool haveVia
check if Connection have a Via
int tlLinkIndex
The index of this connection within the controlling traffic light.
double viaLength
the length of the via shape (maybe customized)
static ConstRouterEdgePairVector myViaSuccessors
An (internal) definition of a single lane of an edge.
double width
This lane's width.
std::string oppositeID
An opposite lane ID, if given.
SVCPermissions changeRight
List of vehicle types that are allowed to change right from this lane.
SVCPermissions changeLeft
List of vehicle types that are allowed to change Left from this lane.
Lane(NBEdge *e, const std::string &_origID)
constructor
bool accelRamp
Whether this lane is an acceleration lane.
PositionVector shape
The lane's shape.